1
|
Dodlek Šarkanj I, Vahčić N, Markov K, Haramija J, Uršulin-Trstenjak N, Hajdek K, Sulyok M, Krska R, Šarkanj B. First Report on Mycotoxin Contamination of Hops ( Humulus lupulus L.). Toxins (Basel) 2024; 16:293. [PMID: 39057933 PMCID: PMC11281705 DOI: 10.3390/toxins16070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The presence of mycotoxins and other toxic metabolites in hops (Humulus lupulus L.) was assessed for the first time. In total, 62 hop samples were sampled in craft breweries, and analyzed by a multi-toxin LS-MS/MS method. The study collected samples from craft breweries in all of the Croatian counties and statistically compared the results. Based on previous reports on Alternaria spp. and Fusarium spp. contamination of hops, the study confirmed the contamination of hops with these toxins. Alternaria toxins, particularly tenuazonic acid, were found in all tested samples, while Fusarium toxins, including deoxynivalenol, were present in 98% of samples. However, no Aspergillus or Penicillium metabolites were detected, indicating proper storage conditions. In addition to the Alternaria and Fusarium toxins, abscisic acid, a drought stress indicator in hops, was also detected, as well as several unspecific metabolites. The findings suggest the need for monitoring, risk assessment, and potential regulation of Alternaria and Fusarium toxins in hops to ensure the safety of hop usage in the brewing and pharmaceutical industries. Also, four local wild varieties were tested, with similar results to the commercial varieties for toxin contamination, but the statistically significant regional differences in toxin occurrence highlight the importance and need for targeted monitoring.
Collapse
Affiliation(s)
- Ivana Dodlek Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.D.Š.); (N.U.-T.)
| | - Nada Vahčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia; (N.V.); (K.M.)
| | - Ksenija Markov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia; (N.V.); (K.M.)
| | - Josip Haramija
- Koprivnica Branch, State Inspectorate, Florijanski trg 18, HR-48000, Koprivnica, Croatia;
| | - Natalija Uršulin-Trstenjak
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.D.Š.); (N.U.-T.)
| | - Krunoslav Hajdek
- Department of Packaging, Recycling and Environmental Protection, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia;
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, AT-3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, AT-3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK
| | - Bojan Šarkanj
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, HR-48000 Koprivnica, Croatia; (I.D.Š.); (N.U.-T.)
| |
Collapse
|
2
|
Penagos-Tabares F, Khiaosa-Ard R, Faas J, Steininger F, Papst F, Egger-Danner C, Zebeli Q. A 2-year study reveals implications of feeding management and exposure to mycotoxins on udder health, performance, and fertility in dairy herds. J Dairy Sci 2024; 107:1124-1142. [PMID: 37709039 DOI: 10.3168/jds.2023-23476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
We recently reported the ubiquitous occurrence of mycotoxins and their secondary metabolites in dairy rations and a substantial variation in the feeding management among Austrian dairy farms. The present study aimed to characterize to which extent these factors contribute to the fertility, udder health traits, and performance of dairy herds. During 2019 and 2020, we surveyed 100 dairy farms, visiting each farm 2 times and collecting data and feed samples. Data collection involved information on the main feed ingredients, nutrient composition, and the levels of mycotoxin and other metabolites in the diet. The annual fertility and milk data of the herds were obtained from the national reporting agency. Calving interval was the target criterion for fertility performance, whereas the percentage of primiparous and multiparous cows in the herd with somatic cell counts above 200,000 cells/mL was the criterion for impaired udder health. For each criterion, herds were classified into 3 groups: high/long, mid, and low/short, with the cut-off corresponding to the <25th and >75th percentiles and the rest of the data, respectively. Accordingly, for the calving interval, the cut-offs for the long and short groups were ≥400 and ≤380 d, for the udder health in primiparous cows were ≥20% and ≤8% of the herd, and for the udder health in multiparous cows were ≥35% and ≤20% of the herd, respectively. Quantitative approaches were further performed to define potential risk factors in the herds. The high somatic cell count group had higher dietary exposure to enniatins (2.8 vs. 1.62 mg/cow per d), deoxynivalenol (4.91 vs. 2.3 mg/cow per d), culmorin (9.48 vs. 5.72 mg/cow per d), beauvericin (0.32 vs. 0.18 mg/cow per d), and siccanol (13.3 vs. 5.15 mg/cow per d), and total Fusarium metabolites (42.8 vs. 23.2 mg/cow per d) and used more corn silage in the ration (26.9% vs. 17.3% diet DM) compared with the low counterparts. Beauvericin was the most substantial contributing variable among the Fusarium metabolites, as indicated by logistic regression and modeling analyses. Logistic analysis indicated that herds with high proportions of cows with milk fat-to-protein ratio >1.5 had an increased odds for a longer calving interval, which was found to be significant for primiparous cows (odds ratio = 5.5, 95% confidence interval = 1.65-21.7). As well, herds with high proportions of multiparous cows showing levels of milk urea nitrogen >30 mg/dL had an increased odds for longer calving intervals (odds ratio = 2.96, 95% confidence interval = 1.22-7.87). In conclusion, the present findings suggest that dietary contamination of Fusarium mycotoxins (especially emerging ones), likely due to increased use of corn silage in the diet, seems to be a risk factor for impairing the udder health of primiparous cows. Mismatching dietary energy and protein supply of multiparous cows contributed to reduced herd fertility performance.
