1
|
Marques SI, Sá SI, Carmo H, Carvalho F, Silva JP. Pharmaceutical-mediated neuroimmune modulation in psychiatric/psychological adverse events. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111114. [PMID: 39111563 DOI: 10.1016/j.pnpbp.2024.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The therapeutic use of many pharmaceuticals, including small molecules and biological therapies, has been associated with the onset of psychiatric and psychological adverse events (PPAEs), posing substantial concerns to patients' health and safety. These events, which encompass mood (e.g., depression, schizophrenia, suicidal ideation) and cognitive changes (e.g., learning and memory impairment, dementia) often remain undetected until advanced stages of clinical trials or pharmacovigilance, mostly because the mechanisms underlying the onset of PPAEs remain poorly understood. In recent years, the role of neuroimmune modulation (comprising an intricate interplay between various cell types and signaling pathways) in PPAEs has garnered substantial interest. Indeed, understanding these complex interactions would substantially contribute to increase the ability to predict the potential onset of PPAEs during preclinical stages of a new drug's R&D. This review provides a comprehensive summary of the most recent advances in neuroimmune modulation-related mechanisms contributing to the onset of PPAEs and their association with specific pharmaceuticals. Reported data strongly support an association between neuroimmune modulation and the onset of PPAEs. Pharmaceuticals may target specific molecular pathways and pathway elements (e.g., cholinergic and serotonergic systems), which in turn may directly or indirectly impact the inflammatory status and the homeostasis of the brain, regulating inflammation and neuronal function. Also, modulation of the peripheral immune system by pharmaceuticals that do not permeate the blood-brain barrier (e.g., monoclonal antibodies) may alter the neuroimmunomodulatory status of the brain, leading to PPAEs. In summary, this review underscores the diverse pathways through which drugs can influence brain inflammation, shedding light on potential targeted interventions.
Collapse
Affiliation(s)
- Sandra I Marques
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Susana I Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Helena Carmo
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João P Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Jie Q, Li Y, Jing L, Chen J, Li Y. Adverse event profile differences between pralsetinib and selpercatinib: a real-world study based on the FDA adverse events reporting system. Front Pharmacol 2024; 15:1424980. [PMID: 39372206 PMCID: PMC11449734 DOI: 10.3389/fphar.2024.1424980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
Aims The objective of this study is to compare the adverse events (AEs) associated with pralsetinib and selpercatinib. Methods To evaluate the imbalance of AEs linked to pralsetinib and selpercatinib in real-world data, the reporting odds ratio (ROR) was utilized to detect potential signals of AEs. Stratified analysis was conducted to examine the differences in AEs occurring among different genders and age groups taking pralsetinib and selpercatinib. Results FAERS received 891 reports for pralsetinib and 569 reports for selpercatinib. Our analysis confirmed expected AEs like hypertension, fatigue, and elevated transaminase levels. Unexpected AEs such as rhabdomyolysis, myocardial injury and cognitive disorder were associated with pralsetinib, while selpercatinib was linked with pulmonary embolism, deep vein thrombosis, and pericardial effusion. The risk of AEs such as decreased platelet count, anemia, decreased white blood cell count, pneumonitis, asthenia, and edema caused by pralsetinib is significantly higher than that of selpercatinib. In contrast, the risk of AEs such as ascites, elevated alanine aminotransferase, and elevated aspartate aminotransferase caused by selpercatinib is significantly higher than that of pralsetinib. Women treated with pralsetinib experience higher rates of hypertension, pulmonary embolism, and blurred vision than men, who are more susceptible to rhabdomyolysis. Adults between 18 and 65 years are more likely to experience taste disorder, edema, and pulmonary embolism than individuals older than 65, who are particularly vulnerable to hypertension. For patients treated with selpercatinib, males demonstrate a significantly higher incidence of QT prolongation, urinary tract infection, and dysphagia. Individuals aged 18 to 65 are more likely to experience pyrexia and pleural effusion than those older than 65, who are more prone to hypersensitivity. Conclusion In the clinical administration of pralsetinib and selpercatinib, it is crucial to monitor the effects of gender and age on AEs and to be vigilant for unlisted AEs.
