1
|
Cao DF, Zhou XY, Guo Q, Xiang MY, Bao MH, He BS, Mao XY. Unveiling the role of histone deacetylases in neurological diseases: focus on epilepsy. Biomark Res 2024; 12:142. [PMID: 39563472 PMCID: PMC11575089 DOI: 10.1186/s40364-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Epilepsy remains a prevalent chronic neurological disease that is featured by aberrant, recurrent and hypersynchronous discharge of neurons and poses a great challenge to healthcare systems. Although several therapeutic interventions are successfully utilized for treating epilepsy, they can merely provide symptom relief but cannot exert disease-modifying effect. Therefore, it is of urgent need to explore other potential mechanism to develop a novel approach to delay the epileptic progression. Since approximately 30 years ago, histone deacetylases (HDACs), the versatile epigenetic regulators responsible for gene transcription via binding histones or non-histone substrates, have grabbed considerable attention in drug discovery. There are also substantial evidences supporting that aberrant expressions and/activities of HDAC isoforms are reported in epilepsy and HDAC inhibitors (HDACi) have been successfully utilized for therapeutic purposes in this condition. However, the specific mechanisms underlying the role of HDACs in epileptic progression have not been fully understood. Herein, we reviewed the basic information of HDACs, summarized the recent findings associated with the roles of diverse HDAC subunits in epilepsy and discussed the potential regulatory mechanisms by which HDACs affected the development of epilepsy. Additionally, we also provided a brief discussion on the potential of HDACs as promising therapeutic targets for epilepsy treatment, serving as a valuable reference for basic study and clinical translation in epilepsy field.
Collapse
Affiliation(s)
- Dan-Feng Cao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- The First Clinical College, Changsha Medical University, Changsha, 410219, China
| | - Xin-Yu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, China
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, China
| | - Qian Guo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming-Yao Xiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Mei-Hua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Bin-Sheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
3
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
4
|
Sládeková L, Mani S, Dvořák Z. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths. Biochem Pharmacol 2023; 213:115626. [PMID: 37247746 DOI: 10.1016/j.bcp.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
5
|
Wang L, Lv WQ, Yang JT, Lin X, Liu HM, Tan HJ, Quan RP, Long PP, Shen H, Shen J, Deng HW, Xiao HM. Enteric nervous system damage caused by abnormal intestinal butyrate metabolism may lead to functional constipation. Front Microbiol 2023; 14:1117905. [PMID: 37228368 PMCID: PMC10203953 DOI: 10.3389/fmicb.2023.1117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Functional constipation (FC) is a high morbidity gastrointestinal disease for which dysfunction in the enteric nervous system is a major pathogenesis mechanism. To enhance our understanding of the involvement of intestinal microbiota and its metabolites in the pathogenesis of FC, we conducted a shotgun metagenomic sequencing analysis of gut microbiota and serum short-chain fatty acids (SCFAs) analysis in 460 Chinese women with different defecation frequencies. We observed that the abundance ofFusobacterium_varium, a butyric acid-producing bacterium, was positively correlated (P = 0.0096) with the frequency of defecation; however, the concentrations of serum butyric acid was negatively correlated (P = 3.51E-05) with defecation frequency. These results were verified in an independent cohort (6 patients with FC and 6 controls). To further study the effects of butyric acid on intestinal nerve cells, we treated mouse intestinal neurons in vitro with various concentrations of butyrate (0.1, 0.5, 1, and 2.5 mM). We found that intestinal neurons treated with 0.5 mM butyrate proliferated better than those in the other treatment groups, with significant differences in cell cycle and oxidative phosphorylation signal pathways. We suggest that the decreased butyrate production resulting from the reduced abundance of Fusobacterium in gut microbiota affects the proliferation of intestinal neurons and the energy supply of intestinal cells. However, with FC disease advancing, the consumption and excretion of butyric acid reduce, leading to its accumulation in the intestine. Moreover, the accumulation of an excessively high amount of butyric acid inhibits the proliferation of nerve cells and subsequently exacerbates the disease.
Collapse
Affiliation(s)
- Le Wang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- School of Basic Medical Science, Hunan University of Medicine, Huaihua, Hunan, China
| | - Wan-Qiang Lv
- Center of Safety Evaluation and Research, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun-Ting Yang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui-Min Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hang-Jing Tan
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ru-Ping Quan
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Pan-Pan Long
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhang Z, Bahaji Azami NL, Liu N, Sun M. Research Progress of Intestinal Microecology in the Pathogenesis of Colorectal Adenoma and Carcinogenesis. Technol Cancer Res Treat 2023; 22:15330338221135938. [PMID: 36740990 PMCID: PMC9903042 DOI: 10.1177/15330338221135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal adenoma is a precancerous lesion that may progress to colorectal cancer. Patients with colorectal adenoma had a 4-fold higher risk of developing colorectal malignancy than the rest of the population, with approximately 80% of colorectal cancer originating from colorectal adenoma. Therefore, preventing the occurrence and progression of colorectal adenoma is crucial in reducing the risk for colorectal cancer. The human intestinal microecology is a complex system consisting of numerous microbial communities with a sophisticated structure. Interactions among intestinal microorganisms play crucial roles in maintaining normal intestinal structure, digestion, absorption, metabolism, and other functions. The colorectal system is the largest microbial bank or fermentation system in the human body. Studies suggest that intestinal microecological imbalance, one of the most important environmental factors, may play an essential role in the occurrence and development of colorectal adenoma and colorectal cancer. Based on the complexity of studying the gut microbiota ecosystem, its specific role in the occurrence and development of colorectal adenoma is yet to be elucidated. In addition, further studies are expected to provide new insights regarding the prevention and treatment of colorectal adenoma. This article reviews the relationship and mechanism of the diversity of the gut microbiota, the relevant inflammatory response, immune regulation, and metabolic changes in the presence of colorectal adenomas.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nisma Lena Bahaji Azami