Collapse
Affiliation(s)
- F Penagos-Tabares
- Unit Nutritional Physiology, Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - R Khiaosa-Ard
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - J Faas
- DSM-BIOMIN Research Center, Tulln a.d., 3430 Donau, Austria
| | - F Steininger
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - F Papst
- Institute of Technical Informatics, TU Graz/CSH Vienna, 8010 Graz, Austria
| | - C Egger-Danner
- ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
| | - Q Zebeli
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
3
|
Djouina M, Waxin C, Caboche S, Lecointe K, Steimle A, Beury D, Desai MS, Hot D, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. Low dose dietary contamination with deoxynivalenol mycotoxin exacerbates enteritis and colorectal cancer in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165722. [PMID: 37482350 DOI: 10.1016/j.scitotenv.2023.165722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The mycotoxin deoxynivalenol (DON) is a frequent contaminant of grain and cereal products worldwide. Exposure to DON can cause gastrointestinal inflammation, disturb gut barrier function, and induce gut dysbiosis in vivo under basal conditions, but little is known about the effects of DON ingestion in individuals with pre-existing gastrointestinal disease. OBJECTIVES Mice were orally exposed to 10 and 100 μg/kg bw/day of DON, corresponding to 10 to 100-fold human tolerable daily intake concentrations, and to the translation in mice of current human daily intake. The effects of DON exposure were explored under steady-state conditions, and in murine models of enteritis and colorectal cancer (CRC). RESULTS After 8 days of DON exposure, an increase of histomorphological and molecular parameters of epithelial proliferation were observed in normal mice, from the duodenum to the colon. The same exposure in a murine model of indomethacin-induced enteritis led to exacerbation of lesion development and induction of ileal cytokines. DON exposure also worsened the development of colitis-associated CRC in mice as shown by increases in endoscopic and histological colitis scores, tumor grades, and histological hyperplasia. In colon of DON-exposed mice, upstream and downstream ERK signaling genes were upregulated including Mapk1, Mapk3, Map 2k1, Map2k2 core ERK pathway effectors, and Bcl2 and Bcl2l1 antiapoptotic genes. The effects observed in the CRC model were associated with alterations in cecal microbiota taxonomic composition and metabolism of bacterial fucose and rhamnose. Strong Spearman's correlations were revealed between the relative abundance of the changed bacterial genera and CRC-related variables. DISCUSSION Ingestion of DON mycotoxin at concentrations representative of human real-world exposure worsened the development of indomethacin-induced enteritis and colitis-associated CRC in mice. Our results suggest that even at low doses, which are currently tolerated in the human diet, DON could promote the development of intestinal inflammatory diseases and CRC.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Karine Lecointe
- Inserm U1285, Univ. Lille, CHU de Lille, UMR CNRS 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Alexander Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
4
|
Hu YN, Zhan JT, Bai PR, An N, Tan JJ, Wang YZ, Zhu QF, Feng YQ. In-depth profiling of di(2-ethylhexyl) phthalate metabolic footprints in rats using click chemistry-mass spectrometry probes. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131190. [PMID: 36965353 DOI: 10.1016/j.jhazmat.2023.131190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), the most widely used plasticizers in the world, has been regarded as an endocrine disrupting chemical with serious adverse health outcomes. Accumulating evidence strongly suggests that the undesirable biological effects of DEHP are meditated by its metabolites rather than itself. However, the metabolic footprints of DEHP in vivo are still unclear. Here we developed a click chemistry-assisted mass spectrometry (CC-MS) strategy for in-depth profiling DEHP metabolites in rats. An alkyne-modified DEHP analogue (alkyne-DEHP) was synthesized as a tracer for in vivo tracing, and a pair of MS probes (4-azido-nphenylbenzamide, 4-ANPA, and its deuterated reagent d5-4-ANPA) were prepared to specifically label the alkyne-DEHP metabolites, and prominently improve their detection sensitivity and selectivity. Using the CC-MS strategy, we successfully screened 247 alkyne-DEHP metabolites from rat urine, feces, and serum, including many unrevealed metabolites, such as oxidized phthalate diester metabolites and glucuronides of phthalate monoester metabolites. The discovery of new DEHP metabolites provides additional insights for understanding the metabolism of DEHP, which may be beneficial in exploring the mechanism underlying DEHP induced-toxicity in the future.
Collapse
Affiliation(s)
- Yu-Ning Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jin-Tao Zhan
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Pei-Rong Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun-Jie Tan
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yan-Zhen Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Quan-Fei Zhu
- School of Public Health, Wuhan University, Wuhan 430071, China.
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
5
|
Modified Mycotoxins, a Still Unresolved Issue. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous microfungi on almost every agricultural commodity worldwide. After the infection of crop plants, mycotoxins are modified by plant enzymes or other fungi and often conjugated to more polar substances, like sugars. The formed—often less toxic—metabolites are stored in the vacuole in soluble form or bound to macromolecules. As these substances are usually not detected during routine analysis and no maximum limits are in force, they are called modified mycotoxins. While, in most cases, modified mycotoxins have lower intrinsic toxicity, they might be reactivated during mammalian metabolism. In particular, the polar group might be cleaved off (e.g., by intestinal bacteria), releasing the native mycotoxin. This review aims to provide an overview of the critical issues related to modified mycotoxins. The main conclusion is that analytical aspects, toxicological evaluation, and exposure assessment merit more investigation.
Collapse
|
6
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
7
|
Scarpino V, Sulyok M, Krska R, Reyneri A, Blandino M. The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging Mycotoxins and Fungal Metabolites in Maize Kernels. Toxins (Basel) 2022; 14:toxins14070448. [PMID: 35878186 PMCID: PMC9316227 DOI: 10.3390/toxins14070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.
