1
|
Maksimović ŽM, T Marinković S, Đukanović Đ, Mandić-Kovačević N, Uletilović S, Duran M, Kuča K, Musilek K, Lončar-Stojiljković D, Škrbić R, Stojiljković MP. Novel chlorinated oxime K870 protects rats against paraoxon poisoning better than obidoxime. Drug Chem Toxicol 2025:1-11. [PMID: 39871446 DOI: 10.1080/01480545.2025.2454279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/22/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025]
Abstract
The aim of this study was to determine the antidotal potential of the chlorinated oxime K870 compared to obidoxime, as a monotherapy and in combination with atropine, in paraoxon (POX)-poisoned rats. The treatment doses of oximes were chosen as 20% of their LD50 values. The protective ratio (PR) of oxime K870 with atropine was significantly higher than that of obidoxime with atropine (68.8 and 125.0, respectively). In the biochemical part of the experiment POX subcutaneously (s.c.) (0.75% LD50) was administered and followed by oxime K870 or obidoxime i.m. 1 min later. Acetylcholinesterase (AChE) activity was determined spectrophotometrically in cerebrum, cerebellum, brainstem, diaphragm, and erythrocytes. Carboxylesterase activity was determined in plasma and liver. Both oximes successfully reactivated AChE in brain (cerebrum, cerebellum, and brainstem), diaphragm and erythrocytes, but the oxime K870 performed better than obidoxime. Both oximes reactivated carboxylesterase, obidoxime better in plasma and oxime K870 better in liver. In conclusion, the oxime K870, when co-administered with atropine, is a more effective antidote than the obidoxime-atropine combination in POX-poisoned rats.
Collapse
Affiliation(s)
- Žana M Maksimović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Sonja T Marinković
- Paediatric Clinic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Đorđe Đukanović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Nebojša Mandić-Kovačević
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Snežana Uletilović
- Department of Medical Biochemistry and Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Mladen Duran
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Dragana Lončar-Stojiljković
- Department of Anaesthesiology and Reanimatology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Miloš P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
2
|
Jaćević V, Grujić-Milanović J, Milovanović Z, Nežić L, Amidžić L, Vojinović N, Marković B, Dobričić V, Milosavljević P, Nepovimova E, Kuča K. Quantification of oxidative stress markers in the blood sera following subacute administration of different oximes in rats. Chem Biol Interact 2024; 399:111138. [PMID: 38992768 DOI: 10.1016/j.cbi.2024.111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Oxidative stress status, as a disruption of redox homeostasis, in the blood sera of Wistar rats caused by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Throughout this study, each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Then, seven days after the last oximes' application, markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, reduced glutathione, GSH, and oxidized glutathione, GSSG), were determined. Oxidative stress parameters, MDA and AOPP were significantly highest in the K048-, K074- and K075-treated groups (p < 0.001). The activity of CAT was significantly elevated in the obidoxime-treated group (p < 0.05), while treatment with K027, K048, and K074 induced high elevation in SOD levels (p < 0.01, p < 0.001). Interestingly, the activity of GSH in each oxime-treated group was significantly elevated. Unlike, treatment with obidoxime caused elevation in GSSG levels (p < 0.01). As a continuation of our previously published data, these results assure that applied oximes following subacute treatment ameliorated the oxidative status and further adverse systemic toxic effects in rats.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11040 Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11040 Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Jelica Grujić-Milanović
- University of Belgrade - Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Dr Subotića 4, 11 132, Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030 Belgrade, Serbia
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
| | - Ljiljana Amidžić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina; Department of Human Genetics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Nataša Vojinović
- Department of Human Genetics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Bojan Marković
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11121, Belgrade, Serbia
| | - Vladimir Dobričić
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11121, Belgrade, Serbia
| | - Petar Milosavljević