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningning Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ningning Liu, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Mingyu Sun, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Lyu Y, Yang J, Cheng L, Li Z, Zheng J. Benzo(a)pyrene-induced mitochondrial respiration and glycolysis disturbance in human neuroblastoma cells. J Toxicol Sci 2023; 48:87-97. [PMID: 36725024 DOI: 10.2131/jts.48.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian cells generate ATP through mitochondrial respiration and glycolysis. Mitochondria not only play a key role in cell energy metabolism but also in cell cycle regulation. As a neurotoxic pollutant, benzo(a)pyrene (BaP) can trigger neuronal oxidative damage and apoptosis. However, the features of BaP-induced energy metabolism disturbance in SH-SY5Y cells has rarely been addressed. This study aimed to measure oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) as indications of respiratory activities and glycolytic. SH-SY5Y cells were treated with BaP to establish a cytotoxicity model, and butylated hydroxy anisole (BHA) was used to alleviate the damages induced by BaP. Using the Seahorse Extracellular Flux analyzer (XFp), we found that BaP significantly reduced basal respiration, ATP-linked OCR in SH-SY5Y cells with dose- and time-dependent. BHA supplementation recovered the mitochondrial respiration, synchronously attenuated intracellular ROS generation and lipid peroxidation, and simultaneously reversed the abnormal changes in antioxidant biomarkers, then rescued BaP-induced cell apoptosis. But long-term exposure to BaP or exposure to a high dosage of BaP could decrease OCR associated with maximal respiratory, spare capacity, and glycolysis metabolism. At the same time, the damage to cells is also more severe with the rate of apoptosis and mitochondrial membrane potential (ΔΨm) loss rising sharply, which were not entirely reversed by BHA. This study provides energy metabolism-related, indicative biomarkers of cytotoxicity induced by BaP, which might provide information for early prevention and intervention.
Collapse
Affiliation(s)
- Yi Lyu
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - LiXia Cheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - ZhaoFei Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, China
| | - JinPing Zheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, China.,Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, China
| |
Collapse
|
8
|
McCord JM, Gao B, Hybertson BM. The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review. Antioxidants (Basel) 2023; 12:antiox12020366. [PMID: 36829925 PMCID: PMC9952775 DOI: 10.3390/antiox12020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nrf2 is a major transcription factor that significantly regulates-directly or indirectly-more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of "one-drug, one-target".
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Xu H, Yi T, Liu M, Gao R, Liu X, He J, Ding Y, Geng Y, Mu X, Wang Y, Chen X. Exposure to Benzo(a)pyrene promotes proliferation and inhibits differentiation of stromal cells in mice during decidualization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114531. [PMID: 36641866 DOI: 10.1016/j.ecoenv.2023.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The environmental pollutant Benzo(a)pyrene (BaP) has an adverse effect on the reproductive performance of mammals. We previously showed that BaP treatment during early pregnancy damages endometrial morphology and impairs embryo implantation. Endometrial decidualization at the implantation site (IS) after embryo implantation is crucial for pregnancy maintenance and placental development. The balance between proliferation and differentiation in endometrial stromal cells (ESCs) is a crucial event of decidualization, which is regulated by the cell cycle. Here, we report that abnormal decidualization caused by BaP is associated with cell cycle disturbance of stromal cells. The mice in the treatment group were gavaged with 0.2 mg/kg/day BaP from day 1-8 of pregnancy, while those in control were gavaged with corn oil in parallel. BaP damaged the decidualization of ESCs and reduced the number of polyploid cells. Meanwhile, BaP up-regulated the expression of Ki67 and PCNA, affecting the differentiation of stromal cells. The cell cycle progression analysis during decidualization in vivo and in vitro showed that BaP induced polyploid cells deficiency with enhanced expressions of CyclinA(E)/CDK2, CyclinD/CDK4 and CyclinB/CDK1, which promote the transformation of cells from G1 to S phase and simultaneously activate the G2/M phase. The above results indicated that BaP exposure accelerates cell cycle progression, promotes ESC proliferation, inhibits differentiation, and impedes proper decidualization and polyploidy development. Thus, the imbalance of ESC proliferation and differentiation would be an important mechanism for BaP-induced defective decidualization.
Collapse
Affiliation(s)
- Hanting Xu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ting Yi
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Chongqing Tongnan Center for Disease Control and Prevention, Chongqing 402660, PR China
| | - Min Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; School of Public Health and Management, Chongqing Three Gorges Medical College, Chongqing 404120, PR China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Department of Obstetrics and Gynecology, Women and Childrens' Hospital of Chongqing Medical University, Chongqing 401147, PR China.
| |
Collapse
|
10
|
Tanaka M, Komaki Y, Toyooka T, Ibuki Y. Butyrate Enhances γ-H2AX Induced by Benzo[ a]pyrene. Chem Res Toxicol 2022; 35:2241-2251. [PMID: 36399157 DOI: 10.1021/acs.chemrestox.2c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Benzo[a]pyrene (BaP) is known to form DNA adduct following metabolic activation, which causes phosphorylation of histone H2AX (γ-H2AX). Recent studies have shown that histone deacetylase (HDAC) inhibitors enhanced BaP-induced CYP1A1 gene expression. In this study, we examined the relationship between the HDAC inhibitor-augmented metabolic activation and BaP-induced γ-H2AX. Sodium butyrate (SB), a typical HDAC inhibitor, enhanced BaP-induced γ-H2AX. The enhanced DNA damage was further confirmed by biased sinusoidal field gel electrophoresis, which detects DNA double-strand breaks. SB remarkably augmented BaP-induced CYP1A1 gene expression, and CYP1A1-overexpressing cells showed elevated generation of γ-H2AX. Furthermore, SB enhanced intracellular oxidation after treatment with BaP. These results suggested that SB-induced CYP1A1 upregulation facilitated BaP metabolism, which might result in excess DNA adducts or oxidative DNA damages, leading to augmentation of γ-H2AX.
