1
|
Zhang X, Zheng Y, Wang Z, Zhang G, Yang L, Gan J, Jiang X. Calpain: The regulatory point of cardiovascular and cerebrovascular diseases. Biomed Pharmacother 2024; 179:117272. [PMID: 39153432 DOI: 10.1016/j.biopha.2024.117272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Calpain, a key member of the Calpain cysteine protease superfamily, performs limited protein hydrolysis in a calcium-dependent manner. Its activity is tightly regulated due to the potential for non-specific cleavage of various intracellular proteins upon aberrant activation. A thorough review of the literature from 2010 to 2023 reveals 121 references discussing cardiovascular and cerebrovascular diseases. Dysregulation of the Calpain system is associated with various pathological phenomena, including lipid metabolism disorders, inflammation, apoptosis, and excitotoxicity. Although recent studies have revealed the significant role of Calpain in cardiovascular and cerebrovascular diseases, the precise mechanisms remain incompletely understood. Exploring the potential of Calpain inhibition as a therapeutic approach for the treatment of cardiovascular and cerebrovascular diseases may emerge as a compelling area of interest for future calpain research.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Guangming Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Chen R, Zhang S, Liu F, Xia L, Wang C, Sandoghchian Shotorbani S, Xu H, Chakrabarti S, Peng T, Su Z. Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1. Acta Pharm Sin B 2023; 13:128-141. [PMID: 36815032 PMCID: PMC9939321 DOI: 10.1016/j.apsb.2022.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Cardiac-resident macrophages (CRMs) play important roles in homeostasis, cardiac function, and remodeling. Although CRMs play critical roles in cardiac regeneration of neonatal mice, their roles are yet to be fully elucidated. Therefore, this study aimed to investigate the dynamic changes of CRMs during cardiac ontogeny and analyze the phenotypic and functional properties of CRMs in the promotion of cardiac regeneration. During mouse cardiac ontogeny, four CRM subsets exist successively: CX3CR1+CCR2-Ly6C-MHCII- (MP1), CX3CR1lowCCR2lowLy6C-MHCII- (MP2), CX3CR1-CCR2+Ly6C+MHCII- (MP3), and CX3CR1+CCR2-Ly6C-MHCII+ (MP4). MP1 cluster has different derivations (yolk sac, fetal liver, and bone marrow) and multiple functions population. Embryonic and neonatal-derived-MP1 directly promoted cardiomyocyte proliferation through Jagged-1-Notch1 axis and significantly ameliorated cardiac injury following myocardial infarction. MP2/3 subsets could survive throughout adulthood. MP4, the main population in adult mouse hearts, contributed to inflammation. During ontogeny, MP1 can convert into MP4 triggered by changes in the cellular redox state. These findings delineate the evolutionary dynamics of CRMs under physiological conditions and found direct evidence that embryonic and neonatal-derived CRMs regulate cardiomyocyte proliferation. Our findings also shed light on cardiac repair following injury.
Collapse
Affiliation(s)
- Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Chong Wang
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
| | | | - Huaxi Xu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Subrata Chakrabarti
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 5C1, Canada
- Corresponding authors. Tel.: +86 511 88780266.
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang 212013, China
- Corresponding authors. Tel.: +86 511 88780266.
| |
Collapse
|
3
|
Tian J, Wang Z, Li X, Li X, Kong Z, Zhang S, Li Y, Lu Z. Comparative iTRAQ-based quantitative proteomic analysis of spotted seal ( Phoca largha) pups inhabiting different environments. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2099467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| | - Zhen Wang
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| | - Xiang Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Xin Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Zhongren Kong
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| | - Shengjiu Zhang
- Dalian Sun Asia Tourism Holding Co., Ltd., Dalian, People’s Republic of China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People’s Republic of China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, People’s Republic of China
| |
Collapse
|
4
|
Ji XY, Zheng D, Ni R, Wang JX, Shao JQ, Vue Z, Hinton A, Song LS, Fan GC, Chakrabarti S, Su ZL, Peng TQ. Sustained over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice through aberrant autophagy. Acta Pharmacol Sin 2022; 43:2873-2884. [PMID: 35986214 PMCID: PMC9622835 DOI: 10.1038/s41401-022-00965-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/24/2022] [Indexed: 11/09/2022] Open
Abstract
Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.