- Veterinary Services Center, Military Health Department, Crnotravska 17, 11040, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Jaćević V, Dumanović J, Grujić-Milanović J, Milovanović Z, Amidžić L, Vojinović N, Nežić L, Marković B, Dobričić V, Milosavljević P, Nepovimova E, Kuča K. Oxidative stress status assessment of rats' brains injury following subacute exposure to K-oximes. Chem Biol Interact 2023; 383:110658. [PMID: 37572873 DOI: 10.1016/j.cbi.2023.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Oxidative stress status and morphological injuries in the brain of Wistar rats induced by repeated application of selected acetylcholinesterase reactivators - asoxime, obidoxime, K027, K048, K074, and K075 were evaluated. Each oxime in a dose of 0.1 of LD50/kg im was given 2x/week for 4 weeks. Markers of lipid peroxidation (malondialdehyde, MDA), and protein oxidation (advanced oxidation protein products, AOPP), as well as the activity of antioxidant enzymes (catalase, CAT, superoxide dismutase, SOD, glutathione reductase, GR, and glutathione peroxidase, GPx), were estimated in the brain tissue homogenates on day 35 of the study. Brain alterations were carefully quantified by semiquantitative grading scales - brain damage score (BDS). Oxidative stress parameters, MDA and AOPP were significantly highest in the asoxime-, obidoxime- and K075-treated groups (p < 0.001). The activity of SOD and CAT was significantly elevated in the obidoxime-, K048-, and K075-treated groups (p < 0.001). Besides, GR was markedly decreased in the obidoxime- and K074-treated groups (p < 0.01), while treatment with K048, K074 and K075 induced extremely high elevation in GPx levels (p < 0.001). In the same groups of rats, brain alterations associated with polymorphonuclear cell infiltrate were significantly more severe than those observed in animals receiving only asoxime or K027 (p < 0.001). The presented results confirmed that treatment with different oximes significantly improved the oxidative status and attenuated signs of inflammation in rats' brains. Presented results, together with our previously published data can help to predict likely adverse systemic toxic effects, and target organ systems, which are crucial for establishing risk categories, as well as in dose selection of K-oximes as drug candidates.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000, Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000, Belgrade, Serbia; University of Belgrade - Faculty of Chemistry, Department of Analytical Chemistry Studenski trg 16, 11000, Belgrade, Serbia
| | - Jelica Grujić-Milanović
- University of Belgrade - Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Dr Subotića 4, 11 000, Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030, Belgrade, Serbia
| | - Ljiljana Amidžić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina; Department of Human Genetics, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Nataša Vojinović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000, Banja Luka, Bosnia and Herzegovina
| | - Bojan Marković
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Vladimir Dobričić
- University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Petar Milosavljević
- Veterinary Services Center, Military Health Department, Crnotravska 17, 11000, Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Fan N, Li Q, Liu Y, Ma B, Li M, Yin D. Preparation of an HI-6-loaded brain-targeted liposomes based on the nasal delivery route and the evaluation of its reactivation of central toxic acetylcholinesterase. Eur J Pharm Sci 2023; 184:106406. [PMID: 36805055 DOI: 10.1016/j.ejps.2023.106406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
PURPOSE Organophosphorus compounds (OPs) is a serious threat to human health and life safety, but because of the existence of blood-brain barrier, most of the therapeutic drugs cannot enter the center, reactivate centrally located toxic acetylcholinesterase (AChE), it is urgent to find an efficient treatment method. METHODS The c(RGDyK) cyclic peptide modified HI-6-loaded brain targeting liposomes [c(RGDyK)-PEG2000HI-6-lipo] were prepared by ammonium sulfate gradient method. The in vitro blood-brain barrier (BBB) model was established, and the function of the liposomes was evaluated. The animal model of DDVP poisoning was established, and the central toxic enzyme reactivation ability of c(RGDyK)-PEG2000HI-6-lipo by both the intravenous and nasal administration route was verified. RESULTS The HI-6-loaded liposomes with brain targeting function were successfully synthesized and prepared with high encapsulation efficiency (70.23 ± 2.18%), drug loading (2.86 ± 0.07)%, average particle size 242.9 nm (polydispersion index 0.149), and ζ potential -16.2 mV. Combined with the in vitro and in vivo studies, the c(RGDyK)-PEG2000HI-6-lipo has better ability to cross the BBB. In addition, compared with intravenous injection, nasal administration was proved to be more effective against organophosphorus poisoning, and the reactivation rate of brain acetylcholinesterase reached (26.19 ± 7.70)%. CONCLUSION The prepared c(RGDyK)-PEG2000HI-6-lipo has a better ability to cross BBB. Nasal administration, as a way to bypass the BBB and directly deliver drugs into the brain, effectively improves the bioavailability of HI-6 in the brain. This study holds promise by providing a non-invasive approach to deliver water-soluble oxime antidote into the brain and reactivate central acetylcholinesterase via the naso-brain route.