Collapse
Affiliation(s)
- Miki Tanaka
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Differential gene expression in iPSC-derived human intestinal epithelial cell layers following exposure to two concentrations of butyrate, propionate and acetate. Sci Rep 2022; 12:13988. [PMID: 35977967 PMCID: PMC9385623 DOI: 10.1038/s41598-022-17296-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Intestinal epithelial cells and the intestinal microbiota are in a mutualistic relationship that is dependent on communication. This communication is multifaceted, but one aspect is communication through compounds produced by the microbiota such as the short-chain fatty acids (SCFAs) butyrate, propionate and acetate. Studying the effects of SCFAs and especially butyrate in intestinal epithelial cell lines like Caco-2 cells has been proven problematic. In contrast to the in vivo intestinal epithelium, Caco-2 cells do not use butyrate as an energy source, leading to a build-up of butyrate. Therefore, we used human induced pluripotent stem cell derived intestinal epithelial cells, grown as a cell layer, to study the effects of butyrate, propionate and acetate on whole genome gene expression in the cells. For this, cells were exposed to concentrations of 1 and 10 mM of the individual short-chain fatty acids for 24 h. Unique gene expression profiles were observed for each of the SCFAs in a concentration-dependent manner. Evaluation on both an individual gene level and pathway level showed that butyrate induced the biggest effects followed by propionate and then acetate. Several known effects of SCFAs on intestinal cells were confirmed, such as effects on metabolism and immune responses. The changes in metabolic pathways in the intestinal epithelial cell layers in this study demonstrate that there is a switch in energy homeostasis, this is likely associated with the use of SCFAs as an energy source by the induced pluripotent stem cell derived intestinal epithelial cells similar to in vivo intestinal tissues where butyrate is an important energy source.
Collapse
|
12
|
Dual effects of the tryptophan-derived bacterial metabolite indole on colonic epithelial cell metabolism and physiology: comparison with its co-metabolite indoxyl sulfate. Amino Acids 2022; 54:1371-1382. [PMID: 35107624 DOI: 10.1007/s00726-021-03122-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
Abstract
Indole, which is produced by the intestinal microbiota from L-tryptophan, is recovered at millimolar concentrations in the human feces. Indoxyl sulfate (IS), the main indole co-metabolite, can be synthesized by the host tissues. Although indole has been shown to restore intestinal barrier function in experimental colitis, little is known on the effects of indole and IS on colonic epithelial cell metabolism and physiology. In this study, we compared the effects of indole and IS on the human colonic epithelial HT-29 Glc-/+ and Caco-2 cell lines, exposed to these compounds for 1-48 h. Indole, but not IS, was cytotoxic at 5 mM, altering markedly colonocyte proliferation. Both molecules, used up to 2.5 mM, induced a transient oxidative stress in colonocytes, that was detected after 1 h, but not after 48 h exposure. This was associated with the induction after 24 h of the expression of glutathione reductase, heme oxygenase, and cytochrome P450 (CYP)1B1. Indole and IS used at 2.5 mM impaired colonocyte respiration by diminishing mitochondrial oxygen consumption and maximal respiratory capacity. Indole, but not IS, displayed a slight genotoxic effect on colonocytes. Indole, but not IS, increased transepithelial resistance in colonocyte monolayers. Indole and IS used at 2.5 mM, induced a secretion of the pro-inflammatory interleukin-8 after 3 h incubation, and an increase of tumor necrosis factor-α secretion after 48 h. Although our results suggest beneficial effect of indole on epithelial integrity, overall they indicate that indole and IS share adverse effects on colonocyte respiration and production of reactive oxygen species, in association with the induction of enzymes of the antioxidant defense system. This latter process can be viewed as an adaptive response toward oxidative stress. Both compounds increased the production of inflammatory cytokines from colonocytes. However, only indole, but not IS, affected DNA integrity in colonocytes. Since colonocytes little convert indole to IS, the deleterious effects of indole on colonocytes appear to be unrelated to its conversion to IS.
Collapse
|
13
|
Rannug A. 6-Formylindolo[3,2-b]carbazole, a Potent Ligand for the Aryl Hydrocarbon Receptor Produced Both Endogenously and by Microorganisms, can Either Promote or Restrain Inflammatory Responses. FRONTIERS IN TOXICOLOGY 2022; 4:775010. [PMID: 35295226 PMCID: PMC8915874 DOI: 10.3389/ftox.2022.775010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) binds major physiological modifiers of the immune system. The endogenous 6-formylindolo[3,2-b]carbazole (FICZ), which binds with higher affinity than any other compound yet tested, including TCDD, plays a well-documented role in maintaining the homeostasis of the intestines and skin. The effects of transient activation of AHR by FICZ differ from those associated with continuous stimulation and, depending on the dose, include either differentiation into T helper 17 cells that express proinflammatory cytokines or into regulatory T cells or macrophages with anti-inflammatory properties. Moreover, in experimental models of human diseases high doses stimulate the production of immunosuppressive cytokines and suppress pathogenic autoimmunity. In our earlier studies we characterized the formation of FICZ from tryptophan via the precursor molecules indole-3-pyruvate and indole-3-acetaldehyde. In the gut formation of these precursor molecules is catalyzed by microbial aromatic-amino-acid transaminase ArAT. Interestingly, tryptophan can also be converted into indole-3-pyruvate by the amino-acid catabolizing enzyme interleukin-4 induced gene 1 (IL4I1), which is secreted by host immune cells. By thus generating derivatives of tryptophan that activate AHR, IL4I1 may have a role to play in anti-inflammatory responses, as well as in a tumor escape mechanism that reduces survival in cancer patients. The realization that FICZ can be produced from tryptophan by sunlight, by enzymes expressed in our cells (IL4I1), and by microorganisms as well makes it highly likely that this compound is ubiquitous in humans. A diurnal oscillation in the level of FICZ that depends on the production by the fluctuating number of microbes might influence not only intestinal and dermal immunity locally, but also systemic immunity.