Collapse
Affiliation(s)
- Valentina Scarpino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Amedeo Reyneri
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
- Correspondence: ; Tel.: +39-0116708895
| |
Collapse
|
8
|
Wang Y, Li J, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. Deoxynivalenol and its modified forms: key enzymes, inter-individual and interspecies differences in metabolism. Drug Metab Rev 2022; 54:331-342. [PMID: 35695207 DOI: 10.1080/03602532.2022.2088786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Deoxynivalenol (DON) and its modified forms, including DON-3-glucoside (DON-3G), pose a major agricultural and food safety issue in the world. Their metabolites are relatively well-characterized; however, their metabolizing enzymes have not been fully explored. UDP-glucuronosyltransferases, 3-O-acetyltransferase, and glutathione S-transferase are involved in the formation of DON-glucuronides, 3-acetyl-DON, and DON-glutathione, respectively. There are interindividual differences in the metabolism of these toxins, including variation with respect to sex. Furthermore, interspecies differences in DON metabolism have been revealed, including differences in the major metabolites of DON, the role of de-acetylation, and the hydrolysis of DON-3G. In this review, we summarized the major enzymes involved in metabolizing DON to its modified forms, focusing on the differences in metabolism of DON and its modified forms between individuals and species. This work provides important insight into the toxicity of DON and its derivatives in humans and animals, and provides scientific basis for the development of safer and more efficient biological detoxification methods.
Collapse
Affiliation(s)
- Yating Wang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic.,Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
9
|
Müller L, Keuter L, Bücksteeg D, Uebel T, Wilken M, Schürmann L, Behrens M, Humpf HU, Esselen M. Metabolic conjugation reduces in vitro toxicity of the flavonoid nevadensin. Food Chem Toxicol 2022; 164:113006. [PMID: 35436549 DOI: 10.1016/j.fct.2022.113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The present study focuses on the association between metabolic capacity and toxicity of the natural occurring flavonoid nevadensin in vitro. Human colon (HT29), liver (HepG2) and bone marrow (KG1) carcinoma cells were used and strong cell line dependent differences in toxic effect strength were found. HepG2 and KG1 cells were more sensitive against nevadensin treatment in comparison to HT29 cells. High resolution mass spectrometry experiments showed that nevadensin is rapidly glucuronidated in HT29 cells, whereas KG1 cells do not metabolize nevadensin, thus glucuronidation was supposed to be a crucial metabolic pathway in vitro. To proof this suggestion, nevadensin glucuronides were isolated from pig liver microsomes und structurally elucidated via NMR spectroscopy. In HepG2 cells a cellular enrichment of nevadensin itself as well as nevadensin-7-O-glucuronide was determined by tandem mass spectrometry. A proteomic screening of uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) in HT29 and HepG2 cells provided first hints that the isoforms UGT1A6 and UGT1A1 are responsible for nevadensin glucuronidation. Additionally, nevadensin was found to be a potent SULT inhibitor in HepG2 cells. In sum, the present study clearly illustrates the importance of obtaining detailed information about metabolic competence of cell lines which should be considered in the evaluation of toxic endpoints.
Collapse
Affiliation(s)
- Lena Müller
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Lucas Keuter
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - David Bücksteeg
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Thomas Uebel
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Markus Wilken
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Lina Schürmann
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany
| | - Melanie Esselen
- University of Münster, Institute of Food Chemistry, Corrensstraße 45, 48149, Münster, Germany.
| |
Collapse
|
10
|
Wachowska U, Sulyok M, Wiwart M, Suchowilska E, Kandler W, Krska R. The application of antagonistic yeasts and bacteria: An assessment of in vivo and under field conditions pattern of Fusarium mycotoxins in winter wheat grain. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Rojas EC, Jensen B, Jørgensen HJL, Latz MAC, Esteban P, Collinge DB. The Fungal Endophyte Penicillium olsonii ML37 Reduces Fusarium Head Blight by Local Induced Resistance in Wheat Spikes. J Fungi (Basel) 2022; 8:jof8040345. [PMID: 35448576 PMCID: PMC9025337 DOI: 10.3390/jof8040345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The fungal endophyte Penicillium olsonii ML37 is a biocontrol agent of Fusarium head blight in wheat (caused by Fusarium graminearum), which has shown a limited direct inhibition of fungal growth in vitro. We used RNA-seq and LC-MS/MS analyses to elucidate metabolic interactions of the three-way system Penicillium–wheat–Fusarium in greenhouse experiments. We demonstrated that P. olsonii ML37 colonises wheat spikes and transiently activates plant defence mechanisms, as pretreated spikes show a faster and stronger expression of the defence metabolism during the first 24 h after pathogen inoculation. This effect was transient and the expression of the same genes was lower in the pathogen-infected spikes than in those infected by P. olsonii alone. This response to the endophyte includes the transcriptional activation of several WRKY transcription factors. This early activation is associated with a reduction in FHB symptoms and significantly lower levels of the F. graminearum metabolites 15-acetyl-DON and culmorin. An increase in the Penicillium-associated metabolite asperphanamate confirms colonisation by the endophyte. Our results suggest that the mode of action used by P. olsonii ML37 is via a local defence activation in wheat spikes, and that this fungus has potential as a novel biological alternative in wheat disease control.
Collapse
Affiliation(s)
- Edward C. Rojas
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (B.J.); (P.E.)
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (M.A.C.L.)
- Chr Hansen A/S, Højbakkegård Alle 30, 2630 Tåstrup, Denmark
- Correspondence: (E.C.R.); (D.B.C.); Tel.: +45-353-33356 (D.B.C.)
| | - Birgit Jensen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (B.J.); (P.E.)
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (M.A.C.L.)
| | - Hans J. L. Jørgensen
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (M.A.C.L.)
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
| | - Meike A. C. Latz
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (M.A.C.L.)
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark
- SciLifeLab, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Pilar Esteban
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (B.J.); (P.E.)
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (M.A.C.L.)
- Department of Agricultural, Food and Agro-Environmental Sciences, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - David B. Collinge
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (B.J.); (P.E.)
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Copenhagen, Denmark; (H.J.L.J.); (M.A.C.L.)
