1
|
Zhang Z, Peng S, Xu T, Liu J, Zhao L, Xu H, Zhang W, Zhu Y, Yang Z. Retinal Microenvironment-Protected Rhein-GFFYE Nanofibers Attenuate Retinal Ischemia-Reperfusion Injury via Inhibiting Oxidative Stress and Regulating Microglial/Macrophage M1/M2 Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302909. [PMID: 37653617 PMCID: PMC10602545 DOI: 10.1002/advs.202302909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.
Collapse
Affiliation(s)
- Zhuhong Zhang
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Shengjun Peng
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Tengyan Xu
- Key Laboratory of Bioactive MaterialsMinistry of EducationState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesCollaborative Innovation Center of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071China
| | - Jia Liu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Laien Zhao
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Hui Xu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Wen Zhang
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Yuanying Zhu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Zhimou Yang
- Key Laboratory of Bioactive MaterialsMinistry of EducationState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesCollaborative Innovation Center of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071China
| |
Collapse
|
2
|
Zheng J, Zhao Y, Feng Y, Qian W, Zhang Y, Dong B, Liang Q. c-Jun N-terminal kinase activation contributes to improving low temperature tolerance via regulating apoptosis in the Pacific white shrimp Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108912. [PMID: 37353063 DOI: 10.1016/j.fsi.2023.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Temperature is an essential environmental factor for the survival of aquatic animals. Low temperature stress can induce mitochondria to produce excessive ROS and free radicals, and destroy homeostasis. c-Jun N-terminal kinase (JNK) is involved in regulating various physiological processes, including inflammatory responses, cell cycle, reproduction, and apoptosis. Here, we investigated the mechanism of ROS/JNK pathway under low temperature stress both in vitro and in vivo. In this study, transcriptome analysis revealed that apoptosis, autophagy, calcium channel, and antioxidant were involved in the mediation of low temperature tolerance in Pacific white shrimp (penaeus vannamei). PvJNK was activated in response to low temperature stress. Treatments with different temperature caused oxidative stress as demonstrated by increased intensity of the ROS indicator H2DCF-DA, and induced apoptosis as confirmed by indicator FITC. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated low temperature induced apoptosis, and inhibited the expression of PvJNK. In addition, we demonstrate that mediator PvJNK translocated to nuclear through interacting with PvRheb. By using flow cytometry, inhibiting PvJNK can increase the expression of apoptosis related genes, accelerate tissue damage, and induce ROS and cell apoptosis. The ultimate inhibition of PvJNK accelerates the mortality of shrimp under low temperature stress. Overall, these findings suggest that during low temperature stress, PvJNK was activated by ROS to regulates apoptosis via interacting with PvRheb to promote PvJNK into the nucleus and to improve low temperature tolerance of shrimp.
Collapse
Affiliation(s)
- JieRen Zheng
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Ying Zhao
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - YuXin Feng
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - WeiGuo Qian
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Yu Zhang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - BeiBei Dong
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| | - QingJian Liang
- Laboratory of Aquatic Animal Diseases and Immunity, School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China; College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
3
|
Zhang X, Dong Z, Fan H, Yang Q, Yu G, Pan E, He N, Li X, Zhao P, Fu M, Dong J. Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways. J Zhejiang Univ Sci B 2023; 24:617-631. [PMID: 37455138 PMCID: PMC10350365 DOI: 10.1631/jzus.b2200612] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Alcoholic liver disease (ALD) is the most frequent liver disease worldwide, resulting in severe harm to personal health and posing a serious burden to public health. Based on the reported antioxidant and anti-inflammatory capacities of scutellarin (SCU), this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration (10, 25, and 50 mg/kg). The results indicated that SCU could lessen serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the histopathological changes in acute alcoholic liver; it reduced alcohol-induced malondialdehyde (MDA) content and increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activity. Furthermore, SCU decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β messenger RNA (mRNA) expression levels, weakened inducible nitric oxide synthase (iNOS) activity, and inhibited nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Mechanistically, SCU suppressed cytochrome P450 family 2 subfamily E member 1 (CYP2E1) upregulation triggered by alcohol, increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB (NF-κB)-α (IκBα) as well as activation of NF-κB by mediating the protein kinase B (AKT) and p38 mitogen-activated protein kinase (MAPK) pathways. These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhicheng Dong
- Department of Oncology, the Second People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qiankun Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guili Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Panpan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment / Co-Innovation Center of Jiangsu Marine Bio-Industry Technology / Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
4
|
Liu J, Yang S, Zhao L, Jiang F, Sun J, Peng S, Zhao R, Huang Y, Fu X, Luo R, Jiang Y, Li Z, Wang N, Fang T, Zhang Z. ROS generation and p-38 activation contribute to montmorillonite-induced corneal toxicity in vitro and in vivo. Part Fibre Toxicol 2023; 20:8. [PMID: 36899356 PMCID: PMC9999669 DOI: 10.1186/s12989-023-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Montmorillonite (Mt) and its derivatives are now widely used in industrial and biomedical fields. Therefore, safety assessments of these materials are critical to protect human health after exposure; however, studies on the ocular toxicity of Mt are lacking. In particular, varying physicochemical characteristics of Mt may greatly alter their toxicological potential. To explore the effects of such characteristics on the eyes, five types of Mt were investigated in vitro and in vivo for the first time, and their underlying mechanisms studied. RESULTS The different types of Mt caused cytotoxicity in human HCEC-B4G12 corneal cells based on analyses of ATP content, lactate dehydrogenase (LDH) leakage, cell morphology, and the distribution of Mt in cells. Among the five Mt types, Na-Mt exhibited the highest cytotoxicity. Notably, Na-Mt and chitosan-modified acidic Na-Mt (C-H-Na-Mt) induced ocular toxicity in vivo, as demonstrated by increases corneal injury area and the number of apoptotic cells. Na-Mt and C-H-Na-Mt also induced reactive oxygen species (ROS) generation in vitro and in vivo, as indicated by 2',7'-dichlorofluorescin diacetate and dihydroethidium staining. In addition, Na-Mt activated the mitogen-activated protein kinase signaling pathway. The pretreatment of HCEC-B4G12 cells with N-acetylcysteine, an ROS scavenger, attenuated the Na-Mt-induced cytotoxicity and suppressed p38 activation, while inhibiting p38 activation with a p38-specific inhibitor decreased Na-Mt-induced cytotoxicity. CONCLUSIONS The results indicate that Mt induces corneal toxicity in vitro and in vivo. The physicochemical properties of Mt greatly affect its toxicological potential. Furthermore, ROS generation and p38 activation contribute at least in part to Na-Mt-induced toxicity.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Jianchao Sun
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Nan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Tengzheng Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
5
|
Lu GH, Zong MH, Li N. Combining Electro-, Photo-, and Biocatalysis for One-Pot Selective Conversion of Furfural into Value-Added C4 Chemicals. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guang-Hui Lu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, China
| |
Collapse
|
6
|
Elderdery AY, Alzahrani B, Alabdulsalam AA, Hamza SMA, Elkhalifa AME, Alhamidi AH, Alanazi F, Mohamedain A, Subbiah SK, Ling Mok P. Structural, Optical, Antibacterial, and Anticancer Properties of Cerium Oxide Nanoparticles Prepared by Green Synthesis Using Morinda citrifolia Leaves Extract. Bioinorg Chem Appl 2022; 2022:6835625. [PMID: 36212986 PMCID: PMC9534709 DOI: 10.1155/2022/6835625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, new advancements in the area of nanotechnology opened up new prospects in the field of medicine that could provide us with a solution for numerous medical complications. Although a several varieties of nanoparticles is being explored to be used as nanomedicines, cerium oxide nanoparticles (CeO2 NPs) are the most attractive due to their biocompatibility and their switchable oxidation state (+3 and +4) or in other words the ability to act as prooxidant and antioxidant depending on the pH condition. Green synthesis of nanoparticles is preferred to make it more economical, eco-friendly, and less toxic. The aim of our study here is to formulate the CeO2 NPs (CeO2 NPs) using Morinda citrifolia (Noni) leaf extract and study its optical, structural, antibacterial, and anticancer abilities. Their optical and structural characterization was accomplished by employing X-ray diffractography (XRD), TEM, EDAX, FTIR, UV-vis, and photoluminescence assays. Our CeO2 NPs expressed strong antibacterial effects against Gram-positive S. aureus and S. pneumonia in addition to Gram-negative E. coli and K. pneumonia when compared with amoxicillin. The anticancer properties of the green synthesized CeO2 NPs against human acute lymphoblastic leukemia (ALL) MOLT-4 cells were further explored by the meticulous study of their ability to diminish cancer cell viability (cytotoxicity), accelerate apoptosis, escalate intracellular reactive oxygen species (ROS) accumulation, decline the mitochondria membrane potential (MMP) level, modify the cell adhesion, and shoot up the activation of proapoptotic markers, caspase-3, -8, and -9, in the tumor cells. Altogether, the outcomes demonstrated that our green synthesized CeO2 NPs are an excellent candidate for alternative cancer therapy.