Collapse
|
14
|
Benzo(a)pyrene-induced cytotoxicity, cell proliferation, DNA damage, and altered gene expression profiles in HT-29 human colon cancer cells. Cell Biol Toxicol 2021; 37:891-913. [PMID: 33411230 DOI: 10.1007/s10565-020-09579-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
In the US alone, around 60,000 lives/year are lost to colon cancer. In order to study the mechanisms of colon carcinogenesis, in vitro model systems are required in addition to in vivo models. Towards this end, we have used the HT-29 colon cancer cells, cultured in Dulbecco's Modified Eagle Medium (DMEM), which were exposed to benzo(a)pyrene (BaP), a ubiquitous and prototypical environmental and dietary toxicant at 1, 10, 100 nM and 1, 5, 10, and 25 μM concentrations for 96 h. Post-BaP exposure, growth, cytotoxicity, apoptosis, and cell cycle changes were determined. The BaP metabolite concentrations in colon cells were identified and measured. Furthermore, the BaP biotransformation enzymes were studied at the protein and mRNA levels. The BaP exposure-induced damage to DNA was assessed by measuring the oxidative damage to DNA and the concentrations of BaP-DNA adducts. To determine the whole repertoire of genes that are up- or downregulated by BaP exposure, mRNA transcriptome analysis was conducted. There was a BaP exposure concentration (dose)-dependent decrease in cell growth, cytotoxicity, and modulation of the cell cycle in the treatment groups compared to untreated or dimethylsulfoxide (DMSO: vehicle for BaP)-treated categories. The phase I biotransformation enzymes, CYP1A1 and 1B1, showed BaP concentration-dependent expression. On the other hand, phase II enzymes did not exhibit any marked variation. Consistent with the expression of phase I enzymes, elevated concentrations of BaP metabolites were generated, contributing to the formation of DNA lesions and stable DNA adducts, which were also BaP concentration-dependent. In summary, our studies established that biotransformation of BaP contributes to cytotoxicity, proliferation of tumor cells, and alteration of gene expression by BaP. • Benzo(a)pyrene (BaP) is an environmental and dietary toxicant. • BaP causes cytotoxicity in cultured HT-29 colon cancer cells. • mRNA transcriptome analyses revealed that BaP impacts cell growth, cell cycle, biotransformation, and DNA damage.
Collapse
|
15
|
Role of miR-653 and miR-29c in downregulation of CYP1A2 expression in hepatocellular carcinoma. Pharmacol Rep 2021; 74:148-158. [PMID: 34780054 DOI: 10.1007/s43440-021-00338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major contributor to the worldwide cancer burden. Recent studies on HCC have demonstrated dramatic alterations in expression of several cytochrome P450 (CYP) family members that play a crucial role in biotransformation of many drugs and other xenobiotics; however, the mechanisms responsible for their deregulation remain unclear. METHODS We investigated a potential involvement of miRNAs in downregulation of expression of CYPs observed in HCC tumors. We compared miRNA expression profiles (TaqMan Array Human MicroRNA v3.0 TLDA qPCR) between HCC human patient tumors with strong (CYP-) and weak/no (CYP+) downregulation of drug-metabolizing CYPs. The role of significantly deregulated miRNAs in modulation of expression of the CYPs and associated xenobiotic receptors was then investigated in human liver HepaRG cells transfected with relevant miRNA mimics or inhibitors. RESULTS We identified five differentially expressed miRNAs in CYP- versus CYP+ tumors, namely miR-29c, miR-125b1, miR-505, miR-653 and miR-675. The two most-upregulated miRNAs found in CYP- tumor samples, miR-29c and miR-653, were found to act as efficient suppressors of CYP1A2 or AHR expression. CONCLUSIONS Our results revealed a novel role of miR-653 and miR-29c in regulation of expresion of CYPs involved in crucial biotransformation processes in liver, which are often deregulated during liver cancer progression.
Collapse
|
16
|
Krkoška M, Svobodová J, Kabátková M, Zapletal O, Hyršlová Vaculová A, Nekvindová J, Vondráček J. Deregulation of signaling pathways controlling cell survival and proliferation in cancer cells alters induction of cytochrome P450 family 1 enzymes. Toxicology 2021; 461:152897. [PMID: 34403729 DOI: 10.1016/j.tox.2021.152897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 family 1 (CYP1) enzymes contribute both to metabolism of xenobiotics and to the control of endogenous levels of ligands of the aryl hydrocarbon receptor (AhR). Their activities, similar to other CYPs, can be altered in tumor tissues. Here, we examined a possible role of proliferative/survival pathways signaling, which is often deregulated in tumor cells, and possible links with p300 histone acetyltransferase (a transcriptional co-activator) in the control of CYP1 expression, focusing particularly on CYP1A1. Using cell models derived from human liver, we observed that the induction of CYP1A1 expression, as well as other CYP1 enzymes, was reduced in exponentially growing cells, as compared with their non-dividing counterparts. The siRNA-mediated inhibition of proliferation/pro-survival signaling pathway effectors (such as β-catenin and/or Hippo pathway effectors YAP/TAZ) increased the AhR ligand-induced CYP1A1 mRNA levels in liver HepaRG cells, and/or in colon carcinoma HCT-116 cells. The activation of proliferative Wnt/β-catenin signaling in HCT-116 cells reduced both the induction of CYP1 enzymes and the binding of p300 to the promoter of CYP1A1 or CYP1B1 genes. These results seem to indicate that aberrant proliferative signaling in tumor cells could suppress induction of CYP1A1 (or other CYP1 enzymes) via competition for p300 binding. This mechanism could be involved in modulation of the metabolism of both endogenous and exogenous substrates of CYP1A1 (and other CYP1 enzymes), with possible further consequences for alterations of the AhR signaling in tumor cells, or additional functional roles of CYP1 enzymes.