- Correspondence: (E.C.R.); (D.B.C.); Tel.: +45-353-33356 (D.B.C.)
| |
Collapse
|
12
|
Ezekiel CN, Abia WA, Braun D, Šarkanj B, Ayeni KI, Oyedele OA, Michael-Chikezie EC, Ezekiel VC, Mark BN, Ahuchaogu CP, Krska R, Sulyok M, Turner PC, Warth B. Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. ENVIRONMENT INTERNATIONAL 2022; 158:106996. [PMID: 34991256 DOI: 10.1016/j.envint.2021.106996] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
A multi-specimen, multi-mycotoxin approach involving ultra-sensitive LC-MS/MS analysis of breast milk, complementary food and urine was applied to examine mycotoxin co-exposure in 65 infants, aged 1-18 months, in Ogun state, Nigeria. Aflatoxin M1 was detected in breast milk (4/22 (18%)), while six other classes of mycotoxins were quantified; including dihydrocitrinone (6/22 (27%); range: 14.0-59.7 ng/L) and sterigmatocystin (1/22 (5%); 1.2 ng/L) detected for the first time. Seven distinct classes of mycotoxins including aflatoxins (9/42 (21%); range: 1.0-16.2 µg/kg) and fumonisins (12/42 (29%); range: 7.9-194 µg/kg) contaminated complementary food. Mycotoxins covering seven distinct classes with diverse structures and modes of action were detected in 64/65 (99%) of the urine samples, demonstrating ubiquitous exposure. Two aflatoxin metabolites (AFM1 and AFQ1) and FB1 were detected in 6/65 (9%), 44/65 (68%) and 17/65 (26%) of urine samples, respectively. Mixtures of mycotoxin classes were common, including 22/22 (100%), 14/42 (33%) and 56/65 (86%) samples having 2-6, 2-4, or 2-6 mycotoxins present, for breast milk, complementary food and urine, respectively. Aflatoxin and/or fumonisin was detected in 4/22 (18%), 12/42 (29%) and 46/65 (71%) for breast milk, complimentary foods and urine, respectively. Furthermore, the detection frequency, median concentrations and occurrence of mixtures were typically greater in urine of non-exclusively breastfed compared to exclusively breastfed infants. The study provides novel insights into mycotoxin co-exposures in early-life. Albeit a small sample set, it highlights transition to higher levels of infant mycotoxin exposure as complementary foods are introduced, providing impetus to mitigate during this critical early-life period and encourage breastfeeding.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.
| | - Wilfred A Abia
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Queen's University Belfast, School of Biological Sciences, Institute for Global Food Security, University Road, Belfast BT7 1NN, Northern Ireland, UK; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, A-1090 Vienna, Austria
| | - Bojan Šarkanj
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Department of Food Technology, University North, Center Koprivnica, Trg dr. Zarka Dolinara 1, HR, 48000 Koprivnica, Croatia
| | - Kolawole I Ayeni
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | | | - Emmanuel C Michael-Chikezie
- Clifford University, Owerrinta (Ihie Campus), Abia State, Nigeria; Benjamin Carson (Snr.) School of Medicine, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | | | - Beatrice N Mark
- Department of Community Health, Babcock University Teaching Hospital, Ilishan Remo, Ogun State, Nigeria
| | - Chinonso P Ahuchaogu
- Department of Clinical Sciences, Babcock University Teaching Hospital, Ilishan Remo, Ogun State, Nigeria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria; Queen's University Belfast, School of Biological Sciences, Institute for Global Food Security, University Road, Belfast BT7 1NN, Northern Ireland, UK
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, A-1090 Vienna, Austria.
| |
Collapse
|
13
|
Braun D, Abia WA, Šarkanj B, Sulyok M, Waldhoer T, Erber AC, Krska R, Turner PC, Marko D, Ezekiel CN, Warth B. Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine. CHEMOSPHERE 2022; 287:132226. [PMID: 34826919 DOI: 10.1016/j.chemosphere.2021.132226] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Exposure to food and environmental contaminants is a global environmental health issue. In this study, innovative LC-MS/MS approaches were applied to investigate mycotoxin co-exposure in mother-infant pairs (n = 23) by analyzing matched plate-ready food, breast milk and urine samples of mothers and their exclusively breastfed infants. The study revealed frequent co-occurrence of two to five mycotoxins. Regulated (e.g. aflatoxins, deoxynivalenol and ochratoxin A) and emerging mycotoxins (e.g. alternariol monomethyl ether and beauvericin) were frequently detected (3 %-89 % and 45 %-100 %), in at least one specimen. In addition, a moderate association of ochratoxin A in milk to urine of mothers (r = 0.47; p = 0.003) and infants (r = 0.52; p = 0.019) but no other significant correlations were found. Average concentration levels in food mostly did not exceed European maximum residue limits, and intake estimates demonstrated exposure below tolerable daily intake values. Infants were exposed to significantly lower toxin levels compared to their mothers, indicating the protective effect of breastfeeding. However, the transfer into milk and urine and the resulting chronic low-dose exposure warrant further monitoring. In the future, occurrence of mycotoxin-mixtures, and their combined toxicological effects need to be comprehensively considered and implemented in risk management strategies. These should aim to minimize early-life exposure in critical developmental stages.
Collapse
Affiliation(s)
- Dominik Braun
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Wilfred A Abia
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Bojan Šarkanj
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Department of Food Technology, University Centre Koprivnica, University North, Trg dr. Žarka Dolinara 1, HR-48000, Koprivnica, Croatia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria
| | - Thomas Waldhoer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Austria
| | - Astrid C Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Austria; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, New Richards Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LG, UK
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, University Road, Belfast, BT7 1NN, Northern Ireland, United Kingdom
| | - Paul C Turner
- MIAEH, School of Public Health, University of Maryland, College Park, MD, 20742, USA
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Chibundu N Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430, Tulln, Austria; Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Liu G, Zuo DY, Yang P, He WJ, Yang Z, Zhang JB, Wu AB, Yi SY, Li HP, Huang T, Liao YC. A Novel Deoxynivalenol-Activated Wheat Arl6ip4 Gene Encodes an Antifungal Peptide with Deoxynivalenol Affinity and Protects Plants against Fusarium Pathogens and Mycotoxins. J Fungi (Basel) 2021; 7:jof7110941. [PMID: 34829228 PMCID: PMC8618893 DOI: 10.3390/jof7110941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium–wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium–wheat interactions.