Collapse
Affiliation(s)
- Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Siddiqa M. A. Hamza
- College of Medicine, Department of Pathology, Umm Al-Qura University Algunfuda, Mecca, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Abdulaziz H. Alhamidi
- Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Al-qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - A. Mohamedain
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Khartoum University, Khartoum, Sudan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
7
|
Ye B, Ma J, Li Z, Li Y, Han X. Ononin Shows Anticancer Activity Against Laryngeal Cancer via the Inhibition of ERK/JNK/p38 Signaling Pathway. Front Oncol 2022; 12:939646. [PMID: 35912256 PMCID: PMC9334013 DOI: 10.3389/fonc.2022.939646] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundLaryngeal cancer is a type of head and neck tumor with a poor prognosis and survival rate. The new cases of laryngeal cancer increased rapidly with a higher mortality rate around the world.ObjectiveThe current research work was focused to unveil the in vitro antitumor effects of ononin against the laryngeal cancer Hep-2 cells.MethodologyThe cytotoxic effects of ononin against the laryngeal cancer Hep-2 cells and normal HuLa-PC laryngeal cells were studied using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The intracellular Reactive Oxygen Species (ROS) generation, apoptotic cell death, Mitochondrial Membrane Potential (MMP), and cell adhesion on the 25 and 50 µM ononin-treated Hep-2 cells were detected using respective staining assays. The levels of TBARS and antioxidants were assayed using specific kits. The expressions of c-Jun N-terminal kinase 1/2 (JNK1/2), Extracellular Signal-regulated Kinase 1/2 (ERK1/2), p38, Phosphatidylinositol-3 Kinase 1/2 (PI3K1/2), and protein kinase-B (Akt) in the ononin-treated Hep-2 cells were investigated using Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay.ResultsThe ononin treatment effectively inhibited the Hep-2 cell viability but did not affect the viability of HuLa-PC cells. Furthermore, the ononin treatment effectively improved the intracellular ROS accumulation, depleted the MMP, and triggered apoptosis in Hep-2 cells. The Thiobarbituric acid reactive substances (TBARS) were improved, and Glutathione (GSH) levels and Superoxide dismutase (SOD) were depleted in the ononin-administered Hep-2 cells. The ononin treatment substantially inhibited the JNK/ERK/p38 axis in the Hep-2 cells.ConclusionTogether, the outcomes of this exploration proved that the ononin has remarkable antitumor activity against laryngeal cancer Hep-2 cells.
Collapse
Affiliation(s)
- Ben Ye
- Department of Ear, Nose, and Throat (ENT), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, China
| | - Jianhua Ma
- Department of Cardiology, Shandong Rongjun General Hospital, Ji’nan, China
| | - Zhaoxia Li
- Department of Ear, Nose, and Throat (ENT), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji’nan, China
| | - Yang Li
- Department of Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaopan Han
- Department of ENT, Central Hospital Affiliated to Shandong First Medical University, Ji’nan, China
- *Correspondence: Xiaopan Han,
| |
Collapse
|
8
|
Pei Y, Lui Y, Cai S, Zhou C, Hong P, Qian ZJ. A Novel Peptide Isolated from Microalgae Isochrysis zhanjiangensis Exhibits Anti-apoptosis and Anti-inflammation in Ox-LDL Induced HUVEC to Improve Atherosclerosis. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:181-189. [PMID: 35476173 DOI: 10.1007/s11130-022-00965-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
In the early stage, oxidized low density lipoprotein (ox-LDL) caused atherosclerosis, followed by human umbilical vein endothelial cells (HUVEC) damage, leading to a variety of cardiovascular related diseases. This study investigated the mechanism of nonapeptide (EMFGTSSET, ETT) isolated from in vitro gastrointestinal digestion of Isochrysis zhanjiang on endothelial cell inflammation and apoptosis induced by ox-LDL in atherosclerosis. At the cellular level, the results shown that ETT inhibited the up-regulation of oxidized low-density lipoprotein receptor-1 (LOX-1) induced by ox-LDL. Furthermore, ETT inhibited the fluorescence intensity of ROS, inflammatory factors (interleukin-6, interleukin-1β, and tumor necrosis factor-α) and the expression of cell adhesion molecules (vascular cell adhesion protein 1 and intercellular cell adhesion molecule-1). In addition, it also upregulates nuclear red blood cell 2 related factor 2 (Nrf2), heme oxygenase-1 (HO -1), p-Akt, and bcl-2 levels. But down-regulated the expression of p-p65, p-IκB-α, p-p38, p-ERK, p-JNK, bax, and cleaved caspase-9/-3 (c-c-9/-3), thereby inhibited ox-LDL induction inflammation and apoptosis of atherosclerosis. Through molecular docking, it was judged that the stable interaction between ETT and LOX-1 and VCAM-1 was maintained through hydrogen bonding. These results can provide a theoretical basis for ETT as a potential substance for the prevention and treatment of atherosclerosis, and further improve the value of Isochrysis zhanjiangensis.
Collapse
Affiliation(s)
- Yu Pei
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang 524088 and Shenzhen 518114, China
| | - Yi Lui
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang 524088 and Shenzhen 518114, China
| | - Shengxuan Cai
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang 524088 and Shenzhen 518114, China
| | - Chunxia Zhou
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang 524088 and Shenzhen 518114, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Pengzhi Hong
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang 524088 and Shenzhen 518114, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Zhanjiang 524088 and Shenzhen 518114, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China.
| |
Collapse
|
9
|
Zhang S, Liu Y, Liu T, Pan J, Tan R, Hu Z, Gong B, Liao Y, Luo P, Zeng Q, Li W, Zheng J. DNA damage by reactive oxygen species resulting from metabolic activation of 8-epidiosbulbin E acetate in vitro and in vivo. Toxicol Appl Pharmacol 2022; 443:116007. [DOI: 10.1016/j.taap.2022.116007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 12/31/2022]
|
10
|
Mechanistic study of silica nanoparticles on the size-dependent retinal toxicity in vitro and in vivo. J Nanobiotechnology 2022; 20:146. [PMID: 35305659 PMCID: PMC8934510 DOI: 10.1186/s12951-022-01326-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
Background Silica nanoparticles (SiO2 NPs) are extensively applied in the biomedical field. The increasing medical application of SiO2 NPs has raised concerns about their safety. However, studies on SiO2 NP-induced retinal toxicity are lacking. Methods We investigated the retinal toxicity of SiO2 NPs with different sizes (15 and 50 nm) in vitro and in vivo along with the underlying mechanisms. The cytotoxicity of SiO2 NPs with different sizes was assessed in R28 human retinal precursor cells by determining the ATP content and LDH release. The cell morphologies and nanoparticle distributions in the cells were analyzed by phase-contrast microscopy and transmission electron microscopy, respectively. The mitochondrial membrane potential was examined by confocal laser scanning microscopy. The retinal toxicity induced by SiO2 NPs in vivo was examined by immunohistochemical analysis. To further investigate the mechanism of retinal toxicity induced by SiO2 NPs, reactive oxygen species (ROS) generation, glial cell activation and inflammation were monitored. Results The 15-nm SiO2 NPs were found to have higher cytotoxicity than the larger NPs. Notably, the 15-nm SiO2 NPs induced retinal toxicity in vivo, as demonstrated by increased cell death in the retina, TUNEL-stained retinal cells, retinal ganglion cell degeneration, glial cell activation, and inflammation. In addition, The SiO2 NPs caused oxidative stress, as demonstrated by the increase in the ROS indicator H2DCF-DA. Furthermore, the pretreatment of R28 cells with N-acetylcysteine, an ROS scavenger, attenuated the ROS production and cytotoxicity induced by SiO2 NPs. Conclusions These results provide evidence that SiO2 NPs induce size-dependent retinal toxicity and suggest that glial cell activation and ROS generation contribute to this toxicity. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01326-8.