Collapse
Affiliation(s)
- Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Jana Nekvindová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
17
|
Mun SJ, Lee J, Chung KS, Son MY, Son MJ. Effect of Microbial Short-Chain Fatty Acids on CYP3A4-Mediated Metabolic Activation of Human Pluripotent Stem Cell-Derived Liver Organoids. Cells 2021; 10:cells10010126. [PMID: 33440728 PMCID: PMC7827634 DOI: 10.3390/cells10010126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The early and accurate prediction of the hepatotoxicity of new drug targets during nonclinical drug development is important to avoid postmarketing drug withdrawals and late-stage failures. We previously established long-term expandable and functional human-induced pluripotent stem cell (iPSC)-derived liver organoids as an alternative source for primary human hepatocytes. However, PSC-derived organoids are known to present immature fetal characteristics. Here, we treated these liver organoids with microbial short-chain fatty acids (SCFAs) to improve metabolic maturation based on microenvironmental changes in the liver during postnatal development. The effects of the three main SCFA components (acetate, propionate, and butyrate) and their mixture on liver organoids were determined. Propionate (1 µM) significantly promoted the CYP3A4/CYP3A7 expression ratio, and acetate (1 µM), propionate (1 µM), and butyrate (1 µM) combination treatment, compared to no treatment (control), substantially increased CYP3A4 activity and albumin secretion, as well as gene expression. More importantly, mixed SCFA treatment accurately revealed troglitazone-induced hepatotoxicity, which was redeemed on a potent CYP3A4 inhibitor ketoconazole treatment. Overall, we determined, for the first time, that SCFA mixture treatment might contribute to the accurate evaluation of the CYP3A4-dependent drug toxicity by improving metabolic activation, including CYP3A4 expression, of liver organoids.
Collapse
Affiliation(s)
- Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaeseo Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Biomedical Translational Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| |
Collapse
|
18
|
Rannug A. How the AHR Became Important in Intestinal Homeostasis-A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int J Mol Sci 2020; 21:ijms21165681. [PMID: 32784381 PMCID: PMC7461111 DOI: 10.3390/ijms21165681] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since the 1970s, when profound immunosuppression caused by exogenous dioxin-like compounds was first observed, the involvement of the aryl hydrocarbon receptor (AHR) in immunomodulation has been the focus of considerable research interest. Today it is established that activation of this receptor by its high-affinity endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ), plays important physiological roles in maintaining epithelial barriers. In the gut lumen, the small amounts of FICZ that are produced from L-tryptophan by microbes are normally degraded rapidly by the inducible cytochrome P4501A1 (CYP1A1) enzyme. This review describes how when the metabolic clearance of FICZ is attenuated by inhibition of CYP1A1, this compound passes through the intestinal epithelium to immune cells in the lamina propria. FICZ, the level of which is thus modulated by this autoregulatory loop involving FICZ itself, the AHR and CYP1A1, plays a central role in maintaining gut homeostasis by potently up-regulating the expression of interleukin 22 (IL-22) by group 3 innate lymphoid cells (ILC3s). IL-22 stimulates various epithelial cells to produce antimicrobial peptides and mucus, thereby both strengthening the epithelial barrier against pathogenic microbes and promoting colonization by beneficial bacteria. Dietary phytochemicals stimulate this process by inhibiting CYP1A1 and causing changes in the composition of the intestinal microbiota. The activity of CYP1A1 can be increased by other microbial products, including the short-chain fatty acids, thereby accelerating clearance of FICZ. In particular, butyrate enhances both the level of the AHR and CYP1A1 activity by stimulating histone acetylation, a process involved in the daily cycle of the FICZ/AHR/CYP1A1 feedback loop. It is now of key interest to examine the potential involvement of FICZ, a major physiological activator of the AHR, in inflammatory disorders and autoimmunity.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institutet, Institute of Environmental Medicine, 171 77 Stockholm, Sweden
| |
Collapse
|
19
|
Ozawa S, Yamaori S, Aikawa K, Kamijo S, Ohmori S. Expression profile of cytochrome P450s and effects of polycyclic aromatic hydrocarbons and antiepileptic drugs on CYP1 expression in MOG-G-CCM cells. Life Sci 2020; 258:118140. [PMID: 32730838 DOI: 10.1016/j.lfs.2020.118140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
AIMS This study was performed to investigate the expression profile of cytochrome P450 (CYP) isoforms and effects of polycyclic aromatic hydrocarbons (PAHs) and antiepileptic drugs on CYP1 expression in human astrocytoma MOG-G-CCM cells. MAIN METHODS CYP1A1 and CYP1B1 expression were determined by quantitative real-time polymerase chain reaction, Western blotting, and immunocytochemistry. KEY FINDINGS MOG-G-CCM cells expressed various CYP isoforms. Among the CYP isoforms analyzed, CYP1B1 showed the highest expression level, followed by CYP1A1. Furthermore, CYP1B1 was localized in both the endoplasmic reticulum and mitochondria. 3-Methylcholanthrene (3-MC), benz[a]anthracene (B[a]A), benzo[a]pyrene (B[a]P), and valproic acid (VPA) increased the expression of CYP1B1 and CYP1A1. The potent aryl hydrocarbon receptor antagonist GNF351 significantly suppressed the 3-MC- and VPA-mediated upregulation of CYP1B1 and CYP1A1. In addition, VPA potentiated the induction of CYP1B1 and CYP1A1 by 3-MC, B[a]A, and B[a]P, although the augmentation of CYP1A1 was more remarkable than that of CYP1B1. In contrast, other antiepileptic drugs (carbamazepine, lamotrigine, levetiracetam, phenytoin) did not affect the 3-MC-mediated upregulation of CYP1B1 and CYP1A1. VPA is known to act as a histone deacetylase (HDAC) inhibitor. Therefore, the effects of trichostatin A, a representative HDAC inhibitor, on CYP1 induction by 3-MC were examined. Trichostatin A enhanced the 3-MC-mediated upregulation of CYP1A1 but not CYP1B1. SIGNIFICANCE These results partially indicated that VPA may augment the PAH-mediated induction of CYP1B1 and CYP1A1 through the activation of transcription by HDAC inhibition.