Collapse
Affiliation(s)
- Ning Fan
- General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army, Shaybak district, Urumqi, Xinjiang, China
| | - Qian Li
- General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army, Shaybak district, Urumqi, Xinjiang, China
| | - Yuan Liu
- Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Bohua Ma
- Department of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Meng Li
- Department of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Dongfeng Yin
- General Hospital of Xinjiang Military Command of the Chinese People's Liberation Army, Shaybak district, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Probiotic cultures as a potential protective strategy against the toxicity of environmentally relevant chemicals: State-of-the-art knowledge. Food Chem Toxicol 2023; 172:113582. [PMID: 36581092 DOI: 10.1016/j.fct.2022.113582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).
Collapse
|
6
|
Comprehensive insight into the neurotoxic mechanisms of low dose Pb exposure in Wistar rats: Benchmark dose analysis. Chem Biol Interact 2022; 360:109932. [DOI: 10.1016/j.cbi.2022.109932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 04/03/2022] [Indexed: 02/03/2023]
|
7
|
Yesudhas A, Radhakrishnan RK, Sukesh A, Ravichandran S, Manickam N, Kandasamy M. BOTOX® counteracts the innate anxiety-related behaviours in correlation with increased activities of key antioxidant enzymes in the hippocampus of ageing experimental mice. Biochem Biophys Res Commun 2021; 569:54-60. [PMID: 34229123 DOI: 10.1016/j.bbrc.2021.06.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Cholinergic crisis and oxidative stress in the hippocampus of the brain have been known to induce anxiety disorders upon ageing. BOTOX® is a widely used therapeutic form of botulinum neurotoxin that acts by inhibiting the release of acetylcholine (ACh) from the nerve terminals at the neuromuscular junction. BOTOX® can migrate from the muscle to the brain through retrograde axonal transport and modulate neuroplasticity. While a mild dose of BOTOX® has been used to manage various neurological deficits and psychiatric complications including depression, the efficacy and experimental evidence for its anxiolytic effects and antioxidant properties remain limited. In this study, we have investigated the effect of BOTOX® on the innate anxiety-like behaviours in ageing mice upon exposure to different behavioural paradigms like open field test, elevated plus maze and light-dark box test, and estimated the enzymatic activities of key antioxidants in the hippocampus. Results revealed that animals injected with a mild intramuscular dosage of BOTOX® showed reduced level of innate anxiety-related symptoms and increased activities of hippocampal antioxidant enzymes compared to the control group. This study strongly supports that BOTOX® could be implemented to prevent or treat anxiety and hippocampal oxidative stress resulting from ageing, emotional and mood disorders.
