1
|
Artuc M, Zuberbier T, Peiser M. Nickel Challenge In Vitro Affects CD38 and HLA-DR Expression in T Cell Subpopulations from the Blood of Patients with Nickel Allergy. Int J Mol Sci 2023; 25:298. [PMID: 38203472 PMCID: PMC10778727 DOI: 10.3390/ijms25010298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Nickel allergy is a major health problem and shows clinical manifestation of contact eczema. The response of specific lymphocyte subpopulations in sensitized patients after new challenge to nickel has until now not been studied in detail. To evaluate if nickel-based elicitation reaction could be objectively identified by multi-parametric flow cytometry, immunophenotyping of specific T cells was applied. White blood cells from 7 patients (4 positive in patch test, 3 negative) were challenged by nickel and in vitro short-term culture. Standardized antibody-dye combinations, specific for T helper(h)1, Th17 and cytotoxic T cell activation, were selected according to the recommendations of Stanford Human Immune Monitoring Center. In cytotoxic CD8+CCR7+CD45RA+ T cells from patients suffering from nickel allergy, CD38 and HLA-DR were elevated comparing to healthy donors. After challenge to nickel in vitro both markers decreased in CD8+CCR7+CD45RA+ T cells but found up-regulated in CD4+CCR7+CD45RA+CCR6-CXCR3+Th1 cells. Intracellular expression of T-bet and RORγt further indicated Th1 and Th17 cells. Finally, CD4+CD25+CCR4- T cells increased after challenge with nickel in PBMCs of patients with nickel allergy. Flow cytometry based quantification of T cell markers might be used as a specific and reliable method to detect chemical induced skin sensitization and confirm diagnostic patch testing in the clinics.
Collapse
Affiliation(s)
- Metin Artuc
- Department of Dermatology and Allergy, Allergy Center Charité, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Torsten Zuberbier
- Berlin Institute of Allergology, Charité-Universitätsmedizin, Campus Benjamin Franklin, 12203 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Matthias Peiser
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
2
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
3
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Role of Innate Immunity in Allergic Contact Dermatitis: An Update. Int J Mol Sci 2023; 24:12975. [PMID: 37629154 PMCID: PMC10455292 DOI: 10.3390/ijms241612975] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Our understanding of allergic contact dermatitis mechanisms has progressed over the past decade. Innate immune cells that are involved in the pathogenesis of allergic contact dermatitis include Langerhans cells, dermal dendritic cells, macrophages, mast cells, innate lymphoid cells (ILCs), neutrophils, eosinophils, and basophils. ILCs can be subcategorized as group 1 (natural killer cells; ILC1) in association with Th1, group 2 (ILC2) in association with Th2, and group 3 (lymphoid tissue-inducer cells; ILC3) in association with Th17. Pattern recognition receptors (PRRs) including toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) in innate immune cells recognize damage-associated molecular patterns (DAMPs) and cascade the signal to produce several cytokines and chemokines including tumor necrosis factor (TNF)-α, interferon (IFN)-α, IFN-γ, interleukin (IL)-1β, IL-4, IL-6, IL-12, IL-13, IL-17, IL-18, and IL-23. Here we discuss the recent findings showing the roles of the innate immune system in allergic contact dermatitis during the sensitization and elicitation phases.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Sonnenburg A, Stahlmann R, Kreutz R, Peiser M. A new cell line based coculture system for skin sensitisation testing in one single assay using T cells, aryl hydrocarbon receptor knockout, and co-inhibitory blockage. Arch Toxicol 2023; 97:1677-1689. [PMID: 37147507 PMCID: PMC10182954 DOI: 10.1007/s00204-023-03506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Established in vitro assays for regulatory testing of skin sensitisation partly suffer from only moderate sensitivity, specificity, and predictivity when testing specific groups of chemicals. This may be due to limited biomarker response in vitro