Collapse
Affiliation(s)
- Gang Liu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Yun Zuo
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Jie He
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ai-Bo Wu
- Key Laboratory of Food Safety Research Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Shu-Yuan Yi
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (T.H.); (Y.-C.L.)
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (T.H.); (Y.-C.L.)
| |
Collapse
|
15
|
Sá SVMD, Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Emerging mycotoxins in infant and children foods: A review. Crit Rev Food Sci Nutr 2021; 63:1707-1721. [PMID: 34486889 DOI: 10.1080/10408398.2021.1967282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A proper nutrition is crucial for children's healthy development. Regardless of the usual recommendations to follow a varied diet, some foods can be a source of toxic natural contaminants such as mycotoxins, potent secondary metabolites produced by filamentous fungi. In addition to the most well-known mycotoxins, many of which are subject to tight regulation regarding the maximum levels allowed in different types of food, there is a large group of mycotoxins, the so-called emerging mycotoxins, about which less knowledge has already been acquired, which have gradually been the target of interest from the scientific community due to their prevalence in most foodstuffs, particularly in cereals and cereal-based products. Alternariol and his metabolite alternariol mono-methyl ether, beauvericin, citrinin, culmorin, enniatins, ergot alkaloids, fusaproliferin, kojic acid, moniliformin, sterigmatocystin, tentoxin and tenuazonic acid are the most representative of them. The current review gathered the information of the last ten years that have been published on the levels of emerging mycotoxins in food products dedicated for infants and children. European Union countries are responsible for most of the reported studies, which showed levels that can reach hundreds of mg/kg.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carolina Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Drug-Exposome Interactions: The Next Frontier in Precision Medicine. Trends Pharmacol Sci 2021; 41:994-1005. [PMID: 33186555 DOI: 10.1016/j.tips.2020.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
Drug-drug interactions are a known concern during medical treatment. However, in addition to therapeutic drugs, humans are exposed to thousands of environment- and food-related chemicals on a daily basis. The exposome (i.e.,the total measure of environmental factors on the human body) is an emerging concept in the field of environmental health. Many chemicals have the potential to interact with drugs and subsequently influence health outcomes. To date, this concept has not been systematicallyinvestigated. Nevertheless, adverse effects have been observed betweenenvironmental, dietary, and microbiome-derived xenobiotics and a number of drugs, including chemotherapeutics. Recent technological advances in mass spectrometry-based metabolomics and the establishment of omic-scale exposure assessment will enable a broader and systemic investigation of these interactions. As a complement to pharmacogenomics and pharmacometabolomics, research ondrug-exposome interactions holds immense potential to elevate precision medicineto an unprecedented level.
Collapse
|
17
|
Scarpino V, Vanara F, Sulyok M, Krska R, Blandino M. Fate of regulated, masked, emerging mycotoxins and secondary fungal metabolites during different large-scale maize dry-milling processes. Food Res Int 2021; 140:109861. [PMID: 33648179 DOI: 10.1016/j.foodres.2020.109861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The use of maize in the food chain could be mainly limited due to its contamination by mycotoxins. As scarce information is available, the current study is aimed at collecting new data on the co-occurrence and the fate of the most frequent masked, modified and emerging mycotoxins and other second fungal metabolites in maize food products and by-products. Three maize lots, obtained in different growing seasons, were processed using two different degermination processes, a dry-degermination system or a tempering-degermination one, in order to compare the interaction between mycotoxins and the dry-milling management system. Whole grain before and after cleaning, and all the products and the by-products were sampled twice for each lot and were subjected to a multi-mycotoxin LC-MS/MS analysis. More than 30 mycotoxins and other fungal metabolites, including masked or modified forms, co-occurred in all the maize milling fractions. Grain cleaning reduced all the detected fungal metabolites by 1.2-2 times, compared to the grain before cleaning. Animal feed flour showed the highest content of almost all the mycotoxins and fungal metabolites, with a consequent negative impact on animal health. Considering that for all the mycotoxins and fungal metabolites an inverse relationship with particle size was observed, flaking grits represented the healthiest maize products with the least contamination level, while the abatement was always lower for maize flour. Furthermore, the metabolites were variably redistributed in the maize fractions. The total aflatoxins, kojic acid, deoxynivalenol and its modified form, culmorin, and its associated forms, butenolide, fusaproliferin, fusaric acid, fusarinolic acid and, in some cases, zearalenone and its modified forms, and fusarin C were found to be concentrated significantly in the germ. Some of them also had a greater permanence in the maize food fractions and a weaker decontamination, both of which point to a higher risk of exposure for the end consumers. The co-occurrence of a such a high number of mycotoxins and fungal metabolites and their different fates during the dry-milling process have never been described before.