Collapse
Affiliation(s)
- Ajisha Yesudhas
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Risna Kanjirassery Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Aishwarya Sukesh
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Nivethitha Manickam
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli- 620024, Tamil Nadu, India; Faculty Recharge Program, University Grants Commission (UGC-FRP), New Delhi-110002, India.
| |
Collapse
|
8
|
Živančević K, Baralić K, Jorgovanović D, Buha Djordjević A, Ćurčić M, Antonijević Miljaković E, Antonijević B, Bulat Z, Đukić-Ćosić D. Elucidating the influence of environmentally relevant toxic metal mixture on molecular mechanisms involved in the development of neurodegenerative diseases: In silico toxicogenomic data-mining. ENVIRONMENTAL RESEARCH 2021; 194:110727. [PMID: 33465344 DOI: 10.1016/j.envres.2021.110727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
This in silico toxicogenomic analysis aims to: (i) testify the hypothesis about the influence of the environmentally relevant toxic metals (lead, methylmercury (organic form of mercury), cadmium and arsenic) on molecular mechanisms involved in amyotrophic lateral sclerosis (ALS), Parkinson's Disease (PD) and Alzheimer's disease (AD) development; and (ii) demonstrate the capability of in silico toxicogenomic data-mining for distinguishing the probable mechanisms of mixture-induced toxic effects. The Comparative Toxicogenomics Database (CTD; http://ctd. mdibl.org) and Cytoscape software were used as the main data-mining tools in this analysis. The results have shown that there were 7, 13 and 14 common genes for all the metals present in the mixture for each of the selected neurodegenerative disease (ND), respectively: ALS, PD and AD. Physical interactions (68.18%) were the most prominent interactions between the genes extracted for ALS, co-expression (60.85%) for PD and interactions predicted by the server (44.30%) for AD. SOD2 gene was noted as the mutual gene for all the selected ND. Oxidative stress, folate metabolism, vitamin B12, AGE-RAGE, apoptosis were noted as the key disrupted molecular pathways that contribute to the neurodegenerative disease's development. Gene ontology analysis revealed biological processes affected by the investigated mixture (glutathione metabolic process was listed as the most important for ALS, cellular response to toxic substance for PD, and neuron death for AD). Our results emphasize the role of oxidative stress, particularly SOD2, in neurodegeneration triggered by environmental toxic metal mixture and give a new insight into common molecular mechanisms involved in ALS, PD and AD pathology.
Collapse
Affiliation(s)
- Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
9
|
Yerri J, Dias J, Nimmakayala MR, Razafindrainibe F, Courageux C, Gastellier A, Jegoux J, Coisne C, Landry C, Gosselet F, Hachani J, Goossens J, Dehouck M, Nachon F, Baati R. Chemoselective Hydrogenation of 6‐Alkynyl‐3‐fluoro‐2‐pyridinaldoximes: Access to First‐in‐Class 6‐Alkyl‐3‐Fluoro‐2‐pyridinaldoxime Scaffolds as New Reactivators of Sarin‐Inhibited Human Acetylcholinesterase with Increased Blood–Brain Barrier Permeability. Chemistry 2020; 26:15035-15044. [DOI: 10.1002/chem.202002012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jagadeesh Yerri
- ICPEES UMR CNRS 7515 Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé 25 Rue Becquerel 67087 Strasbourg France
| | - José Dias
- Département de Toxicologie et Risques Chimiques Institut de Recherche Biomédicale des Armées 91220 Brétigny-sur-Orge France
| | - Mallikajurna Reddy Nimmakayala
- ICPEES UMR CNRS 7515 Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé 25 Rue Becquerel 67087 Strasbourg France
| | - Franck Razafindrainibe
- ICPEES UMR CNRS 7515 Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé 25 Rue Becquerel 67087 Strasbourg France
| | - Charlotte Courageux
- Département de Toxicologie et Risques Chimiques Institut de Recherche Biomédicale des Armées 91220 Brétigny-sur-Orge France
| | - Anne‐Julie Gastellier
- Département de Toxicologie et Risques Chimiques Institut de Recherche Biomédicale des Armées 91220 Brétigny-sur-Orge France
| | - Johanne Jegoux
- Département de Toxicologie et Risques Chimiques Institut de Recherche Biomédicale des Armées 91220 Brétigny-sur-Orge France
| | - Caroline Coisne
- UR 2465 Laboratoire de la Barrière Hémato-Encéphalique (LBHE) Université d'Artois (UArtois) 62307 Lens France