Collapse
Affiliation(s)
- Xiao-Yun Ji
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Jin-Xi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Tian-Qing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 5C1, Canada.
- Department of Medicine, Western University, London, ON, N6A 5W9, Canada.
| |
Collapse
|
5
|
Tunicamycin-Induced Endoplasmic Reticulum Stress Damages Complex I in Cardiac Mitochondria. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081209. [PMID: 36013387 PMCID: PMC9409705 DOI: 10.3390/life12081209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Induction of acute ER (endoplasmic reticulum) stress using thapsigargin contributes to complex I damage in mouse hearts. Thapsigargin impairs complex I by increasing mitochondrial calcium through inhibition of Ca2+-ATPase in the ER. Tunicamycin (TUNI) is used to induce ER stress by inhibiting protein folding. We asked if TUNI-induced ER stress led to complex I damage. METHODS TUNI (0.4 mg/kg) was used to induce ER stress in C57BL/6 mice. Cardiac mitochondria were isolated after 24 or 72 h following TUNI treatment for mitochondrial functional analysis. RESULTS ER stress was only increased in mice following 72 h of TUNI treatment. TUNI treatment decreased oxidative phosphorylation with complex I substrates compared to vehicle with a decrease in complex I activity. The contents of complex I subunits including NBUPL and NDUFS7 were decreased in TUNI-treated mice. TUNI treatment activated both cytosolic and mitochondrial calpain 1. Our results indicate that TUNI-induced ER stress damages complex I through degradation of its subunits including NDUFS7. CONCLUSION Induction of the ER stress using TUNI contributes to complex I damage by activating calpain 1.
Collapse
|
6
|
Li Q, Wang T, Shen Y, Du J. Bone Marrow Mesenchymal Stem Cells (BMSCs)-Exosome Inhibits Epithelial Ovarian Cancer (EOC) Cell Proliferative Ability Through Regulating Mitogen-Activated Protein Kinase (MKP)-1 and Mitogen-Activated Protein Kinases (MAPK)/Extracellular-Signal-Regulated Kinase (ERK) Signal Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The BMSCs-exosome plays a role in regulating tumor micro-environment so as to affect tumor cell biological behaviors. However, whether it affects the biological characteristics of epithelial ovarian cancer (EOC) cells remains unclear. Our study aimed to discuss whether BMSCs-exosome
affects EOC cell proliferative ability. BMSCs cells were cultivated to isolate exosome which was used to treat EOC cells at different concentrations (25, 50, and 100 μmol/L) followed by measuring cell proliferation by CCK-8, cell invasion and migration by Transwell, MKP-1and MAPK/ERK
protein level by Western Blot. BMSCs-exosome showed positive expression of CD9, CD63 and CD81 and negative CD116 and CD19. It could significantly inhibit EOC cell proliferation, invasion and migration in a dose-dependent manner along with reduced expression of MAPK/ERK. In conclusion, BMSCs-exosome
inhibits EOC cell biological behaviors possibly through regulation of MKP-1 and MAPK/ERK signal pathway, indicating that it might be used as a novel approach for treating EOC.
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynecology, Dongxihu People’s Hospital, Wuhan City, Hubei Province, 430040, China
| | - Ting Wang
- Department of Obstetrics and Gynecology, First People’s Hospital of Xiangyang City Hubei Province, Xiangyang City, 441000, China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Dongxihu People’s Hospital, Wuhan City, Hubei Province, 430040, China
| | - Juan Du
- Department of Obstetrics and Gynecology, Wuhan No.1 Hospital of Hubei Province, Wuhan City, Hubei Province, 430022, China
| |
Collapse
|
7
|
Abstract
INTRODUCTION Calpain-1 and calpain-2 are prototypical classical isoforms of the calpain family of calcium-activated cysteine proteases. Their substrate proteins participate in a wide range of cellular processes, including transcription, survival, proliferation, apoptosis, migration, and invasion. Dysregulated calpain activity has been implicated in tumorigenesis, suggesting that calpains may be promising therapeutic targets. AREAS COVERED This review covers clinical and basic research studies implicating calpain-1 and calpain-2 expression and activity in tumorigenesis and metastasis. We highlight isoform specific functions and provide an overview of substrates and cancer-related signalling pathways affected by calpain-mediated proteolytic cleavage. We also discuss efforts to develop clinically relevant calpain specific inhibitors and spotlight the challenges facing inhibitor development. EXPERT OPINION Rationale for targeting calpain-1 and calpain-2 in cancer is supported by pre-clinical and clinical studies demonstrating that calpain inhibition has the potential to attenuate carcinogenesis and block metastasis of aggressive tumors. The wide range of substrates and cleavage products, paired with inconsistencies in model systems, underscores the need for more complete understanding of physiological substrates and how calpain cleavage alters their function in cellular processes. The development of isoform specific calpain inhibitors remains an important goal with therapeutic potential in cancer and other diseases.