Collapse
Affiliation(s)
- Valentina Scarpino
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Francesca Vanara
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna (BOKU), Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), Konrad-Lorenz-Str. 20, Tulln 3430, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), Konrad-Lorenz-Str. 20, Tulln 3430, Austria
| | - Massimo Blandino
- University of Turin, Department of Agricultural, Forest and Food Sciences, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
18
|
Laraba I, McCormick SP, Vaughan MM, Geiser DM, O’Donnell K. Phylogenetic diversity, trichothecene potential, and pathogenicity within Fusarium sambucinum species complex. PLoS One 2021; 16:e0245037. [PMID: 33434214 PMCID: PMC7802971 DOI: 10.1371/journal.pone.0245037] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 01/01/2023] Open
Abstract
The Fusarium sambucinum species complex (FSAMSC) is one of the most taxonomically challenging groups of fusaria, comprising prominent mycotoxigenic plant pathogens and other species with various lifestyles. Among toxins produced by members of the FSAMSC, trichothecenes pose the most significant threat to public health. Herein a global collection of 171 strains, originating from diverse hosts or substrates, were selected to represent FSAMSC diversity. This strain collection was used to assess their species diversity, evaluate their potential to produce trichothecenes, and cause disease on wheat. Maximum likelihood and Bayesian analyses of a combined 3-gene dataset used to infer evolutionary relationships revealed that the 171 strains originally received as 48 species represent 74 genealogically exclusive phylogenetically distinct species distributed among six strongly supported clades: Brachygibbosum, Graminearum, Longipes, Novel, Sambucinum, and Sporotrichioides. Most of the strains produced trichothecenes in vitro but varied in type, indicating that the six clades correspond to type A, type B, or both types of trichothecene-producing lineages. Furthermore, five strains representing two putative novel species within the Sambucinum Clade produced two newly discovered type A trichothecenes, 15-keto NX-2 and 15-keto NX-3. Strains of the two putatively novel species together with members of the Graminearum Clade were aggressive toward wheat when tested for pathogenicity on heads of the susceptible cultivar Apogee. In planta, the Graminearum Clade strains produced nivalenol or deoxynivalenol and the aggressive Sambucinum Clade strains synthesized NX-3 and 15-keto NX-3. Other strains within the Brachygibbosum, Longipes, Novel, Sambucinum, and Sporotrichioides Clades were nonpathogenic or could infect the inoculated floret without spreading within the head. Moreover, most of these strains did not produce any toxin in the inoculated spikelets. These data highlight aggressiveness toward wheat appears to be influenced by the type of toxin produced and that it is not limited to members of the Graminearum Clade.
Collapse
Affiliation(s)
- Imane Laraba
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Susan P. McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - Martha M. Vaughan
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania, PA, United States of America
| | - Kerry O’Donnell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL, United States of America
| |
Collapse
|
19
|
Holanda DM, Kim SW. Efficacy of Mycotoxin Detoxifiers on Health and Growth of Newly-Weaned Pigs under Chronic Dietary Challenge of Deoxynivalenol. Toxins (Basel) 2020; 12:E311. [PMID: 32397551 PMCID: PMC7290511 DOI: 10.3390/toxins12050311] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The efficacy of yeast-based mycotoxin detoxifiers on health and growth performance of newly-weaned pigs (27-d-old) fed diets naturally contaminated with deoxynivalenol was investigated. Sixty pigs were individually assigned to five treatments for 34 d: NC (negative control, 1.2 mg/kg of deoxynivalenol); PC (positive control, 3.2 mg/kg of deoxynivalenol); CYC (PC + clay/yeast culture-based product, 0.2%); CYE (PC + clay/yeast cell wall/plant extracts/antioxidants-based product, 0.2%); and CYB (PC + clay/inactivated yeast/botanicals/antioxidants-based product, 0.2%). Blood and jejunal mucosa were sampled, and data were analyzed using Proc Mixed of SAS with pre-planned contrasts. Deoxynivalenol reduced the average daily gain (ADG) in phase 3. Pigs fed CYC had greater overall ADG, average daily feed intake during phase 3, and gain to feed ratio during phase 2 than PC. At d 14, deoxynivalenol reduced blood urea nitrogen/creatinine and tended to reduce blood urea nitrogen. Pigs fed CYB tended to have greater aspartate aminotransferase than PC. At d 34, pigs fed CYC and CYB tended to have lower serum creatine phosphokinase than PC. Pigs fed CYE had lower blood urea nitrogen/creatinine than PC. In jejunal mucosa, deoxynivalenol tended to increase malondialdehydes and decrease glutathione. Pigs fed CYE and CYB had lower malondialdehydes, pigs fed CYB had greater glutathione and tended to have lower immunoglobulin A than PC. Pigs fed CYC and CYE tended to have lower interleukin 8 than PC. In summary, deoxynivalenol challenge (1.2 vs. 3.2 mg/kg) mildly compromised growth performance and increased the oxidative stress of pigs. Mycotoxin detoxifiers could partially overcome deoxynivalenol toxicity enhancing liver health, whereas CYE and CYB reduced oxidative stress, and CYC and CYB reduced immune activation. In conclusion, yeast-based detoxifiers with functional components as clay/inactivated yeast/botanicals/antioxidants had increased detoxifying properties in newly-weaned pigs challenged with deoxynivalenol, potentially by enhancing adsorbability, immune function, gut health, and reducing oxidative stress.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
20
|
Flasch M, Bueschl C, Woelflingseder L, Schwartz-Zimmermann HE, Adam G, Schuhmacher R, Marko D, Warth B. Stable Isotope-Assisted Metabolomics for Deciphering Xenobiotic Metabolism in Mammalian Cell Culture. ACS Chem Biol 2020; 15:970-981. [PMID: 32167285 PMCID: PMC7171601 DOI: 10.1021/acschembio.9b01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Xenobiotics are ubiquitous in the environment and modified
in the human body by phase I and II metabolism. Liquid chromatography
coupled to high resolution mass spectrometry is a powerful tool to
investigate these biotransformation products. We present a workflow
based on stable isotope-assisted metabolomics and the bioinformatics
tool MetExtract II for deciphering xenobiotic metabolites produced
by human cells. Its potential was demonstrated by the investigation
of the metabolism of deoxynivalenol (DON), an abundant food contaminant,
in a liver carcinoma cell line (HepG2) and a model for colon carcinoma
(HT29). Detected known metabolites included DON-3-sulfate, DON-10-sulfonate
2, and DON-10-glutathione as well as DON-cysteine. Conjugation with
amino acids and an antibiotic was confirmed for the first time. The
approach allows the untargeted elucidation of human xenobiotic products
in tissue culture. It may be applied to other fields of research including
drug metabolism, personalized medicine, exposome research, and systems
biology to better understand the relevance of in vitro experiments.