Collapse
|
11
|
Le Y, Li X, Chen S, Ning KG, Guo X, Wu CG, Manjanatha MG, Mei N. Actein contributes to black cohosh extract-induced genotoxicity in human TK6 cells. J Appl Toxicol 2022; 42:1491-1502. [PMID: 35261072 DOI: 10.1002/jat.4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy, but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells. Among the five constituents, actein (up to 50 μM) showed the highest cytotoxicity and was thus selected for further genotoxicity evaluations. Actein caused DNA damage proportionally to concentration as evidenced by the phosphorylation of the histone protein H2A.X (γH2A.X) and resulted in chromosomal damage as measured by the increased percentage of micronuclei (MN) in cells. In addition, actein activated DNA damage response (DDR) pathway through induction of p-ATM, p-Chk1, and p-Chk2, which subsequently induced cell cycle changes and apoptosis. Moreover, both BCE and actein increased intracellular reactive oxygen species (ROS) production, decreased glutathione levels, and activated the mitogen-activated protein kinases (MAPK) signaling pathway. N-acetylcysteine, a ROS scavenger, attenuated BCE- and actein-induced ROS production, apoptosis, and DNA damage. These findings indicate that BCE- and actein-induced genotoxicity is mediated through oxidative stress. Taken together, our data show that actein is likely one of the major contributors to BCE-induced genotoxicity.
Collapse
Affiliation(s)
- Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Charles G Wu
- Botanical Review Team, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
12
|
Troiano D, Orsat V, Dumont MJ. Use of filamentous fungi as biocatalysts in the oxidation of 5-(hydroxymethyl)furfural (HMF). BIORESOURCE TECHNOLOGY 2022; 344:126169. [PMID: 34695584 DOI: 10.1016/j.biortech.2021.126169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to explore the use of filamentous fungi as oxidative biocatalysts. To that end, filamentous fungal whole-cells, comprising five different species were employed in the oxidation of 5-(hydroxymethyl)furfural (HMF). Two species (A. niger and T. reesei), which demonstrated superior HMF conversion and product accumulation, were further evaluated for growth on alternative substrates (e.g. pentoses) as well as for use in a chemo-biocatalytic reaction system. Concerning the latter, the two whole-cell biocatalysts were coupled with laccase/TEMPO in a one-pot reaction designed to enable catalysis of the three oxidative steps necessary to convert HMF into 2,5-furandicarboxylic acid (FDCA), a compound with immense potential in the production of sustainable and eco-friendly polymers. Ultimately, the optimal one-pot chemo-biocatalytic cascade system, comprising 1 g/L T. reesei whole cells coupled with 2.5 mM laccase and 20 mol% TEMPO, achieved a molar yield of 88% after 80 h.
Collapse
Affiliation(s)
- Derek Troiano
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Valérie Orsat
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
13
|
Zhao Y, Liu S, Sheng Z, Li X, Chang Y, Dai W, Chang SK, Liu J, Yang Y. Effect of pinolenic acid on oxidative stress injury in HepG2 cells induced by H 2O 2. Food Sci Nutr 2021; 9:5689-5697. [PMID: 34646537 PMCID: PMC8498045 DOI: 10.1002/fsn3.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/05/2022] Open
Abstract
To investigate the effect and mechanism of pinolenic acid (PNA) on H2O2-induced oxidative stress injury in HepG2 cells. Methods: PNA was used to regulate oxidative stress injury of HepG2 cells induced by H2O2. Quantification of cell survival rate, accumulation of intracellular reactive oxygen species (ROS), and expression levels of anti-oxidation-related genes were determined using MTT, fluorescent probe technology (DCFH-DA), and real-time quantitative reverse transcription polymerase chain technology (qRT-PCR) method, respectively. Meanwhile, the activity of intracellular antioxidant enzymes was determined by biochemical methods. The results showed that PNA improved the survival rate of HepG2 cells induced by H2O2 (29.59%, high-dose group), reduced the accumulation of intracellular ROS (65.52%, high-dose group), and reduced the level of intracellular malondialdehyde (MDA; 65.52%, high-dose group). All these results were dose-dependent, which indicated that PNA can improve oxidative stress damage of cells. Furthermore, the mechanism of PNA regulating oxidative stress was investigated from the gene level. Results showed that under supplementation of PNA, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) had been improved (39.74%, 17.58%, and 23.83%, high-dose group). Further studies on gene expression which controls the activity of antioxidant enzymes showed that under the regulation of PNA, the expression level of Keap1 gene was decreased, while Nrf2 gene was increased. The expression levels of HO-1 and NQO1 in the downstream of Nrf2 were increased. Results indicated that under the regulation of PNA, Nrf2 was separated from Keap1, entered the nucleus, bound to ARE, and up-regulated the expression levels of HO-1 and NQO1 genes. Conclusion: PNA has a conspicuous improvement effect on oxidative stress damage induced by H2O2 in HepG2 cells. We also found the antioxidant mechanisms of PNA where it protected cells from oxidative stress damage by causing nuclear translocation of Nrf2 gene and up-regulated the expression levels of antioxidant enzymes in the downstream. This shows that PNA prevented oxidative stress by mediating the Keap1/Nrf2 transcriptional pathway and down-regulating enzyme activities.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Sainan Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Zhili Sheng
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Xue Li
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yanan Chang
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Weichang Dai
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Sui Kiat Chang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementKey Laboratory of Post‐Harvest Handling of FruitsMinistry of AgricultureSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Junmei Liu
- College of Food Science and EngineeringJilin Agricultural UniversityChangchunChina
| | - Yuchun Yang
- Forestry Academy of Jilin ProvinceChangchunChina
| |
Collapse
|
14
|
Ma Y, Li P, Zhao L, Liu J, Yu J, Huang Y, Zhu Y, Li Z, Zhao R, Hua S, Zhu Y, Zhang Z. Size-Dependent Cytotoxicity and Reactive Oxygen Species of Cerium Oxide Nanoparticles in Human Retinal Pigment Epithelia Cells. Int J Nanomedicine 2021; 16:5333-5341. [PMID: 34408413 PMCID: PMC8364434 DOI: 10.2147/ijn.s305676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The use of cerium oxide nanoparticles (CeO2 NPs), a lanthanide element oxide and bivalent compound, has been growing continuously in industry and biomedicine. Due to their wide application, the potential human health problems of CeO2 NPs have attracted attention, but studies on the toxicity of this compound to human eyes are lacking. This study investigated the cytotoxicity and reactive oxygen species (ROS) of CeO2 NPs in human retinal pigment epithelial cells (ARPE-19 cells). Methods Using the transmission electron microscope (TEM), the size distribution and shape of CeO2 NPs were characterized. To explore the effect of CeO2 NP size on ophthalmic toxicity in vitro, three sizes (15, 30 and 45 nm) of CeO2 NPs were investigated using ATP content measurement, LDH release measurement and cell proliferation assay in ARPE-19 cells. ROS values and mitochondrial membrane potential depolarization were evaluated by H2DCF-DA staining and JC-1 staining. Morphology changes were detected using a phase-contrast microscope. Results The cytotoxicity of 15 nm CeO2 NPs was found to be the highest and hence was further explored. Treatment with 15 nm CeO2 NPs caused the morphology of ARPE-19 cells to change in a dose- and time-dependent manner. Moreover, the treatment induced excessive ROS generation and mitochondrial membrane potential depolarization. In addition, cytotoxicity was attenuated by the application of a ROS scavenger N-acetyl-L- cysteine (NAC). Conclusion CeO2 NPs induced cytotoxicity in ARPE-19 cells and excessive production of ROS and decreasing mitochondrial membrane potential. The Overproduction of ROS partially contributes to CeO2 NP-induced cytotoxicity.