in cell types that interact as crucial players of in vivo skin sensitisation pathogenesis. Here, we propose a molecular approach to overcome this limitation. In our model, we apply genome editing and blocking of immunoregulatory molecules to increase the range of biomarker modulation by sensitising chemicals. To this end, aryl hydrocarbon receptor (AhR) knockout was done by CRISPR/Cas9 technology in THP-1 cells and combined with Programmed Cell Death-Ligand (PD-L)1 blockade. AhR-knockout THP-1 in coculture with HaCaT keratinocytes showed increased CD54 expression compared to wild type cells after stimulation with 10 µmol/L dinitrochlorobenzene (DNCB) that was further enhanced by anti-PD-L1. After stimulation of AhR-knockout THP-1 with 200 µmol/L mercaptobenzothiazol or 10 µmol/L DNCB, cocultivated Jurkat T cells significantly increased expression of T cell receptor-associated CD3. No such increase was detected after prior treatment of THP-1 with 150 µmol/L of irritant sodium lauryl sulphate. Additionally, higher levels of inflammatory cytokines MIP-3α, MIP-1β, TNF-α, and IL-8 were found in supernatants of enhanced loose-fit co-culture based sensitisation assay (eLCSA) after substance treatment. Hence, eLCSA allowed to discriminate between sensitisers and non-sensitisers. Thus, inhibition of immunoinhibitory pathway signalling by combining AhR knockout and PD-L1 antibody blockage into an assay involving main acting cell types in skin sensitisation may increase sensitivity and specificity of such assays and allow potency derivation.
Collapse
Affiliation(s)
- Anna Sonnenburg
- Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| | - Ralf Stahlmann
- Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Reinhold Kreutz
- Institute for Clinical Pharmacology and Toxicology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Peiser
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
5
|
Sonnenburg A, Stahlmann R, Kreutz R, Peiser M. Aryl hydrocarbon receptor knockout and antibody blockade of programmed cell death ligand1 increase co-stimulatory molecules on THP-1 and specific cytokine response of human T cells. Toxicol In Vitro 2023; 86:105502. [DOI: 10.1016/j.tiv.2022.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
6
|
Li C, Liu N. Expression of interleukin-1β, interleukin-4, interferon-γ and tumour necrosis factor α in different tissue in a dinitrochlorobenzene-induced ear swelling test in mice. Skin Res Technol 2023; 29:e13255. [PMID: 36704886 PMCID: PMC9838767 DOI: 10.1111/srt.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To study the expression of interleukin-1β (IL-1β), interleukin-4 (IL-4), interferon-γ (IFN-γ) and tumour necrosis factor α (TNF-α) in different tissue in a dinitrochlorobenzene (DNCB)-induced ear swelling test in mice and further evaluate the correlation between the cytokine expression in different tissues and the degree of ear swelling. METHODS The mice were sensitised with a 0.50% DNCB solution on their back for 3 days. After 7 days, the thickness of their ears was measured and grouped. Different concentrations of the DNCB solution were challenged in the left ear of each group of mice, and the right ear was used as the control. The thickness of both ears was measured every 24 h, and the mice were sacrificed 72 h after the challenge. The expressions of IL-1β, IL-4, IFN-γ and TNF-α in the mouse serum, lymph node and ear tissue were quantified by enzyme-linked immunosorbent assay, respectively. RESULTS There was a linear positive correlation between the swelling index of the mouse lateral ear and the challenge concentration of DNCB (r = 0.96, p < 0.01). The high expression of IL-1β and IL-4 in the lateral ear tissue of the mice was positively correlated with the ear swelling index 48 h after the challenge. The correlation coefficient was 0.78 (p < 0.01). Furthermore, IFN-γ and TNF-α had no significant correlation with the ear swelling index 48 h after the challenge. CONCLUSION There is a correlation between the degree of ear swelling in mice and the concentration of DNCB and the expression of IL-1β and IL-4 in the lateral ear tissue. There is a sub-clinical skin sensitivity state in contact allergy.