Collapse
Affiliation(s)
- Mira Flasch
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
21
|
Spanic V, Katanic Z, Sulyok M, Krska R, Puskas K, Vida G, Drezner G, Šarkanj B. Multiple Fungal Metabolites Including Mycotoxins in Naturally Infected and Fusarium-Inoculated Wheat Samples. Microorganisms 2020; 8:E578. [PMID: 32316403 PMCID: PMC7232504 DOI: 10.3390/microorganisms8040578] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
In this study, the occurrence of multiple fungal metabolites including mycotoxins was determined in four different winter wheat varieties in a field experiment in Croatia. One group was naturally infected, while the second group was inoculated with a Fusarium graminearum and F. culmorum mixture to simulate a worst-case infection scenario. Data on the multiple fungal metabolites including mycotoxins were acquired with liquid chromatography with mass spectrometry (LC-MS/MS) multi-(myco)toxin method. In total, 36 different fungal metabolites were quantified in this study: the Fusarium mycotoxins deoxynivalenol (DON), DON-3-glucoside (D3G), 3-acetyldeoxynivalenol (3-ADON), culmorin (CULM), 15-hydroxyculmorin, 5-hydroxyculmorin, aurofusarin, rubrofusarin, enniatin (Enn) A, Enn A1, Enn B, Enn B1, Enn B2, Enn B3, fumonisin B1, fumonisin B2, chrysogin, zearalenone (ZEN), moniliformin (MON), nivalenol (NIV), siccanol, equisetin, beauvericin (BEA), and antibiotic Y; the Alternaria mycotoxins alternariol, alternariolmethylether, altersetin, infectopyron, tentoxin, tenuazonic acid; the Aspergillus mycotoxin kojic acid; unspecific metabolites butenolid, brevianamid F, cyclo(L-Pro-L-Tyr), cyclo(L-Pro-L-Val), and tryptophol. The most abundant mycotoxins in the inoculated and naturally contaminated samples, respectively, were found to occur at the following average concentrations: DON (19,122/1504 µg/kg), CULM (6109/1010 µg/kg), 15-hydroxyculmorin (56,022/1301 µg/kg), 5-hydroxyculmorin (21,219/863 µg/kg), aurofusarin (43,496/1266 µg/kg). Compared to naturally-infected samples, Fusarium inoculations at the flowering stage increased the concentrations of all Fusarium mycotoxins, except enniatins and siccanol in Ficko, the Aspergillus metabolite kojic acid, the Alternaria mycotoxin altersetin, and unspecific metabolites brevianamid F, butenolid, cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val). In contrast to these findings, because of possible antagonistic actions, Fusarium inoculation decreased the concentrations of the Alternaria toxins alternariol, alternariolmethylether, infectopyron, tentoxin, tenuazonic acid, as well as the concentration of the nonspecific metabolite tryptophol.
Collapse
Affiliation(s)
- Valentina Spanic
- Agricultural Institute Osijek, Juzno predgradje 17, 31000 Osijek, Croatia;
| | - Zorana Katanic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000 Osijek, Croatia;
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
| | - Katalin Puskas
- Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; (K.P.); (G.V.)
| | - Gyula Vida
- Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, 2462 Martonvásár, Hungary; (K.P.); (G.V.)
| | - Georg Drezner
- Agricultural Institute Osijek, Juzno predgradje 17, 31000 Osijek, Croatia;
| | - Bojan Šarkanj
- Department of Food Technology, University Centre Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia;
| |
Collapse
|
22
|
Kovač T, Šarkanj B, Borišev I, Djordjevic A, Jović D, Lončarić A, Babić J, Jozinović A, Krska T, Gangl J, Ezekiel CN, Sulyok M, Krska R. Fullerol C 60(OH) 24 Nanoparticles Affect Secondary Metabolite Profile of Important Foodborne Mycotoxigenic Fungi In Vitro. Toxins (Basel) 2020; 12:toxins12040213. [PMID: 32230978 PMCID: PMC7232364 DOI: 10.3390/toxins12040213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the efforts to control mycotoxin contamination worldwide, extensive contamination has been reported to occur in food and feed. The contamination is even more intense due to climate changes and different stressors. This study examined the impact of fullerol C60(OH)24 nanoparticles (FNP) (at 0, 1, 10, 100, and 1000 ng mL-1) on the secondary metabolite profile of the most relevant foodborne mycotoxigenic fungi from genera Aspergillus, Fusarium, Alternaria and Penicillium, during growth in vitro. Fungi were grown in liquid RPMI 1640 media for 72 h at 29 °C, and metabolites were investigated by the LC-MS/MS dilute and shoot multimycotoxin method. Exposure to FNP showed great potential in decreasing the concentrations of 35 secondary metabolites; the decreases were dependent on FNP concentration and fungal genus. These results are a relevant guide for future examination of fungi-FNP interactions in environmental conditions. The aim is to establish the exact mechanism of FNP action and determine the impact such interactions have on food and feed safety.