Collapse
Affiliation(s)
- Yuanyuan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Peng Li
- Department of Nephrology Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264005, Shandong, People's Republic of China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yuting Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shaofeng Hua
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| |
Collapse
|
15
|
Wahyuni EA, Chen CY, Wu HN, Chien CC, Chen SC. Propolis alleviates 4-aminobiphenyl-induced oxidative DNA damage by inhibition of CYP2E1 expression in human liver cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1504-1513. [PMID: 33847444 DOI: 10.1002/tox.23147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
4-Aminobiphenyl (4-ABP) may cause DNA damage in human liver cells (HepG2 and L-02). Propolis exhibits antioxidant properties through reactive oxygen species (ROS) scavenging. We determined the effects of propolis in alleviating 4-ABP -induced DNA damage using the comet assay. Results revealed that propolis could significantly alleviated oxidative damaged DNA by 4-ABP. Furthermore, we proved that inhibition of cytochrome P450 2E1 (CYP2E1) expression by propolis could contribute to the decreased oxidative DNA damage in the treated cells, as the conversion of 4-ABP into its metabolite, N-hydroxy-ABP (HOABP), was blocked; after all, HOABP showed more genotoxic than its parent chemical, 4-ABP. With the homologous recombination assay, propolis failed to induce DNA repair enzymes. Furthermore, the expression of RAD51, Ku70/Ku80, and OGG1 in treated cells were determined with the western blot, revealing that the expression of these protein were unchanged in comparison with those in nontreated cells. However, propolis could protect the treated cells from DNA damage. In conclusion, propolis could antagonize 4-ABP-induced oxidative DNA damage though the removal of ROS and inhibition of CYP2E1 expression in the treated cells.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
- Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Chien Yi Chen
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, Taiwan
| | - Huery Nuo Wu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
16
|
F1012-2 Induced ROS-Mediated DNA Damage Response through Activation of MAPK Pathway in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650045. [PMID: 34124254 PMCID: PMC8189789 DOI: 10.1155/2021/6650045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/18/2021] [Indexed: 01/07/2023]
Abstract
We have previously reported that F1012-2, a sesquiterpene lactone isolated from the Chinese herbal medicine Eupatorium lindleyanum DC., exhibits strong effects against Triple Negative Breast Cancer (TNBC). In this study, we found F1012-2 effectively inhibited cell migration and invasion detected by wound healing and transwell assays. In order to elucidate the potential mechanisms of F1012-2, we further studied its effect on DNA damage in TNBC cell lines. Using single cell gel electrophoresis (comet assay), immunofluorescence, and western blotting assays, we found that F1012-2 treatment induced significant DNA strand breaks and γ-H2AX activation. Moreover, exposure to F1012-2 led to overproduction of reactive oxygen species (ROS). NAC treatment completely eliminated ROS, which may be due to the interaction between NAC and F1012-2. A further study of the molecular mechanisms demonstrated that the MAPK signaling pathway participated in the anti-TNBC effect of F1012-2. Pretreatment with specific inhibitors targeting JNK (SP600125) and ERK (PD98059) could rescue the decrease in cell viability and inhibit expressions of JNK and ERK phosphorylation, but SB203580 had no effects. Finally, in the acute toxicity experiment, there were no obvious symptoms of poisoning in the F1012-2 treatment group. An in vivo study demonstrated that F1012-2 significantly suppressed the tumor growth and induced DNA damage. In conclusion, the activity of F1012-2-induced DNA damage in TNBC was found in vivo and in vitro, which might trigger the MAPK pathway through ROS accumulation. These results indicate that F1012-2 may be an effective anti-TNBC therapeutic agent.
Collapse
|
17
|
Wang Q, Chen Y, Chang H, Hu T, Wang J, Xie Y, Cheng J. The Role and Mechanism of ATM-Mediated Autophagy in the Transition From Hyper-Radiosensitivity to Induced Radioresistance in Lung Cancer Under Low-Dose Radiation. Front Cell Dev Biol 2021; 9:650819. [PMID: 34055781 PMCID: PMC8149741 DOI: 10.3389/fcell.2021.650819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Objective: This study aimed to investigate the effect of ataxia telangiectasia mutated (ATM)–mediated autophagy on the radiosensitivity of lung cancer cells under low-dose radiation and to further investigate the role of ATM and its specific mechanism in the transition from hyper-radiosensitivity (HRS) to induced radioresistance (IRR). Methods: The changes in the HRS/IRR phenomenon in A549 and H460 cells were verified by colony formation assay. Changes to ATM phosphorylation and cell autophagy in A549 and H460 cells under different low doses of radiation were examined by western blot, polymerase chain reaction (PCR), and electron microscopy. ATM expression was knocked down by short interfering RNA (siRNA) transfection, and ATM-regulated molecules related to autophagy pathways were screened by transcriptome sequencing analysis. The detection results were verified by PCR and western blot. The differential metabolites were screened by transcriptome sequencing and verified by colony formation assay and western blot. The nude mouse xenograft model was used to verify the results of the cell experiments. Results: (1) A549 cells with high expression of ATM showed positive HRS/IRR, whereas H460 cells with low expression of ATM showed negative HRS/IRR. After the expression of ATM decreased, the HRS phenomenon in A549 cells increased, and the radiosensitivity of H460 cells also increased. This phenomenon was associated with the increase in the autophagy-related molecules phosphorylated c-Jun N-terminal kinase (p-JNK) and autophagy/Beclin 1 regulator 1 (AMBRA1). (2) DL-Norvaline, a product of carbon metabolism in cells, inhibited autophagy in A549 cells under low-dose radiation. DL-Norvaline increased the expression levels of ATM, JNK, and AMBRA1 in A549 cells. (3) Mouse experiments confirmed the regulatory role of ATM in autophagy and metabolism and its function in HRS/IRR. Conclusion: ATM may influence autophagy through p-JNK and AMBRA1 to participate in the regulation of the HRS/IRR phenomenon. Autophagy interacts with the cellular carbon metabolite DL-Norvaline to participate in regulating the low-dose radiosensitivity of cells.
Collapse
Affiliation(s)
- Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Epigallocatechin-3-Gallate Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease via Inhibition of Apoptosis and Promotion of Autophagy through the ROS/MAPK Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5599997. [PMID: 33953830 PMCID: PMC8068552 DOI: 10.1155/2021/5599997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents one of the most common chronic liver diseases in the world. It has been reported that epigallocatechin-3-gallate (EGCG) plays important biological and pharmacological roles in mammalian cells. Nevertheless, the mechanism underlying the beneficial effect of EGCG on the progression of NAFLD has not been fully elucidated. In the present study, the mechanisms of action of EGCG on the growth, apoptosis, and autophagy were examined using oleic acid- (OA-) treated liver cells and the high-fat diet- (HFD-) induced NAFLD mouse model. Administration of EGCG promoted the growth of OA-treated liver cells. EGCG could reduce mitochondrial-dependent apoptosis and increase autophagy possibly via the reactive oxygen species- (ROS-) mediated mitogen-activated protein kinase (MAPK) pathway in OA-treated liver cells. In line with in vitro findings, our in vivo study verified that treatment with EGCG attenuated HFD-induced NAFLD through reduction of apoptosis and promotion of autophagy. EGCG can alleviate HFD-induced NAFLD possibly by decreasing apoptosis and increasing autophagy via the ROS/MAPK pathway. EGCG may be a promising agent for the treatment of NAFLD.