| | - Christophe Landry
- UR 2465 Laboratoire de la Barrière Hémato-Encéphalique (LBHE) Université d'Artois (UArtois) 62307 Lens France
| | - Fabien Gosselet
- UR 2465 Laboratoire de la Barrière Hémato-Encéphalique (LBHE) Université d'Artois (UArtois) 62307 Lens France
| | - Johan Hachani
- UR 2465 Laboratoire de la Barrière Hémato-Encéphalique (LBHE) Université d'Artois (UArtois) 62307 Lens France
| | - Jean‐François Goossens
- ULR 7365—GRITA—Groupe de Recherche sur les Formes, Injectables et Technologies Associées University of Lille 59000 Lille France
| | - Marie‐Pierre Dehouck
- UR 2465 Laboratoire de la Barrière Hémato-Encéphalique (LBHE) Université d'Artois (UArtois) 62307 Lens France
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques Institut de Recherche Biomédicale des Armées 91220 Brétigny-sur-Orge France
| | - Rachid Baati
- ICPEES UMR CNRS 7515 Institut de Chimie des Procédés, pour l'Energie, l'Environnement, et la Santé 25 Rue Becquerel 67087 Strasbourg France
| |
Collapse
|
10
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
11
|
Evaluation of Antidepressant, Antianxiolytic, and Antioxidant Effects of Echium amoenum L. Extract on Social Isolation Stress of Male Mice. IRANIAN RED CRESCENT MEDICAL JOURNAL 2020. [DOI: 10.5812/ircmj.97593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Understanding the bioconjugation reaction of phenthoate with human serum albumin: New insights from experimental and computational approaches. Toxicol Lett 2019; 314:124-132. [DOI: 10.1016/j.toxlet.2019.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022]
|
13
|
Antonijevic E, Musilek K, Kuca K, Djukic-Cosic D, Andjelkovic M, Djordjevic AB, Antonijevic B. Comparison of oximes K203 and K027 based on Benchmark dose analysis of rat diaphragmal acetylcholinesterase reactivation. Chem Biol Interact 2019; 308:385-391. [PMID: 31141677 DOI: 10.1016/j.cbi.2019.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Evica Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Danijela Djukic-Cosic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Milena Andjelkovic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Biljana Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
14
|
Lorke DE, Petroianu GA. The Experimental Oxime K027-A Promising Protector From Organophosphate Pesticide Poisoning. A Review Comparing K027, K048, Pralidoxime, and Obidoxime. Front Neurosci 2019; 13:427. [PMID: 31191210 PMCID: PMC6547910 DOI: 10.3389/fnins.2019.00427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/15/2019] [Indexed: 11/13/2022] Open
Abstract
Poisoning with organophosphorus compounds (OPCs) is a major problem worldwide. Standard therapy with atropine and established oxime-type enzyme reactivators (pralidoxime, obidoxime) is unsatisfactory. In search of more efficacious broad-spectrum oximes, new bispyridinium (K-) oximes have been synthesized, with K027 being among the most promising. This review summarizes pharmacokinetic characteristics of K027, its toxicity and in vivo efficacy to protect from OPC toxicity and compares this oxime with another experimental bisquaternary asymmetric pyridinium aldoxime (K048) and two established oximes (pralidoxime, obidoxime). After intramuscular (i.m.) injection, K027 reaches maximum plasma concentration within ∼30 min; only ∼2% enter the brain. Its intrinsic cholinesterase inhibitory activity is low, making it relatively non-toxic. In vitro reactivation potency is high for ethyl-paraoxon-, methyl-paraoxon-, dichlorvos-, diisopropylfluorophosphate (DFP)- and tabun-inhibited cholinesterase. When administered in vivo after exposure to the same OPCs, K027 is comparable or more efficacious than pralidoxime and obidoxime. When given as a pretreatment before exposure to ethyl-paraoxon, methyl-paraoxon, DFP, or azinphos-methyl, it is superior to the Food and Drug Administration-approved compound pyridostigmine and comparable to physostigmine, which because of its entry into the brain may cause unwanted behavioral effects. Because of its low toxicity, K027 can be given in high dosages, making it a very efficacious oxime not only for postexposure treatment but also for prophylactic administration, especially when brain penetration is undesirable.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.,Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Georg A Petroianu
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
15
|