Collapse
Affiliation(s)
- Ivan Shapovalov
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Danielle Harper
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, 10 Stuart Street, Botterell Hall, Room A309, Kingston, Ontario, K7L 3N6 Canada
| |
Collapse
|
8
|
Meng J, Xu C. MicroRNA‐495‐3p diminishes doxorubicin‐induced cardiotoxicity through activating AKT. J Cell Mol Med 2022; 26:2076-2088. [PMID: 35152537 PMCID: PMC8980898 DOI: 10.1111/jcmm.17230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Doxorubicin (Dox) is a broad‐spectrum antitumour agent; however, its clinical application is impeded due to the cumulative cardiotoxicity. The present study aims to investigate the role and underlying mechanisms of microRNA‐495‐3p (miR‐495‐3p) in Dox‐induced cardiotoxicity. Herein, we found that cardiac miR‐495‐3p expression was significantly decreased in Dox‐treated hearts, and that the miR‐495‐3p agomir could prevent oxidative stress, cell apoptosis, cardiac mass loss, fibrosis and cardiac dysfunction upon Dox stimulation. In contrast, the miR‐495‐3p antagomir dramatically aggravated Dox‐induced cardiotoxicity in mice. Besides, we found that the miR‐495‐3p agomir attenuated, while the miR‐495‐3p antagomir exacerbated Dox‐induced oxidative stress and cellular injury in vitro. Mechanistically, we demonstrated that miR‐495‐3p directly bound to the 3′‐untranslational region of phosphate and tension homology deleted on chromosome ten (PTEN), downregulated PTEN expression and subsequently activated protein kinase B (PKB/AKT) pathway, and that PTEN overexpression or AKT inhibition completely abolished the cardioprotective effects of the miR‐495‐3p agomir. Our study for the first time identify miR‐495‐3p as an endogenous protectant against Dox‐induced cardiotoxicity through activating AKT pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Meng
- The First Affiliated Hospital Functional Department Hengyang Medical School University of South China Hengyang Hunan China
| | - Can Xu
- The First Affiliated Hospital Department of Cardiology Hengyang Medical School University of South China Hengyang Hunan China
| |
Collapse
|
9
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
10
|
Hou K, Shen J, Yan J, Zhai C, Zhang J, Pan JA, Zhang Y, Jiang Y, Wang Y, Lin RZ, Cong H, Gao S, Zong WX. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 2021; 69:103456. [PMID: 34233258 PMCID: PMC8261003 DOI: 10.1016/j.ebiom.2021.103456] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Doxorubicin, an anthracycline chemotherapeutic agent, is widely used in the treatment of many cancers. However, doxorubicin posts a great risk of adverse cardiovascular events, which are thought to be caused by oxidative stress. We recently reported that the ubiquitin E3 ligase TRIM21 interacts and ubiquitylates p62 and negatively regulates the p62-Keap1-Nrf2 antioxidant pathway. Therefore, we sought to determine the role TRIM21 in cardiotoxicity induced by oxidative damage. METHODS Using TRIM21 knockout mice, we examined the effects of TRIM21 on cardiotoxicity induced by two oxidative damage models: the doxorubicin treatment model and the Left Anterior Descending (LAD) model. We also explored the underlying mechanism by RNA-sequencing of the heart tissues, and by treating the mouse embryonic fibroblasts (MEFs), immortalized rat cardiomyocyte line H9c2, and immortalized human cardiomyocyte line AC16 with doxorubicin. FINDINGS TRIM21 knockout mice are protected from heart failure and fatality in both the doxorubicin and LAD models. Hearts of doxorubicin-treated wild-type mice exhibit deformed mitochondria and elevated level of lipid peroxidation reminiscent of ferroptosis, which is alleviated in TRIM21 knockout hearts. Mechanistically, TRIM21-deficient heart tissues and cultured MEFs and H9c2 cells display enhanced p62 sequestration of Keap1 and are protected from doxorubicin-induced ferroptosis. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient TRIM21 mutants impedes the protection from doxorubicin-induced cell death. INTERPRETATION Our study demonstrates that TRIM21 ablation protects doxorubicin-induced cardiotoxicity and illustrates a new function of TRIM21 in ferroptosis, and suggests TRIM21 as a therapeutic target for reducing chemotherapy-related cardiotoxicity. FUNDING NIH (CA129536; DK108989): data collection, analysis. Shanghai Pujiang Program (19PJ1401900): data collection. National Natural Science Foundation (31971161): data collection. Department of Veteran Affairs (BX004083): data collection. Tianjin Science and Technology Plan Project (17ZXMFSY00020): data collection.