Collapse
|
19
|
Qian Z, Chen M, Chen J, Zhang Y, Zhou C, Hong P, Yang P. Intracellular ethanol-mediated oxidation and apoptosis in HepG2/CYP2E1 cells impaired by two active peptides from seahorse ( Hippocampus kuda bleeler) protein hydrolysates via the Nrf2/HO-1 and akt pathways. Food Sci Nutr 2021; 9:1584-1602. [PMID: 33747471 PMCID: PMC7958582 DOI: 10.1002/fsn3.2133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Seahorse (Hippocampus kuda Bleeler) are representative marine species in aquaculture, with special value of medicine and food. In this study, the protective effects of two peptides from seahorse hydrolysates (SHP-1 and SHP-2) against ethanol-mediated oxidative stress in HepG2/CYP2E1 cells were investigated. Firstly, SHP-1 and SHP-2 presented no cytotoxicity. Compared with the ethanol-treated groups, SHP-1 and SHP-2 increased cell viability in a concentration-dependent manner. Secondly, SHP-1 and SHP-2 markedly reduced intracellular reactive oxygen species (ROS) generation, gamma-glutamyltranspeptidase (GGT) activity, and tumor necrosis factor-α (TNF-α) levels and remarkably enhanced superoxide dismutase (SOD) and glutathione (GSH) activities. SHP-1 and SHP-2 also down-regulated the expressions of GGT, bax, c-caspase-8/-9/-3, p-Akt, p-IκB-α, p-p65, p-ERK, and p-p38 but up-regulated SOD, GSH, NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and bcl-2 levels, as revealed by Western blot analysis. Moreover, SHP-1 and SHP-2 increased the mitochondrial membrane potential (MMP), reduced DNA damage, and suppressed the nuclear translocation of p65. These results suggest that two peptides from seahorse hydrolysates can be considered a potential functional biomaterial and further improve the use value of seahorse in aquaculture.
Collapse
Affiliation(s)
- Zhong‐Ji Qian
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Mei‐Fang Chen
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Jiali Chen
- Lengshuitan Bezirk Agricultural and Rural BureauYongzhou CityChina
| | - Yi Zhang
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean UniversityShenzhenChina
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Pengzhi Hong
- Southern Marine Science and Engineering Guangdong LaboratoryZhanjiangChina
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| | - Ping Yang
- School of Chemistry and EnvironmentCollege of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
20
|
Dymkowska D. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria. Mitochondrion 2021; 57:131-147. [PMID: 33412335 DOI: 10.1016/j.mito.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Endothelial mitochondria play important signaling roles critical for the regulation of various cellular processes, including calcium signaling, ROS generation, NO synthesis or inflammatory response. Mitochondrial stress or disturbances in mitochondrial function may participate in the development and/or progression of endothelial dysfunction and could precede vascular diseases. Vascular functions are also strictly regulated by properly functioning degradation machinery, including autophagy and mitophagy, and tightly coordinated by mitochondrial and endoplasmic reticulum responses to stress. Within this review, current knowledge related to the development of cardiovascular disorders and the importance of mitochondria, endoplasmic reticulum and degradation mechanisms in vascular endothelial functions are summarized.
Collapse
Affiliation(s)
- Dorota Dymkowska
- The Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology PAS, 3 Pasteur str. 02-093 Warsaw, Poland.
| |
Collapse
|
21
|
Zhuang R, Yang X, Cai W, Xu R, Lv L, Sun Y, Guo Y, Ni J, Zhao G, Lu Z. MCTR3 reduces LPS-induced acute lung injury in mice via the ALX/PINK1 signaling pathway. Int Immunopharmacol 2021; 90:107142. [PMID: 33268042 DOI: 10.1016/j.intimp.2020.107142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI), a common respiratory distress syndrome in the intensive care unit (ICU), is mainly caused by severe infection and shock. Epithelial and capillary endothelial cell injury, interstitial edema and inflammatory cell infiltration are the main pathological changes observed in ALI animal models. Maresin conjugates in tissue regeneration (MCTR) are a new family of anti-inflammatory proteins. MCTR3 is a key enhancer of the host response, that promotes tissue regeneration and reduces infection; however, its role and mechanism in ALI are still unclear. The purpose of our research was to assess the protective effects of MCTR3 against ALI and its underlying mechanism. The work in this study was conducted in a murine model and the pulmonary epithelial cell line MLE-12. In vivo, MCTR3 (2 ng/g) was given 2 h after lipopolysaccharide (LPS) injection. We found that the treatment of mice with LPS-induced ALI with MCTR3 significantly reduced the cell number and protein levels in the bronchoalveolar lavage fluid (BALF); decreased the production of inflammatory cytokines; alleviated oxidative stress and cell apoptosis, consequently decreased lung injury; and restored pulmonary function. These protective effects of MCTR3 were dependent on down-regulation of the PTEN-induced putative kinase 1 (PINK1) pathway. Additionally, in MLE-12 cells stimulated with LPS, MCTR3 inhibited cell death, inflammatory cytokine levels and oxidative stress via the ALX/PINK1 signaling pathway. Thus, we conclude that MCTR3 protected against LPS-induced ALI partly through inactivation of the ALX/PINK1 mediated mitophagy pathway.
Collapse
Affiliation(s)
- Rong Zhuang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiyu Yang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenchao Cai
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongxiao Xu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Lv
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Sun
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yayong Guo
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Ni
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
22
|
Guo X, Seo JE, Petibone D, Tryndyak V, Lee UJ, Zhou T, Robison TW, Mei N. Performance of HepaRG and HepG2 cells in the high-throughput micronucleus assay for in vitro genotoxicity assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:702-717. [PMID: 32981483 DOI: 10.1080/15287394.2020.1822972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The micronucleus (MN) assay is a core test used to evaluate genotoxic potential of xenobiotics. The traditional in vitro MN assay is usually conducted in cells lacking metabolic competency or by supplementing cultures with an exogenous rat S9 metabolic system, which creates a significant assay limitation for detecting genotoxic metabolites. Our previous study demonstrated that compared to HepG2, HepaRG cells exhibited a significantly higher level of CYP450 enzyme activities and detected a greater portion of genotoxic carcinogens requiring metabolic activation using the Comet assay. The aim of this study was to assess the performance of HepaRG cells in the flow cytometry-based MN assay by testing 28 compounds with known genotoxic or carcinogenic modes of action (MoA). HepaRG cells exhibited higher sensitivity (83%) than HepG2 cells (67%) in detecting 12 indirect-acting genotoxicants or carcinogens. The HepaRG MN assay was 100% specific and 93% accurate in detecting genotoxic potential of the 28 compounds. Quantitative comparison of the MN concentration-response data using benchmark dose analysis showed that most of the tested compounds induced higher % MN in HepaRG than HepG2 cells. In addition, HepaRG cells were compatible with the Multiflow DNA damage assay, which predicts the genotoxic MoA of compounds tested. These results suggest that high-throughput flow cytometry-based MN assay may be adapted using HepaRG cells for genotoxicity assessment, and that HepaRG cells appear to be more sensitive than HepG2 cells in detecting genotoxicants or carcinogens that require metabolic activation.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Un Jung Lee
- Department of Medicine, Epidemiology and Population Health, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration , Rockville, MD, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration , Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| |
Collapse
|
23
|
Huang B, Chen Q, Wang L, Gao X, Zhu W, Mu P, Deng Y. Aflatoxin B1 Induces Neurotoxicity through Reactive Oxygen Species Generation, DNA Damage, Apoptosis, and S-Phase Cell Cycle Arrest. Int J Mol Sci 2020; 21:ijms21186517. [PMID: 32899983 PMCID: PMC7554769 DOI: 10.3390/ijms21186517] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in a variety of food commodities and exhibits strong toxicity toward multiple tissues and organs. However, little is known about its neurotoxicity and the associated mechanism. In this study, we observed that brain integrity was markedly damaged in mice after intragastric administration of AFB1 (300 μg/kg/day for 30 days). The toxicity of AFB1 on neuronal cells and the underlying mechanisms were then investigated in the neuroblastoma cell line IMR-32. A cell viability assay showed that the IC50 values of AFB1 on IMR-32 cells were 6.18 μg/mL and 5.87 μg/mL after treatment for 24 h and 48 h, respectively. ROS levels in IMR-32 cells increased significantly in a time- and AFB1 concentration-dependent manner, which was associated with the upregulation of NOX2, and downregulation of OXR1, SOD1, and SOD2. Substantial DNA damage associated with the downregulation of PARP1, BRCA2, and RAD51 was also observed. Furthermore, AFB1 significantly induced S-phase arrest, which is associated with the upregulation of CDKN1A, CDKN2C, and CDKN2D. Finally, AFB1 induced apoptosis involving CASP3 and BAX. Taken together, AFB1 manifests a wide range of cytotoxicity on neuronal cells including ROS accumulation, DNA damage, S-phase arrest, and apoptosis-all of which are key factors for understanding the neurotoxicology of AFB1.