Collapse
Affiliation(s)
- Chun‐Lian Li
- Department of DermatologyShijingshan teaching hospital of Capital Medical University, Beijing Shijingshan HospitalBeijingChina
| | - Na Liu
- Department of DermatologyShanghai Jiao Tong University Affiliated Sixth People’s HospitalShanghaiChina
| |
Collapse
|
7
|
Gądarowska D, Kalka J, Daniel-Wójcik A, Mrzyk I. Alternative Methods for Skin-Sensitization Assessment. TOXICS 2022; 10:740. [PMID: 36548573 PMCID: PMC9783525 DOI: 10.3390/toxics10120740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods.
Collapse
Affiliation(s)
- Dominika Gądarowska
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Joanna Kalka
- The Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Anna Daniel-Wójcik
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| | - Inga Mrzyk
- Łukasiewicz Research Network—Institute of Industrial Organic Chemistry Branch Pszczyna, Doświadczalna 27, 43-200 Pszczyna, Poland
| |
Collapse
|
8
|
Nitsche KS, Müller I, Malcomber S, Carmichael PL, Bouwmeester H. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review. Arch Toxicol 2022; 96:711-741. [PMID: 35103818 PMCID: PMC8850248 DOI: 10.1007/s00204-022-03234-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
Abstract
Organ-on-chip (OoC) technology is full of engineering and biological challenges, but it has the potential to revolutionize the Next-Generation Risk Assessment of novel ingredients for consumer products and chemicals. A successful incorporation of OoC technology into the Next-Generation Risk Assessment toolbox depends on the robustness of the microfluidic devices and the organ tissue models used. Recent advances in standardized device manufacturing, organ tissue cultivation and growth protocols offer the ability to bridge the gaps towards the implementation of organ-on-chip technology. Next-Generation Risk Assessment is an exposure-led and hypothesis-driven tiered approach to risk assessment using detailed human exposure information and the application of appropriate new (non-animal) toxicological testing approaches. Organ-on-chip presents a promising in vitro approach by combining human cell culturing with dynamic microfluidics to improve physiological emulation. Here, we critically review commercial organ-on-chip devices, as well as recent tissue culture model studies of the skin, intestinal barrier and liver as the main metabolic organ to be used on-chip for Next-Generation Risk Assessment. Finally, microfluidically linked tissue combinations such as skin-liver and intestine-liver in organ-on-chip devices are reviewed as they form a relevant aspect for advancing toxicokinetic and toxicodynamic studies. We point to recent achievements and challenges to overcome, to advance non-animal, human-relevant safety studies.
Collapse
Affiliation(s)
- Katharina S Nitsche
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Iris Müller
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul L Carmichael
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, P.O. Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
9
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
10
|
Lugović-Mihić L, Novak-Bilić G, Vučić M, Japundžić I, Bukvić I. CD44 expression in human skin: High expression in irritant and allergic contact dermatitis and moderate expression in psoriasis lesions in comparison with healthy controls. Contact Dermatitis 2020; 82:297-306. [PMID: 31900953 DOI: 10.1111/cod.13463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/05/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous research using animal models demonstrated that CD44 expression may contribute to directing inflammatory cells into skin lesions during inflammation development in allergic contact dermatitis (ACD). OBJECTIVES To examine CD44 expression in patients with ACD and irritant contact dermatitis (ICD), and to compare it to patients with psoriatic lesions and healthy controls' (HCs) skin. METHODS This study included 200 patients comprising four groups of 50 each: ACD, ICD, psoriasis vulgaris, and HCs. CD44 expression was determined by immunohistochemical analysis using an optical microscope, and the results were visualized semiquantitatively by determining the percentage of immunoreactive cells in the epidermis, dermis, and on lymphocytes. RESULTS The highest CD44 expression was found in ICD, followed by ACD, psoriasis vulgaris, and lastly, the HCs (P < .001). Epidermal CD44 expression was significantly higher in contact dermatoses (especially in ICD) compared with psoriasis and healthy skin (P < .001). Similarly, CD44 expression in the dermis and on lymphocytes was strongest in ICD, although less pronounced than in the epidermis. CONCLUSIONS Because significantly elevated CD44 expression in ICD might be related to its function in maintaining and preserving the skin barrier in affected patients, further research on disease pathogenesis and new treatment options is needed.