Collapse
Affiliation(s)
- Shusuke Ozawa
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621 Matsumoto, Japan
| | - Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621 Matsumoto, Japan.
| | - Kaori Aikawa
- Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621 Matsumoto, Japan
| | - Shinobu Kamijo
- Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621 Matsumoto, Japan
| | - Shigeru Ohmori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621 Matsumoto, Japan
| |
Collapse
|
20
|
Anderson G. Glioblastoma chemoresistance: roles of the mitochondrial melatonergic pathway. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:334-355. [PMID: 35582450 PMCID: PMC8992488 DOI: 10.20517/cdr.2020.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
Treatment-resistance is common in glioblastoma (GBM) and the glioblastoma stem-like cells (GSC) from which they arise. Current treatment options are generally regarded as very poor and this arises from a poor conceptualization of the biological underpinnings of GBM/GSC and of the plasticity that these cells are capable of utilizing in response to different treatments. A number of studies indicate melatonin to have utility in the management of GBM/GSC, both per se and when adjunctive to chemotherapy. Recent work shows melatonin to be produced in mitochondria, with the mitochondrial melatonergic pathway proposed to be a crucial factor in driving the wide array of changes in intra- and inter-cellular processes, as well as receptors that can be evident in the cells of the GBM/GSC microenvironment. Variations in the enzymatic conversion of N-acetylserotonin (NAS) to melatonin may be especially important in GSC, as NAS can activate the tyrosine receptor kinase B to increase GSC survival and proliferation. Consequently, variations in the NAS/melatonin ratio may have contrasting effects on GBM/GSC survival. It is proposed that mitochondrial communication across cell types in the tumour microenvironment is strongly driven by the need to carefully control the mitochondrial melatonergic pathways across cell types, with a number of intra- and inter-cellular processes occurring as a consequence of the need to carefully regulate the NAS/melatonin ratio. This better integrates previously disparate data on GBM/GSC as well as providing clear future research and treatment options.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
21
|
Engleitner S, Milovanovic D, Kirisits K, Brenner S, Hong J, Ropek N, Huttary N, Rehak J, Nguyen CH, Bago-Horvath Z, Knasmüller S, De Martin R, Jäger W, Krupitza G. Feed‑back loops integrating RELA, SOX18 and FAK mediate the break‑down of the lymph‑endothelial barrier that is triggered by 12(S)‑HETE. Int J Oncol 2020; 56:1034-1044. [PMID: 32319559 DOI: 10.3892/ijo.2020.4985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/24/2020] [Indexed: 11/06/2022] Open
Abstract
Metastatic cancer cells cross endothelial barriers and travel through the blood or lymphatic fluid to pre‑metastatic niches, leading to their colonisation. 'S' stereoisomer 12S‑hydroxy‑5Z,8Z,10E,14Z‑eicosatetraenoic acid [12(S)‑HETE] is secreted by a variety of cancer cell types and has been indicated to open up these barriers. In the present study, another aspect of the endothelial unlocking mechanism was elucidated. This was achieved by investigating 12(S)‑HETE‑treated lymph endothelial cells (LECs) with regard to their expression and mutual interaction with v‑rel avian reticuloendotheliosis viral oncogene homolog A (RELA), intercellular adhesion molecule 1, SRY‑box transcription factor 18 (SOX18), prospero homeobox 1 (PROX1) and focal adhesion kinase (FAK). These key players of LEC retraction, which is a prerequisite for cancer cell transit into vasculature, were analysed using western blot analysis, reverse transcription‑quantitative PCR and transfection with small interfering (si)RNA. The silencing of a combination of these signalling and executing molecules using siRNA, or pharmacological inhibition with defactinib and Bay11‑7082, extended the mono‑culture experiments to co‑culture settings using HCT116 colon cancer cell spheroids that were placed on top of LEC monolayers to measure their retraction using the validated 'circular chemorepellent‑induced defect' assay. 12(S)‑HETE was indicated to induce the upregulation of the RELA/SOX18 feedback loop causing the subsequent phosphorylation of FAK, which fed back to RELA/SOX18. Therefore, 12(S)‑HETE was demonstrated to be associated with circuits involving RELA, SOX18 and FAK, which transduced signals causing the retraction of LECs. The FAK‑inhibitor defactinib and the NF‑κB inhibitor Bay11‑7082 attenuated LEC retraction additively, which was similar to the suppression of FAK and PROX1 (the target of SOX18) by the transfection of respective siRNAs. FAK is an effector molecule at the distal end of a pro‑metastatic signalling cascade. Therefore, targeting the endothelial‑specific activity of FAK through the pathway demonstrated herein may provide a potential therapeutic method to combat cancer dissemination via vascular routes.