Collapse
Affiliation(s)
- Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wenya Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (B.H.); (Q.C.); (L.W.); (X.G.); (W.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (P.M.); (Y.D.); Tel./Fax: +86-20-3860-4967 (Y.D.)
| |
Collapse
|
24
|
Kim SY, Hwangbo H, Lee H, Park C, Kim GY, Moon SK, Yun SJ, Kim WJ, Cheong J, Choi YH. Induction of Apoptosis by Coptisine in Hep3B Hepatocellular Carcinoma Cells through Activation of the ROS-Mediated JNK Signaling Pathway. Int J Mol Sci 2020; 21:E5502. [PMID: 32752099 PMCID: PMC7432186 DOI: 10.3390/ijms21155502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and treatment is very limited due to its high recurrence and low diagnosis rate, and therefore there is an increasing need to develop more effective drugs to treat HCC. Coptisine is one of the isoquinoline alkaloids, and it has various pharmacological effects. However, the evidence for the molecular mechanism of the anticancer efficacy is still insufficient. Therefore, this study investigated the antiproliferative effect of coptisine on human HCC Hep3B cells and identified the action mechanism. Our results showed that coptisine markedly increased DNA damage and apoptotic cell death, which was associated with induction of death receptor proteins. Coptisine also significantly upregulated expression of proapoptotic Bax protein, downregulated expression of anti-apoptotic Bcl-2 protein, and activated caspase-3, -8, and -9. In addition, coptisine remarkably increased the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and release of cytochrome c into the cytoplasm. However, N-acetylcysteine (NAC), a ROS scavenger, significantly attenuated the apoptosis-inducing effect of coptisine. It is worth noting that coptisine significantly upregulated phosphorylation of ROS-dependent c-Jun N-terminal kinase (JNK), whereas treatment with JNK inhibitor could suppress an apoptosis-related series event. Taken together, our results suggest that coptisine has an anticancer effect in Hep3B cells through ROS-mediated activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Korea;
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.J.Y.); (W.-J.K.)
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.J.Y.); (W.-J.K.)
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
25
|
|
26
|
Yang ZY, Wen M, Zong MH, Li N. Synergistic chemo/biocatalytic synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Liang Y, Dong B, Pang N, Hu J. Abamectin induces cytotoxicity via the ROS, JNK, and ATM/ATR pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13726-13734. [PMID: 32034588 DOI: 10.1007/s11356-019-06869-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Abamectin has been widely used in agriculture and animal husbandry. It has been shown that abamectin exposure could induce multiple toxic effects on non-target organisms, but the underlying mechanism is still largely unknown. In the current study, the mechanism of abamectin-induced cytotoxicity was investigated in mouse embryonic fibroblast cells. Abamectin treatment could cause oxidative stress in cells (beginning at 0.4 μg/ml, 0.5 μM) and the ROS overproduction was mainly induced by the impacts of abamectin on the activities of CAT (beginning at 4.4 μg/mL, 5 μM), SOD (beginning at 8.7 μg/mL, 10 μM), GPx (beginning at 4.4 μg/mL, 5 μM), and contents of GSH (beginning at 4.4 μg/mL, 5 μM), which are important components of the ROS elimination pathway in mammal cells. Abamectin could impair DNA integrity (as demonstrated by increased 8-OHdG/dG ratio) in cells, even at environmental level (0.4 μg/mL, NOAEL), and abamectin-induced oxidative stress was one of the main reasons for the DNA damage that occurred in cells. Moreover, pretreatment with the inhibitor of JNK and ATM/ATR signaling pathway could partially rescue the decreased cell viability, indicating that oxidative stress and DNA damage might be involved in abamectin-induced cytotoxicity. These findings could provide new insights into the mechanism of abamectin-induced cytotoxicity and should be useful for a more comprehensive assessment of the adverse effects of abamectin.
Collapse
Affiliation(s)
- Yiran Liang
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing, 100083, People's Republic of China
| | - Bizhang Dong
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing, 100083, People's Republic of China
| | - Nannan Pang
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing, 100083, People's Republic of China
| | - Jiye Hu
- College of Chemistry Biological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
28
|
Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6039769. [PMID: 32190175 PMCID: PMC7066401 DOI: 10.1155/2020/6039769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
The nuclear transcription factor p53, discovered in 1979, has a broad range of biological functions, primarily the regulation of apoptosis, the cell cycle, and DNA repair. In addition to these canonical functions, a growing body of evidence suggests that p53 plays an important role in regulating intracellular redox homeostasis through transcriptional and nontranscriptional mechanisms. Oxidative stress induction and p53 activation are common responses to chemical exposure and are suggested to play critical roles in chemical-induced toxicity. The activation of p53 can exert either prooxidant or antioxidant activity, depending on the context. In this review, we discuss the functional role of p53 in regulating chemical-induced oxidative stress, summarize the potential signaling pathways involved in p53's regulation of chemically mediated oxidative stress, and propose issues that should be addressed in future studies to improve understanding of the relationship between p53 and chemical-induced oxidative stress.
Collapse
|
29
|
Zhang R, Chen J, Mao L, Guo Y, Hao Y, Deng Y, Han X, Li Q, Liao W, Yuan M. Nobiletin Triggers Reactive Oxygen Species-Mediated Pyroptosis through Regulating Autophagy in Ovarian Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1326-1336. [PMID: 31955565 DOI: 10.1021/acs.jafc.9b07908] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ovarian cancer is one of the most serious female malignancies worldwide. Despite intensive efforts being made to overcome ovarian cancer, there still remain limited optional treatments for this disease. Nobiletin, a prospective food-derived phytochemical extracted from citrus fruits, has recently been reported to suppress ovarian cancer cells, but the role of pyroptosis in ovarian carcinoma with nobiletin still remains unknown. In this study, we aim to explore the effect of nobiletin on ovarian carcinoma and further expound the underlying mechanisms of nobiletin-induced ovarian cancer cell death. Our results showed that nobiletin could significantly inhibit cell proliferation, induce DNA damage, and also lead to apoptosis by increasing the cleaved poly (ADP-ribose) polymerase (PARP) level of human ovarian cancer cells (HOCCs) in a dose-dependent manner. Moreover, we revealed that nobiletin decreased mitochondrial membrane potential and induced reactive oxygen species (ROS) generation and autophagy of HOCCs, contributing to gasdermin D-/gasdermin E-mediated pyroptosis. Taken together, nobiletin as a functional food ingredient represents a promising new anti-ovarian cancer candidate that could induce apoptosis and trigger ROS-mediated pyroptosis through regulating autophagy in ovarian cancer cells.