Collapse
Affiliation(s)
- Kai Hou
- School of Medicine, Nankai University, Tianjin, China; Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Chuannan Zhai
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Jingxia Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Ji-An Pan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ye Zhang
- Tianjin Third Central Hospital, Tianjin, China
| | - Yaping Jiang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Richard Z Lin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Hongliang Cong
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, Tianjin Chest Hospital, Tianjin, China.
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Zheng D, Cao T, Zhang LL, Fan GC, Qiu J, Peng TQ. Targeted inhibition of calpain in mitochondria alleviates oxidative stress-induced myocardial injury. Acta Pharmacol Sin 2021; 42:909-920. [PMID: 32968209 PMCID: PMC8149722 DOI: 10.1038/s41401-020-00526-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
The protein levels and activities of calpain-1 and calpain-2 are increased in cardiac mitochondria under pathological conditions including ischemia, diabetes, and sepsis, and transgenic overexpression of mitochondrial-targeted calpain-1 induces dilated heart failure, which underscores an important role of increased calpain in mitochondria in mediating myocardial injury. However, it remains to be determined whether selective inhibition of calpain in mitochondria protects the heart under pathological conditions. In this study, we generated transgenic mice overexpressing mitochondrial-targeted calpastatin in cardiomyocytes. Their hearts were isolated and subjected to global ischemia/reperfusion. Hyperglycemia was induced in the transgenic mice by injections of STZ. We showed that transgenic calpastatin was expressed exclusively in mitochondria isolated from their hearts but not from other organs including skeletal muscle and lung tissues. Transgenic overexpression of mitochondrial-targeted calpastatin significantly attenuated mitochondrial oxidative stress and cell death induced by global ischemia/reperfusion in isolated hearts, and ameliorated mitochondrial oxidative stress, cell death, myocardial remodeling and dysfunction in STZ-treated transgenic mice. The protective effects of mitochondrial-targeted calpastatin were correlated with increased ATP5A1 protein expression and ATP synthase activity in isolated hearts subjected to global ischemia/reperfusion and hearts of STZ-treated transgenic mice. In cultured rat myoblast H9c2 cells, overexpression of mitochondrial-targeted calpastatin maintained the protein levels of ATP5A1 and ATP synthase activity, prevented mitochondrial ROS production and decreased cell death following hypoxia/reoxygenation, whereas upregulation of ATP5A1 or scavenging of mitochondrial ROS by mito-TEMPO abrogated mitochondrial ROS production and decreased cell death. These results confirm the role of calpain in myocardial injury, suggesting that selective inhibition of calpain in myocardial mitochondria by mitochondrial-targeted calpastatin is an effective strategy for alleviating myocardial injury and dysfunction in cardiac pathologies.