Collapse
Affiliation(s)
- Liborija Lugović-Mihić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Gaby Novak-Bilić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Majda Vučić
- Department of Pathology Ljudevit Jurak, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Iva Japundžić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Iva Bukvić
- Department of Dermatovenereology, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| |
Collapse
|
11
|
Thélu A, Catoire S, Kerdine-Römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 2020; 62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
|
12
|
Zhang R, Wang P, Yu S, Wang H. Computational prediction methods to simulate structure and binding sites of coumarin with olfactory receptor 5P3. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1199-1206. [PMID: 31959074 DOI: 10.1080/15287394.2019.1709313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Olfactory receptor 5P3 is coded by OR5P3 gene in human OR5P3 and recognized as the receptor for coumarin present in 30% of fragrances and might adversely affect human health. OR5P3 are also associated with coumarin-related breast cancer development and acquired tamoxifen resistance in breast cancer cells. Previously various investigators noted that coumarin acts as a ligand for OR5P3 and binding of this molecule to OR5P3 leads to downstream changes in the olfactory bulb and central nervous system. However, the interaction between OR5P3 and its ligands at molecular level is not well understood. The aim of this study was to develop a computerized approach to simulate the binding process of coumarin to OR5P3 and determine the binding sites at a molecular level. It is conceivable that understanding this binding mechanism to a specific OR may aid in identification of receptors responsible olfaction and non-olfaction disorders such as breast cancer. The approach employed in this study may thus be utilized in future studies to simulate bind of specific chemicals to ORs and potentially have therapeutic applications.
Collapse
Affiliation(s)
- Rui Zhang
- Xinjiang Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumchi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Wang
- School of Health Sciences, University of Newcastle, Newcastle, China
| | - Shunbang Yu
- School of Health Sciences, University of Newcastle, Newcastle, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, China
| |
Collapse
|
13
|
de Ávila RI, Lindstedt M, Valadares MC. The 21st Century movement within the area of skin sensitization assessment: From the animal context towards current human-relevant in vitro solutions. Regul Toxicol Pharmacol 2019; 108:104445. [PMID: 31430506 DOI: 10.1016/j.yrtph.2019.104445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
In a regulatory context, skin sensitization hazard and risk evaluations of manufactured products and their ingredients (e.g. cosmetics) are mandatory in several regions. Great efforts have been made within the field of 21st Century Toxicology to provide non-animal testing approaches to assess the skin allergy potential of materials (e.g. chemicals, mixtures, nanomaterials, particles). Mechanistic understanding of skin sensitization process through the adverse outcome pathway (AOP) has promoted the development of in vitro methods, demonstrating accuracies superior to the traditional animal testing. These in vitro testing approaches are based on one of the four AOP key events (KE) of skin sensitization: formation of immunogenic hapten-protein complexes (KE-1 or the molecular initiating event, MIE), inflammatory keratinocyte responses (KE-2), dendritic cell activation (KE-3), and T-lymphocyte activation and proliferation (KE-4). This update provides an overview of the historically used in vivo methods as well as the current in chemico and in cell methods with and without OECD guideline designations to analyze the progress towards human-relevant in vitro test methods for safety assessment of the skin allergenicity potential of materials. Here our focus is to review 96 in vitro testing approaches directed to the KEs of the skin sensitization AOP.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil
| | - Malin Lindstedt
- Department of Immunotechnology, Medicon Village, Lund University, Lund, Sweden
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil.
| |
Collapse
|
14
|
|
15
|
Wang W, Qu R, Wang X, Zhang M, Zhang Y, Chen C, Chen X, Qiu C, Li J, Pan X, Li W, Zhao Y. GDF11 Antagonizes Psoriasis-like Skin Inflammation via Suppression of NF-κB Signaling Pathway. Inflammation 2018; 42:319-330. [DOI: 10.1007/s10753-018-0895-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|