Collapse
Affiliation(s)
- Stefanie Engleitner
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Daniela Milovanovic
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Kerstin Kirisits
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A‑1090 Vienna, Austria
| | - Junli Hong
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Nathalie Ropek
- Institute of Cancer Research, Department of Internal Medicine 1, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Nicole Huttary
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Judith Rehak
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Chi Huu Nguyen
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Internal Medicine 1, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Rainer De Martin
- Department of Vascular Biology and Thrombosis Research, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A‑1090 Vienna, Austria
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, A‑1090 Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, A‑1090 Vienna, Austria
| |
Collapse
|
22
|
Xu M, Fu L, Zhang J, Wang T, Fan J, Zhu B, Dziugan P, Zhang B, Zhao H. Potential of Inactivated Bifidobacterium Strain in Attenuating Benzo(A)Pyrene Exposure-Induced Damage in Colon Epithelial Cells In Vitro. TOXICS 2020; 8:toxics8010012. [PMID: 32053893 PMCID: PMC7151743 DOI: 10.3390/toxics8010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Long-term exposure to benzo(a)pyrene (BaP) poses a serious genotoxic threat to human beings. This in vitro study investigated the potential of inactivated Bifidobacterium animalis subsp. lactis BI-04 in alleviating the damage caused by BaP in colon epithelial cells. A concentration of BaP higher than 50 μM strongly inhibited the growth of colon epithelial cells. The colon epithelial cells were treated with 50 μM BaP in the presence or absence of inactivated strain BI-04 (~5 × 108 CFU/mL). The BaP-induced apoptosis of the colon epithelial cells was retarded in the presence of B. lactis BI-04 through activation of the PI3K/ AKT signaling pathway, and p53 gene expression was decreased. The presence of the BI-04 strain reduced the intracellular oxidative stress and DNA damage incurred in the colon epithelial cells by BaP treatment due to the enhanced expression of antioxidant enzymes and metabolism-related enzymes (CYP1A1). The data from comet assay, qRT-PCR, and western blot analysis showed that the cytotoxic effects of BaP on colon epithelial cells were largely alleviated because the bifidobacterial strain could bind to this carcinogenic compound. The in vitro study highlights that the consumption of commercial probiotic strain BI-04 might be a promising strategy to mitigate BaP cytotoxicity.
Collapse
Affiliation(s)
- Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Lili Fu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Junwen Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junfeng Fan
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Piotr Dziugan
- Institute of Fermentation Technology & Microbiology, Technical University of Lodz, 90924 Lodz, Poland
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
23
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|
24
|
Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int J Mol Sci 2019; 20:ijms20164068. [PMID: 31434333 PMCID: PMC6720185 DOI: 10.3390/ijms20164068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the ‘backward’ conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3′,5′-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
Collapse
|
25
|
Anderson G, Reiter RJ. Glioblastoma: Role of Mitochondria N-acetylserotonin/Melatonin Ratio in Mediating Effects of miR-451 and Aryl Hydrocarbon Receptor and in Coordinating Wider Biochemical Changes. Int J Tryptophan Res 2019; 12:1178646919855942. [PMID: 31244524 PMCID: PMC6580708 DOI: 10.1177/1178646919855942] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
A wide array of different factors and processes have been linked to the biochemical underpinnings of glioblastoma multiforme (GBM) and glioblastoma stem cells (GSC), with no clear framework in which these may be integrated. Consequently, treatment of GBM/GSC is generally regarded as very poor. This article provides a framework that is based on alterations in the regulation of the melatonergic pathways within mitochondria of GBM/GSC. It is proposed that the presence of high levels of mitochondria-synthesized melatonin is toxic to GBM/GSC, with a number of processes in GBM/GSC acting to limit melatonin’s synthesis in mitochondria. One such factor is the aryl hydrocarbon receptor, which increases cytochrome P450 (CYP)1b1 in mitochondria, leading to the ‘backward’ conversion of melatonin to N-acetylserotonin (NAS). N-acetylserotonin has some similar, but some important differential effects compared with melatonin, including its activation of the tyrosine receptor kinase B (TrkB) receptor. TrkB activation is important to GBM/GSC survival and proliferation. A plethora of significant, but previously disparate, data on GBM/GSC can then be integrated within this framework, including miR-451, AMP-activated protein kinase (AMPK)/mTOR, 14-3-3 proteins, sirtuins, tryptophan 2,3-dioxygenase, and the kynurenine pathways. Such a conceptualization provides a framework for the development of more effective treatment for this poorly managed condition.
Collapse
Affiliation(s)
- George Anderson
- Department of Clinical Research, CRC Scotland & London, London, UK
| | - Russell J Reiter
- Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
26
|
Tylichová Z, Neča J, Topinka J, Milcová A, Hofmanová J, Kozubík A, Machala M, Vondráček J. n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Food Chem Toxicol 2018; 124:374-384. [PMID: 30572064 DOI: 10.1016/j.fct.2018.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Dietary carcinogens, such as benzo[a]pyrene (BaP), are suspected to contribute to colorectal cancer development. n-3 Polyunsaturated fatty acids (PUFAs) decrease colorectal cancer risk in individuals consuming diets rich in PUFAs. Here, we investigated the impact of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid on metabolism and genotoxicity of BaP in human cell models derived from the colon: HT-29 and HCT-116 cell lines. Both PUFAs reduced levels of excreted BaP metabolites, in particular BaP-tetrols and hydroxylated BaP metabolites, as well as formation of DNA adducts in HT-29 and HCT-116 cells. However, EPA appeared to be a more potent inhibitor of formation of some intracellular BaP metabolites, including BaP-7,8-dihydrodiol. EPA also reduced phosphorylation of histone H2AX (Ser139) in HT-29 cells, which indicated that it may reduce further forms of DNA damage, including DNA double strand breaks. Both PUFAs inhibited induction of CYP1 activity in colon cells determined as 7-ethoxyresorufin-O-deethylase (EROD); this was at least partly linked with inhibition of induction of CYP1A1, 1A2 and 1B1 mRNAs. The downregulation and/or inhibition of CYP1 enzymes by PUFAs could thus alter metabolism and reduce genotoxicity of BaP in human colon cells, which might contribute to known chemopreventive effects of PUFAs in colon epithelium.