Collapse
Affiliation(s)
- Dong Zheng
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lu-Lu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jun Qiu
- Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Tian-Qing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Awad HH, El-Derany MO, Mantawy EM, Michel HE, El-Naa MM, Salah El-Din RA, El-Brairy AI, El-Demerdash E. Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: Emphasis on calcium homeostasis. Biomed Pharmacother 2021; 140:111679. [PMID: 34029952 DOI: 10.1016/j.biopha.2021.111679] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
The use of doxorubicin (DOX) to treat various tumors is limited by its cardiotoxicity. This study aimed to investigate and compare the cardioprotective effects of nicotinamide (NAM) and alfacalcidol (1α(OH)D3), against DOX-induced cardiotoxicity. Sprague Dawley male rats received DOX (5 mg/kg, i.p.) once/week for four consecutive weeks. Treated groups received either NAM (600 mg/kg, p.o.) for 28 consecutive days or 1α(OH)D3 (0.5 ug/kg, i.p.) once/week for four consecutive weeks. DOX elicited marked cardiac tissue injury manifested by elevated serum cardiotoxicity indices, conduction and histopathological abnormalities. Both NAM and 1α(OH)D3 successfully reversed all these changes. From the mechanistic point of view, DOX provoked intense cytosolic and mitochondrial calcium (Ca2+) overload hence switching on calpain1 (CPN1) and mitochondrial-mediated apoptotic cascades as confirmed by upregulating Bax and caspase-3 while downregulating Bcl-2 expression. DOX also disrupted cardiac bioenergetics as evidenced by adenosine triphosphate (ATP) depletion and a declined ATP/ADP ratio. Moreover, DOX upregulated the Ca2+ sensor; calmodulin kinase II gamma (CaMKII-δ) which further contributed to cardiac damage. Interestingly, co-treatment with either NAM or 1α(OH)D3 reversed all DOX associated abnormalities by preserving Ca2+ homeostasis, replenishing ATP stores and obstructing apoptotic events. Additionally, DOX prompted nuclear factor kappa B (NF-κB) dependent inflammatory responses and subsequently upregulated interleukin-6 (IL-6) expression. Co-treatment with NAM or 1α(OH)D3 effectively obstructed these inflammatory signals. Remarkably, NAM showed superior beneficial cardioprotective properties over 1α(OH)D3. Both NAM and 1α(OH)D3 efficiently attenuated DOX-cardiomyopathy mainly via preserving Ca2+ homeostasis and diminishing apoptotic and inflammatory pathways. NAM definitely exhibited effective cardioprotective capabilities over 1α(OH)D3.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | | | - Amany I El-Brairy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
13
|
Sodium nitrate co-supplementation does not exacerbate low dose metronomic doxorubicin-induced cachexia in healthy mice. Sci Rep 2020; 10:15044. [PMID: 32973229 PMCID: PMC7518269 DOI: 10.1038/s41598-020-71974-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to determine whether (1) sodium nitrate (SN) treatment progressed or alleviated doxorubicin (DOX)-induced cachexia and muscle wasting; and (2) if a more-clinically relevant low-dose metronomic (LDM) DOX treatment regimen compared to the high dosage bolus commonly used in animal research, was sufficient to induce cachexia in mice. Six-week old male Balb/C mice (n = 16) were treated with three intraperitoneal injections of either vehicle (0.9% NaCl; VEH) or DOX (4 mg/kg) over one week. To test the hypothesis that sodium nitrate treatment could protect against DOX-induced symptomology, a group of mice (n = 8) were treated with 1 mM NaNO3 in drinking water during DOX (4 mg/kg) treatment (DOX + SN). Body composition indices were assessed using echoMRI scanning, whilst physical and metabolic activity were assessed via indirect calorimetry, before and after the treatment regimen. Skeletal and cardiac muscles were excised to investigate histological and molecular parameters. LDM DOX treatment induced cachexia with significant impacts on both body and lean mass, and fatigue/malaise (i.e. it reduced voluntary wheel running and energy expenditure) that was associated with oxidative/nitrostative stress sufficient to induce the molecular cytotoxic stress regulator, nuclear factor erythroid-2-related factor 2 (NRF-2). SN co-treatment afforded no therapeutic potential, nor did it promote the wasting of lean tissue. Our data re-affirm a cardioprotective effect for SN against DOX-induced collagen deposition. In our mouse model, SN protected against LDM DOX-induced cardiac fibrosis but had no effect on cachexia at the conclusion of the regimen.