Collapse
Affiliation(s)
- Rongjun Zhang
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Jian Chen
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Yajie Guo
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Xue Han
- Department of Obstetrics and Gynecology , Gansu Provincial Hospital , Lanzhou 730000 , Gansu , China
| | - Qingjiao Li
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, School of Public Health , Southern Medical University , Guangzhou 510515 , Guangdong , China
| | - Miaomiao Yuan
- Cancer Research Institute, School of Basic Medical Sciences , Southern Medical University , Guangzhou 510515 , Guangdong , China
- The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 518033 , Guangdong , China
| |
Collapse
|
30
|
Yu H, Wu CL, Wang X, Ban Q, Quan C, Liu M, Dong H, Li J, Kim GY, Choi YH, Wang Z, Jin CY. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res 2019; 38:448. [PMID: 31685029 PMCID: PMC6829950 DOI: 10.1186/s13046-019-1467-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND A natural compound Jaspine B and its derivative possess potential anti-cancer activities; However, little is known about the underlying mechanism. Here, the role of a new autophagy inducer Jaspine B derivative C-2 in suppressing bladder cancer cells was researched in vitro and in vivo. METHODS The underlying mechanisms and anticancer effect of C-2 in bladder cancer cells were investigated by MTT, western blotting, immunoprecipitation and immunofluorescence assays. The key signaling components were investigated by using pharmacological inhibitors or specific siRNAs. In vivo, we designed a C-2 and SP600125 combination experiment to verify the effectiveness of compound. RESULTS C-2 exhibits cytotoxic effect on bladder cancer cells, and JNK activated by C-2 triggers autophagy and up-regulates SQSTM1/p62 proteins, contributing to activation of Nrf2 pathway. Utilization of JNK inhibitor SP600125 or knockdown of JNK by siRNA potentiate the cytotoxicity of C-2 through down-regulation of p62 and LC3II proteins and up-regulation of active-Caspase3 proteins, enhance the cell death effect, facilitating the switch from autophagy to apoptosis. In vivo study, C-2 suppresses tumor growth in a xenograft mouse model of EJ cells without observed toxicity. Combined treatment with SP600125 further enhances tumor inhibition of C-2 associated with enhanced activation of caspase3 and reduction of autophagy. CONCLUSIONS It reveals a series of molecular mechanisms about SP600125 potentiate the cytotoxicity and tumor inhibition of C-2 in bladder cancer cells through promoting C-2-induced apoptosis, expecting it provides research basis and theoretical support for new drugs development.
Collapse
Affiliation(s)
- Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin, 300193 China
| | - Chun-Li Wu
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Xiangyu Wang
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Qianhong Ban
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Chunhua Quan
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Mengbo Liu
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Hangqi Dong
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Jinfeng Li
- Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450001 Henan China
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243 Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan, 47227 Republic of Korea
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001 Henan China
| |
Collapse
|
31
|
Black HD, Xu W, Hortle E, Robertson SI, Britton WJ, Kaur A, New EJ, Witting PK, Chami B, Oehlers SH. The cyclic nitroxide antioxidant 4-methoxy-TEMPO decreases mycobacterial burden in vivo through host and bacterial targets. Free Radic Biol Med 2019; 135:157-166. [PMID: 30878645 DOI: 10.1016/j.freeradbiomed.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
Tuberculosis is a chronic inflammatory disease caused by persistent infection with Mycobacterium tuberculosis. The rise of antibiotic resistant strains necessitates the design of novel treatments. Recent evidence shows that not only is M. tuberculosis highly resistant to oxidative killing, it also co-opts host oxidant production to induce phagocyte death facilitating bacterial dissemination. We have targeted this redox environment with the cyclic nitroxide derivative 4-methoxy-TEMPO (MetT) in the zebrafish-M. marinum infection model. MetT inhibited the production of mitochondrial ROS and decreased infection-induced cell death to aid containment of infection. We identify a second mechanism of action whereby stress conditions, including hypoxia, found in the infection microenvironment appear to sensitise M. marinum to killing by MetT both in vitro and in vivo. Together, our study demonstrates MetT inhibited the growth and dissemination of M. marinum through host and bacterial targets.
Collapse
Affiliation(s)
- Harrison D Black
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Wenbo Xu
- Centenary Institute, The University of Sydney, Australia
| | - Elinor Hortle
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia
| | | | - Warwick J Britton
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia
| | - Amandeep Kaur
- The University of Sydney, School of Chemistry, Australia
| | | | - Paul K Witting
- The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Belal Chami
- The University of Sydney, Discipline of Pathology Faculty of Medicine and Health, Australia
| | - Stefan H Oehlers
- Centenary Institute, The University of Sydney, Australia; The University of Sydney, Central Clinical School Faculty of Medicine and Health and Marie Bashir Institute, Australia.
| |
Collapse
|
32
|
PGC-1α protects against oxidized low-density lipoprotein and luteinizing hormone-induced granulosa cells injury through ROS-p38 pathway. Hum Cell 2019; 32:285-296. [PMID: 30993568 DOI: 10.1007/s13577-019-00252-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
Obese women with polycystic ovary syndrome (PCOS) often suffer from ovulation failure, which may be driven by granulosa cells (GCs) injury caused by increased levels of circulating oxidized low-density lipoprotein (ox-LDL) and luteinizing hormone (LH). PGC-1α may play an important role in this pathophysiological processes. However, the effect and the potential mechanism of PGC-1α on GCs injury evoked by obese PCOS is fully unclear. To investigate the protective effect and the potential mechanism of PGC-1α on GCs injury evoked by ox-LDL + LH stimulation. Patients with PCOS and women of normal reproductive age who undergoing egg retrievals and consenting for this research were collected. Those women were divided into normal-weight non-PCOS group, obese non-PCOS group, normal-weight PCOS group and obese PCOS group according to the body mass index (BMI) and PCOS diagnosis. Follicular fluid was collected and primary GCs were isolated. The levels of LH and ox-LDL in follicular fluid in the four groups were measured. And, the expressions of PGC-1α, cell apoptosis and ROS generation in primary GCs in the four groups were evaluated. After GCs from women of normal reproductive age at normal-weight pre-treated with adenovirus encoding PGC-1α (Ad-PGC-1α) prior to ox-LDL + LH treatment in vitro, the cell viability, apoptosis, apoptosis-related proteins expressions and ROS generation were evaluated by CCK-8 assay, AnnexinV/PI double staining, Western blot and H2DCF-DA staining, respectively. The expression of PGC-1α was significantly decreased, whereas the cell apoptosis and ROS generation were significantly increased in GCs of PCOS group, especially obese PCOS group. Our data also revealed that over-expression of PGC-1α in GCs from women of normal reproductive age at normal-weight markedly inhibited cell injury, ROS generation and p38 activation, accompanied by increased Bcl-2 expression, decreased Bax and cleaved caspase-3 expressions induced by ox-LDL + LH stimulation. Ox-LDL + LH-induced cell apoptosis was abrogated by attenuation of ROS generation or p38 activation. Attenuation of ROS generation reversed ox-LDL + LH-induced p38 activation, however, p38 inhibitors had an effect on ROS generation. Our findings suggested that PGC-1α protected against ox-LDL + LH-induced GCs injury through inhibiting cell apoptosis. And, the mechanism may be related to the inhibition of ROS-initiated p38 pathway. Our data indicated that PGC-1α may be a potential therapeutic target for obese PCOS.