Collapse
Affiliation(s)
- Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
27
|
Zapletal O, Procházková J, Dubec V, Hofmanová J, Kozubík A, Vondráček J. Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models. Toxicology 2018; 412:1-11. [PMID: 30439556 DOI: 10.1016/j.tox.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
Butyrate helps to maintain colon homeostasis and exhibits chemopreventive effects in colon epithelium. We examined the interactive effects of butyrate and benzo[a]pyrene (BaP), dietary carcinogen, in regulation of expression of a panel of phase I and II xenobiotic metabolizing enzymes (XMEs) in human colon cells. In human colon carcinoma HCT-116 and HT-29 cell lines, butyrate alone increased mRNA levels of some enzymes, such as N-acetyltransferases (in particular NAT2). In combination with BaP, butyrate potentiated induction of cytochrome P450 family 1 enzymes (CYP1A1), aldo-keto reductases (AKR1C1) or UDP-glucuronosyltransferases (UGT1A1). There were some notable differences between cell lines, as butyrate potentiated induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) and UGT1A4 only in HCT-116 cells, and it even repressed AKR1C3 induction in HT-29 cells. Butyrate also promoted induction of CYP1, NQO1, NAT2, UGT1A1 or UGT1A4 in human colon Caco-2 cells, in a differentiation-dependent manner. Differentiated Caco-2 cells exhibited a higher inducibility of selected XME genes than undifferentiated cells. Butyrate increased induction of enzymatic activities of NATs, NQO1 and UGTs by BaP in HCT-116 and HT29 cells, whereas in differentiated Caco-2 cells it helped to increase only enzymatic activity of NQO1 and UGTs. Together, the present data suggest that butyrate may modulate expression/activities of several enzymes involved in metabolism of carcinogens in colon. In some cases (NAT2, UGT1 A1), this was linked to inhibition of histone deacetylases (HDAC), as confirmed by using HDAC inhibitor trichostatin A. These results may have implications for our understanding of the role of butyrate in regulation of XMEs and carcinogen metabolism in colon.
Collapse
Affiliation(s)
- Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Vít Dubec
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic.
| |
Collapse
|
28
|
Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Sci Rep 2017; 7:10163. [PMID: 28860561 PMCID: PMC5579248 DOI: 10.1038/s41598-017-10824-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR) ligands are important for gastrointestinal health and play a role in gut inflammation and the induction of T regulatory cells, and the short chain fatty acids (SCFAs) butyrate, propionate and acetate also induce similar protective responses. Initial studies with butyrate demonstrated that this compound significantly increased expression of Ah-responsive genes such as Cyp1a1/CYP1A1 in YAMC mouse colonocytes and Caco-2 human colon cancer cell lines. Butyrate synergistically enhanced AhR ligand-induced Cyp1a1/CYP1A1 in these cells with comparable enhancement being observed for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and also microbiota-derived AhR ligands tryptamine, indole and 1,4-dihydroxy-2-naphthoic acid (DHNA). The effects of butyrate on enhancing induction of Cyp1b1/CYP1B1, AhR repressor (Ahrr/AhRR) and TCDD-inducible poly(ADP-ribose)polymerase (Tiparp/TiPARP) by AhR ligands were gene- and cell context-dependent with the Caco-2 cells being the most responsive cell line. Like butyrate and propionate, the prototypical hydroxyamic acid-derived histone deacetylase (HDAC) inhibitors Panobinostat and Vorinostat also enhanced AhR ligand-mediated induction and this was accompanied by enhanced histone acetylation. Acetate also enhanced basal and ligand-inducible Ah responsiveness and histone acetylation, demonstrating that acetate was an HDAC inhibitor. These results demonstrate SCFA-AhR ligand interactions in YAMC and Caco-2 cells where SCFAs synergistically enhance basal and ligand-induced expression of AhR-responsive genes.
Collapse
|
29
|
Xia Z, Han Y, Wang K, Guo S, Wu D, Huang X, Li Z, Zhu L. Oral administration of propionic acid during lactation enhances the colonic barrier function. Lipids Health Dis 2017; 16:62. [PMID: 28335773 PMCID: PMC5364657 DOI: 10.1186/s12944-017-0452-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/12/2017] [Indexed: 12/17/2022] Open
Abstract
Background Propionic acid is a three-carbon short chain fatty acid (SCFA) that has various effects on colonic functions. Although several studies have shown the effects of propionic acid on intestinal mucosal barrier function, studies of the promotion effect during pre-weaning are rare in the literature as far as we know. Methods Pre-weaning male Sprague-Dawley rats 7 days after birth were given an oral 0.2 mL/10 g of 200 mM propionic acid solution in the propionic acid group or normal saline solution in the control group by gavage twice a day for ten days. The proximal colonic contents were used for extraction and determination of propionic acid by gas chromatographic analysis; the transepithelial electrical resistance (TER) of colonic tissue was detected by an Ussing chamber; the alterations of ZO-1, Claudin-1, Claudin-8 and Occludin proteins were analyzed by Western blot and immunohistochemistry; and The activity of ERK and p38 MAPK was determined by the phosphorylation status of ERK1/2 and p38 with Western blot. Results Our results suggested a higher concentration (23.5 ± 1.9 mmol/kg) of propionic acid compared to the physiological concentration (18.1 ± 0.9 mmol/kg) in colonic contents after oral administration increased the value of TER and the expression of ZO-1, Claudin-1, Claudin-8 and Occludin compared to the control group. Furthermore, the expression levels of phosphorylated ERK1/2 and p38 MAPK were increased in propionic acid group. Conclusions We concluded that continuous oral administration of propionic acid during lactation may increase its concentration in the proximal colon and promote epithelial barrier function of proximal colon by enhancing the expression of ZO-1, Claudin-8, Claudin-1 and Occludin via increases in the expression of ERK1/2 and p38 MAPK.
Collapse
Affiliation(s)
- Zhaobo Xia
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China
| | - Yijiang Han
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China
| | - Ke Wang
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China
| | - Shikun Guo
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China
| | - Dazhou Wu
- Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Baixiang South, Wenzhou, Zhejiang, 325000, China
| | - Xiaozhong Huang
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China
| | - Zhongrong Li
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China.
| | - Libin Zhu
- Department of Pediatric Surgery, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Xueyuan West Road, 109#, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|