Collapse
|
14
|
Mohsin AA, Thompson J, Hu Y, Hollander J, Lesnefsky EJ, Chen Q. Endoplasmic reticulum stress-induced complex I defect: Central role of calcium overload. Arch Biochem Biophys 2020; 683:108299. [PMID: 32061585 DOI: 10.1016/j.abb.2020.108299] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND ER (endoplasmic reticulum) stress leads to decreased complex I activity in cardiac mitochondria. The aim of the current study is to explore the potential mechanisms by which ER stress leads to the complex I defect. ER stress contributes to intracellular calcium overload and oxidative stress that are two key factors to induce mitochondrial dysfunction. Since oxidative stress is often accompanied by intracellular calcium overload during ER stress in vivo, the role of oxidative stress and calcium overload in mitochondrial dysfunction was studied using in vitro models. ER stress results in intracellular calcium overload that favors activation of calcium-dependent calpains. The contribution of mitochondrial calpain activation in ER stress-mediated complex I damage was studied. METHODS Thapsigargin (THAP) was used to induce acute ER stress in H9c2 cells and C57BL/6 mice. Exogenous calcium (25 μM) and H2O2 (100 μM) were used to induce modest calcium overload and oxidative stress in isolated mitochondria. Calpain small subunit 1 (CAPNS1) is essential to maintain calpain 1 and calpain 2 (CPN1/2) activities. Deletion of CAPNS1 eliminates the activities of CPN1/2. Wild type and cardiac-specific CAPNS1 deletion mice were used to explore the role of CPN1/2 activation in calcium-induced mitochondrial damage. RESULTS In isolated mitochondria, exogenous calcium but not H2O2 treatment led to decreased oxidative phosphorylation, supporting that calcium overload contributes a key role in the mitochondrial damage. THAP treatment of H9c2 cells decreased respiration selectively with complex I substrates. THAP treatment activated cytosolic and mitochondrial CPN1/2 in C57BL/6 mice and led to degradation of complex I subunits including NDUFS7. Calcium treatment decreased NDUFS7 content in wild type but not in CAPNS1 knockout mice. CONCLUSION ER stress-mediated activation of mitochondria-localized CPN1/2 contributes to complex I damage by cleaving component subunits.
Collapse
Affiliation(s)
- Ahmed A Mohsin
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Radiological Techniques Department, Health and Medical Technology College-Baghdad, Middle Technical University (MTU), Iraq
| | - Jeremy Thompson
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - John Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, 25606, USA; Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, 25606, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Qun Chen
- Pauley Heart Center, Division of Cardiology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
15
|
Effects of doxorubicin on the heart: From molecular mechanisms to intervention strategies. Eur J Pharmacol 2019; 866:172818. [PMID: 31758940 DOI: 10.1016/j.ejphar.2019.172818] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
Cancer remains a major public health problem worldwide and was responsible for 9.6 million deaths in 2018. Oncologic treatments such as doxorubicin (Dox) and trastuzumab (Trz) are chemotherapeutic drugs used to treat several types of cancer, including solid and non-solid malignancies. Although these drugs have a significant impact on the reduction in mortality of cancer patients, this treatment has an adverse effect on the cardiovascular system. The mechanisms associated with Dox-induced cardiotoxicity involve inflammation, oxidative stress, apoptosis, mitochondria impairment and dysregulation of autophagy. Unfortunately, Trz, an effective anti-cancer drug, can potentiate these adverse effects. Trz is a recombinant DNA-derived humanized monoclonal antibody against human epidermal growth factor receptor 2 (HER2). Despite its high anti-cancer efficacy, Trz also has a cardiotoxic effect. Unlike Dox, this adverse effect of Trz on the heart is mostly reversible. A strategy to prevent this undesirable effect is urgently needed. Currently, several pharmacological interventions have shown promising results that might effectively attenuate Dox- and Trz-induced cardiac dysfunction. In this review, reports from in vitro, in vivo and clinical studies pertinent to the underlying mechanisms involved in chemotherapy-induced cardiotoxicity, are comprehensively summarized and discussed. In addition, the potential pharmacological interventions to prevent these cardiotoxic effects are described.
Collapse
|