Collapse
|
33
|
Guo X, Seo JE, Bryce SM, Tan JA, Wu Q, Dial SL, Moore MM, Mei N. Comparative Genotoxicity of TEMPO and 3 of Its Derivatives in Mouse Lymphoma Cells. Toxicol Sci 2019; 163:214-225. [PMID: 29385624 DOI: 10.1093/toxsci/kfy022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TEMPO (2, 2, 6, 6-tetramethylphiperidine-1-oxyl) and its derivatives are stable free radical nitroxides widely used in the field of chemistry, biology, and pharmacology. TEMPO was previously found to be mutagenic and to induce micronuclei in mammalian cells. In this study, we investigated and quantified the genotoxicity of 4 structurally similar nitroxides, TEMPO and 3 of its derivatives (4-hydroxy-TEMPO, 4-oxo-TEMPO, and 4-methoxy-TEMPO), using the mouse lymphoma assay (MLA) and Comet assay in L5178Y Tk+/- cells. The results showed that all tested nitroxides were cytotoxic and mutagenic in the MLA, both in the presence and absence of S9, with metabolic activation significantly enhancing the cytotoxicity and/or mutagenicity. In addition, the 4 nitroxides caused DNA-strand breakage. The mutagenicity and DNA damaging dose-responses of the test articles were compared using the PROAST benchmark dose software package. The potency ranking of the 4 nitroxides for mutagenicity was different from the ranking of the DNA damaging effects. The mode of action analysis by a multi-endpoint DNA damage pathway assay classified all 4 nitroxides as clastogens. In addition, the majority of the induced Tk mutants showed loss of heterozygosity at the Tk and D11Mit42 loci (ie, chromosome damage <31 Mbp). These results suggest that TEMPO and its 3 derivatives are cytotoxic and mutagenic in mouse lymphoma cells through a mechanism that involves strand breakage and large alterations to DNA. The potency rankings indicate that the different TEMPO derivatives vary in their mutagenic and DNA damaging potential.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | | | - Jenna A Tan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Stacey L Dial
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Martha M Moore
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
34
|
Wang Z, Shen J, Sun W, Zhang T, Zuo D, Wang H, Wang G, Xu J, Yin F, Mao M, Zhou Z, Hua Y, Cai Z. Antitumor activity of Raddeanin A is mediated by Jun amino-terminal kinase activation and signal transducer and activator of transcription 3 inhibition in human osteosarcoma. Cancer Sci 2019; 110:1746-1759. [PMID: 30907478 PMCID: PMC6500987 DOI: 10.1111/cas.14008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor. Raddeanin A (RA) is an active oleanane‐type triterpenoid saponin extracted from the traditional Chinese herb Anemone raddeana Regel that exerts antitumor activity against several cancer types. However, the effect of RA on osteosarcoma remains unclear. In the present study, we showed that RA inhibited proliferation and induced apoptosis of osteosarcoma cells in a dose‐ and time‐dependent way in vitro and in vivo. RA treatment resulted in excessive reactive oxygen species (ROS) generation and JNK and ERK1/2 activation. Apoptosis induction was evaluated by the activation of caspase‐3, caspase‐8, and caspase‐9 and poly‐ADP ribose polymerase (PARP) cleavage. RA‐induced cell death was significantly restored by the ROS scavenger glutathione (GSH), the pharmacological inhibitor of JNK SP600125, or specific JNK knockdown by shRNA. Additionally, signal transducer and activator of transcription 3 (STAT3) activation was suppressed by RA in human osteosarcoma, and this suppression was restored by GSH, SP600125, and JNK‐shRNA. Further investigation showed that STAT3 phosphorylation was increased after JNK knockdown. In a tibial xenograft tumor model, RA induced osteosarcoma apoptosis and notably inhibited tumor growth. Taken together, our results show that RA suppresses proliferation and induces apoptosis by modulating the JNK/c‐Jun and STAT3 signaling pathways in human osteosarcoma. Therefore, RA may be a promising candidate antitumor drug for osteosarcoma intervention.
Collapse
Affiliation(s)
- Zhuoying Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiakang Shen
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongsheng Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Mao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zifei Zhou
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Chen MF, Gong F, Zhang YY, Li C, Zhou C, Hong P, Sun S, Qian ZJ. Preventive Effect of YGDEY from Tilapia Fish Skin Gelatin Hydrolysates against Alcohol-Induced Damage in HepG2 Cells through ROS-Mediated Signaling Pathways. Nutrients 2019; 11:E392. [PMID: 30781878 PMCID: PMC6412572 DOI: 10.3390/nu11020392] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
According to a previous study, YGDEY from tilapia fish skin gelatin hydrolysates has strong free radical scavenging activity. In the present study, the protective effect of YGDEY against oxidative stress induced by ethanol in HepG2 cells was investigated. First, cells were incubated with YGDEY (10, 20, 50, and 100 μM) to assess cytotoxicity, and there was no significant change in cell viability. Next, it was established that YGDEY decreased the production of reactive oxygen species (ROS). Western blot results indicated that YGDEY increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the expression of gamma-glutamyltransferase (GGT) in HepG2 cells. It was then revealed that YGDEY markedly reduced the expressions of bax and cleaved-caspase-3 (c-caspase-3); inhibited phosphorylation of Akt, IκB-α, p65, and p38; and increased the level of bcl-2. Moreover, the comet assay showed that YGDEY effectively decreased the amount of ethanol-induced DNA damage. Thus, YGDEY protected HepG2 cells from alcohol-induced injury by inhibiting oxidative stress, and this may be associated with the Akt/nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signal transduction pathways. These results demonstrate that YGDEY from tilapia fish skin gelatin hydrolysates protects HepG2 cells from oxidative stress, making it a potential functional food ingredient.
Collapse
Affiliation(s)
- Mei-Fang Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fang Gong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yuan Yuan Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, China.
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, China.
| |
Collapse
|
36
|
Pucci P, Rescigno P, Sumanasuriya S, de Bono J, Crea F. Hypoxia and Noncoding RNAs in Taxane Resistance. Trends Pharmacol Sci 2018; 39:695-709. [PMID: 29891252 DOI: 10.1016/j.tips.2018.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Taxanes are chemotherapeutic drugs employed in the clinic to treat a variety of malignancies. Despite their overall efficacy, cancer cells often display resistance to taxanes. Therefore, new strategies to increase the effectiveness of taxane-based chemotherapeutics are urgently needed. Multiple molecular players are linked to taxane resistance; these include efflux pumps, DNA repair mechanisms, and hypoxia-related pathways. In addition, emerging evidence indicates that both non-coding RNAs and epigenetic effectors might also be implicated in taxane resistance. Here we focus on the causes of taxane resistance, with the aim to envisage an integrated model of the 'taxane resistance phenome'. This model could help the development of novel therapeutic strategies to treat taxane-resistant neoplasms.
Collapse
Affiliation(s)
- Perla Pucci
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Pasquale Rescigno
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK; Department of Clinical Medicine, University of Naples 'Federico II', Naples, Italy
| | - Semini Sumanasuriya
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK
| | - Johann de Bono
- Prostate Cancer Targeted Therapy Group, The Institute of Cancer Research, Sutton, UK
| | - Francesco Crea
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
37
|
Nucleoside reverse transcriptase inhibitor-induced rat oocyte dysfunction and low fertility mediated by autophagy. Oncotarget 2017; 9:3895-3907. [PMID: 29423092 PMCID: PMC5790509 DOI: 10.18632/oncotarget.23243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Low fertility is one of the most common side effects caused by nucleoside reverse transcriptase inhibitors (NRTIs), whereas the molecular mechanism underlying this process were largely unclear. This study was conducted to investigate whether autophagy plays a role in NRTIs-induced oocyte dysfunction and low fertility in female rat. Both in vivo and in vitro experiments were conducted. For the in vivo experiment, female adult Sprague-Dawley rats were subjected to zidovudine (AZT) and lamivudine (3TC) intragastric treatment for 3, 6, 9, and 12 weeks; a control was also set. Oocytes were collected for maturation evaluation, in vitro fertilization and mitochondrial function assays, and apoptosis and autophagy analysis. For the in vitro experiment, oocytes were collected and assigned to the control, 3-methyladenine (3-MA, an effective autophagy inhibitor), AZT, AZT+3-MA, 3TC, and 3TC+3-MA groups. The oocytes were cultured with the abovementioned drugs for 24, 48, and 72 h and then, subjected to the same assays as in the in vivo study. The results showed a significant time-dependent decrease in oocyte maturation-related maker levels, oocyte cleavage rate, blastocyst formation rate, mitochondrial DNA copy number and adenosine triphosphate level, and apoptosis, and a significant increase in the reactive oxygen species levels (all P-values < 0.05), in both the in vivo and the in vitro experiments. These changes, except for the changes in the oocyte maturation-related markers, were partially attenuated by 3-MA. In conclusion, we demonstrated that NRTIs can cause rat oocyte dysfunction and low fertility, and this damage was, at least partially, mediated by autophagy.
Collapse
|