Collapse
Affiliation(s)
- Tihomir Kovač
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Correspondence: ; Tel.: +385-31-224-341; Fax: +385-31-207-115
| | - Bojan Šarkanj
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Ivana Borišev
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Danica Jović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (I.B.); (A.D.); (D.J.)
| | - Ante Lončarić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Jurislav Babić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Antun Jozinović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (B.Š.); (A.L.); (J.B.); (A.J.)
| | - Tamara Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
| | - Johann Gangl
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria;
| | - Chibundu N. Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Department of Microbiology, Babcock University, Ilishan Remo 121103, Ogun State, Nigeria
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, 3430 Tulln, Austria; (T.K.); (C.N.E.); (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK
| |
Collapse
|
23
|
Reisinger N, Schürer-Waldheim S, Mayer E, Debevere S, Antonissen G, Sulyok M, Nagl V. Mycotoxin Occurrence in Maize Silage-A Neglected Risk for Bovine Gut Health? Toxins (Basel) 2019; 11:E577. [PMID: 31590302 PMCID: PMC6832361 DOI: 10.3390/toxins11100577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
Forages are important components of dairy cattle rations but might harbor a plethora of mycotoxins. Ruminants are considered to be less susceptible to the adverse health effects of mycotoxins, mainly because the ruminal microflora degrades certain mycotoxins. Yet, impairment of the ruminal degradation capacity or high ruminal stability of toxins can entail that the intestinal epithelium is exposed to significant mycotoxin amounts. The aims of our study were to assess i) the mycotoxin occurrence in maize silage and ii) the cytotoxicity of relevant mycotoxins on bovine intestinal cells. In total, 158 maize silage samples were collected from European dairy cattle farms. LC-MS/MS-based analysis of 61 mycotoxins revealed the presence of emerging mycotoxins (e.g. emodin, culmorin, enniatin B1, enniatin B, and beauvericin) in more than 70% of samples. Among the regulated mycotoxins, deoxynivalenol and zearalenone were most frequently detected (67.7%). Overall, 87% of maize silages contained more than five mycotoxins. Using an in vitro model with calf small intestinal epithelial cells B, the cytotoxicity of deoxynivalenol, nivalenol, fumonisin B1 and enniatin B was evaluated (0-200 µM). Absolute IC50 values varied in dependence of employed assay and were 1.2-3.6 µM, 0.8-1.0 µM, 8.6-18.3 µM, and 4.0-6.7 µM for deoxynivalenol, nivalenol, fumonisin B1, and enniatin B, respectively. Results highlight the potential relevance of mycotoxins for bovine gut health, a previously neglected target in ruminants.
Collapse
Affiliation(s)
| | | | | | - Sandra Debevere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Michael Sulyok
- Institute for Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 20, 3430 Tulln, Austria.
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| |
Collapse
|
24
|
Wipfler R, McCormick SP, Proctor R, Teresi J, Hao G, Ward T, Alexander N, Vaughan MM. Synergistic Phytotoxic Effects of Culmorin and Trichothecene Mycotoxins. Toxins (Basel) 2019; 11:E555. [PMID: 31547160 PMCID: PMC6833022 DOI: 10.3390/toxins11100555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/07/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Species of the fungus Fusarium cause Fusarium head blight (FHB) of cereal crops and contaminate grain with sesquiterpenoid mycotoxins, including culmorin (CUL) and trichothecenes. While the phytotoxicity of trichothecenes, such as deoxynivalenol (DON), and their role in virulence are well characterized, less is known about the phytotoxicity of CUL and its role in the development of FHB. Herein, we evaluated the phytotoxic effects of purified CUL and CUL-trichothecene mixtures using Chlamydomonas reinhardtii growth and Triticum aestivum (wheat) root elongation assays. By itself, CUL did not affect growth in either system. However, mixtures of CUL with DON, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, or NX-3, but not with nivalenol, inhibited growth in a synergistic manner. Synergistic phytotoxic effects of CUL and DON were also observed on multiple plant varieties and species. The severity of wheat FHB caused by 15 isolates of Fusarium graminearum was negatively correlated with the CUL/DON ratio, but positively correlated with the sum of both CUL and DON. Additionally, during the first week of infection, CUL biosynthetic genes were more highly expressed than the TRI5 trichothecene biosynthetic gene. Furthermore, genomic analysis of Fusarium species revealed that CUL and trichothecene biosynthetic genes consistently co-occur among species closely related to F. graminearum.
Collapse
Affiliation(s)
- Rebecca Wipfler
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Susan P McCormick
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Robert Proctor
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Jennifer Teresi
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Guixia Hao
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Todd Ward
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Nancy Alexander
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| | - Martha M Vaughan
- United States Department of Agriculture, Agricultural Research Services, National Center of Agricultural Utilization Research, Peoria, IL 61604, USA.
| |
Collapse
|
25
|
Novak B, Rainer V, Sulyok M, Haltrich D, Schatzmayr G, Mayer E. Twenty-Eight Fungal Secondary Metabolites Detected in Pig Feed Samples: Their Occurrence, Relevance and Cytotoxic Effects In Vitro. Toxins (Basel) 2019; 11:E537. [PMID: 31540008 PMCID: PMC6784148 DOI: 10.3390/toxins11090537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022] Open
Abstract
Feed samples are frequently contaminated by a wide range of chemically diverse natural products, which can be determined using highly sensitive analytical techniques. Next to already well-investigated mycotoxins, unknown or unregulated fungal secondary metabolites have also been found, some of which at significant concentrations. In our study, 1141 pig feed samples were analyzed for more than 800 secondary fungal metabolites using the same LC-MS/MS method and ranked according to their prevalence. Effects on the viability of the 28 most relevant were tested on an intestinal porcine epithelial cell line (IPEC-J2). The most frequently occurring compounds were determined as being cyclo-(L-Pro-L-Tyr), moniliformin, and enniatin B, followed by enniatin B1, aurofusarin, culmorin, and enniatin A1. The main mycotoxins, deoxynivalenol and zearalenone, were found only at ranks 8 and 10. Regarding cytotoxicity, apicidin, gliotoxin, bikaverin, and beauvericin led to lower IC50 values, between 0.52 and 2.43 µM, compared to deoxynivalenol (IC50 = 2.55 µM). Significant cytotoxic effects were also seen for the group of enniatins, which occurred in up to 82.2% of the feed samples. Our study gives an overall insight into the amount of fungal secondary metabolites found in pig feed samples compared to their cytotoxic effects in vitro.
Collapse
Affiliation(s)
- Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria.
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | | | | |
Collapse
|