Gorecki L, Soukup O, Kucera T, Malinak D, Jun D, Kuca K, Musilek K, Korabecny J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch Toxicol 2018; 93:673-691. [PMID: 30564897 DOI: 10.1007/s00204-018-2377-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
For over 60 years, researchers across the world have sought to deal with poisoning by nerve agents, the most toxic and lethal chemical weapons. To date, there is no efficient causal antidote with sufficient effect. Every trialed compound fails to fulfil one or more criteria (e.g. reactivation potency, broad reactivation profile). In this recent contribution, we focused our attention to one of the promising compounds, namely the bis-pyridinium reactivator K203. The oxime K203 is very often cited as the best reactivator against tabun poisoning. Herein, we provide all the available literature data in comprehensive and critical review to address whether K203 could be considered as a new drug candidate against organophosphorus poisoning with the stress on tabun. We describe its development from the historical point of view and review all available in vitro as well as in vivo data to date. K203 is easily accessible by a relatively simple two-step synthesis. It is well accommodated in the enzyme active gorge of acetylcholinesterase providing suitable interactions for reactivation, as shown by molecular docking simulations. According to a literature survey, in vitro data for tabun-inhibited AChE are extraordinary. However, in vivo efficiency remains unconvincing. The K203 toxicity profile did not show any perturbations compared to clinically used standards; on the other hand versatility of K203 does not exceed currently available oximes. In summary, K203 does not seem to address current issues associated with the organophosphorus poisoning, especially the broad profile against all nerve agents. However, its reviewed efficacy entitles K203 to be considered as a backup or tentative replacement for obidoxime and trimedoxime, currently only available anti-tabun drugs.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic. .,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic. .,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
16
|
Antonijevic E, Musilek K, Kuca K, Djukic-Cosic D, Curcic M, Miladinovic DC, Bulat Z, Antonijevic B. Dose-response modeling of reactivating potency of oximes K027 and K203 against a direct acetylcholinesterase inhibitor in rat erythrocytes. Food Chem Toxicol 2018; 121:224-230. [PMID: 30176309 DOI: 10.1016/j.fct.2018.08.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Inhibition of acethylcholinesterase (AChE) as a key molecular event induced by organophosphate (OP) pesticides and nerve agents presents a human health concern. In efficacy testing of experimental oximes, potential antidotes in OP poisoning, reactivation of OP-inhibited AChE is used as specific endpoint. However, according to our best knowledge, so far oximes have not been quantitatively evaluated by comprehensive benchmark dose (BMD) approach, that would improve both identification and quantification of the effect and allow more rigorous comparison of efficacies. Thus, we have examined in vivo dose-response relationship for two promising experimental oximes, K203 and K027, concerning reactivation of erythrocyte AChE inhibited by dichlorvos (DDVP). Groups of Wistar rats were treated with six different doses of oximes (i.m) immediately after DDVP challenge (s.c) and AChE was measured 60 min later. Dose-response modeling was done by PROAST software 65.5 (RIVM, The Nederlands). BMD-covariate method resulted in four-parameter model from both exponential and Hill model families as the best estimate of relationship between AChE activity and oxime dose, with potency parameter being oxime-dependent. Oxime K027 was shown to be 1.929-fold more potent considering that 58% increase in AChE activity was achived with the dose BMD58-K027 = 52 μmol/kg in contrast to BMD58-K203 = 100 μmol/kg.
Collapse
Affiliation(s)
- Evica Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Danijela Djukic-Cosic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Marijana Curcic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dejana Cupic Miladinovic
- University of Belgrade, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia.
| | - Zorica Bulat
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Biljana Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|