Collapse
Affiliation(s)
| | | | | | | | - Yang Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Güneş M, Aktaş K, Yalçın B, Burgazlı AY, Asilturk M, Ünşar AE, Kaya B. In vivo assessment of the toxic impact of exposure to magnetic iron oxide nanoparticles (IONPs) using Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104412. [PMID: 38492762 DOI: 10.1016/j.etap.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Iron oxide nanoparticles (IONPs) have useful properties, such as strong magnetism and compatibility with living organisms which is preferable for medical applications such as drug delivery and imaging. However, increasing use of these materials, especially in medicine, has raised concerns regarding potential risks to human health. In this study, IONPs were coated with silicon dioxide (SiO2), citric acid (CA), and polyethylenimine (PEI) to enhance their dispersion and biocompatibility. Both coated and uncoated IONPs were assessed for genotoxic effects on Drosophila melanogaster. Results showed that uncoated IONPs induced genotoxic effects, including mutations and recombinations, while the coated IONPs demonstrated reduced or negligible genotoxicity. Additionally, bioinformatic analyses highlighted potential implications of induced recombination in various cancer types, underscoring the importance of understanding nanoparticle-induced genomic instability. This study highlights the importance of nanoparticle coatings in reducing potential genotoxic effects and emphasizes the necessity for comprehensive toxicity assessments in nanomaterial research.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| | - Kemal Aktaş
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Meltem Asilturk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Ayca Erdem Ünşar
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| |
Collapse
|
4
|
Araújo AM, Marques SI, Guedes de Pinho P, Carmo H, Carvalho F, Silva JP. Identification of key neuronal mechanisms triggered by dimethyl fumarate in SH-SY5Y human neuroblastoma cells through a metabolomic approach. Arch Toxicol 2024; 98:1151-1161. [PMID: 38368281 PMCID: PMC10944387 DOI: 10.1007/s00204-024-03683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
Dimethyl fumarate (DMF) is an old drug used for psoriasis treatment that has recently been repurposed to treat relapse-remitting multiple sclerosis, mostly due to its neuro- and immunomodulatory actions. However, mining of a pharmacovigilance database recently ranked DMF as the second pharmaceutical most associated with cognitive adverse events. To our best knowledge, the signaling mechanisms underlying its therapeutic and neurotoxic outcomes remain mostly undisclosed. This work thus represents the first-hand assessment of DMF-induced metabolic changes in undifferentiated SH-SY5Y human neuroblastoma cells, through an untargeted metabolomic approach using gas chromatography-mass spectrometry (GC-MS). The endometabolome was analyzed following 24 h and 96 h of exposure to two pharmacologically relevant DMF concentrations (0.1 and 10 μM). None of these conditions significantly reduced metabolic activity (MTT reduction assay). Our data showed that 24 h-exposure to DMF at both concentrations tested mainly affected metabolic pathways involved in mitochondrial activity (e.g., citric acid cycle, de novo triacylglycerol biosynthesis), and the synthesis of catecholamines and serotonin by changing the levels of their respective precursors, namely phenylalanine (0.68-fold decrease for 10 μM DMF vs vehicle), and tryptophan (1.36-fold increase for 0.1 μM DMF vs vehicle). Interestingly, taurine, whose levels can be modulated via Nrf2 signaling (DMF's primary target), emerged as a key mediator of DMF's neuronal action, displaying a 3.86-fold increase and 0.27-fold decrease for 10 μM DMF at 24 h and 96 h, respectively. A 96 h-exposure to DMF seemed to mainly trigger pathways associated with glucose production (e.g., gluconeogenesis, glucose-alanine cycle, malate-aspartate shuttle), possibly related to the metabolism of DMF into monomethyl fumarate and its further conversion into glucose via activation of the citric acid cycle. Overall, our data contribute to improving the understanding of the events associated with neuronal exposure to DMF.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Sandra I Marques
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Bampali K, Koniuszewski F, Vogel FD, Fabjan J, Andronis C, Lekka E, Virvillis V, Seidel T, Delaunois A, Royer L, Rolf MG, Giuliano C, Traebert M, Roussignol G, Fric-Bordat M, Mazelin-Winum L, Bryant SD, Langer T, Ernst M. GABA A receptor-mediated seizure liabilities: a mixed-methods screening approach. Cell Biol Toxicol 2023; 39:2793-2819. [PMID: 37093397 PMCID: PMC10693519 DOI: 10.1007/s10565-023-09803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023]
Abstract
GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.
Collapse
Affiliation(s)
- Konstantina Bampali
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Jure Fabjan
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | | - Thomas Seidel
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Annie Delaunois
- UCB Biopharma SRL, Chemin du Foriest, Braine-L'Alleud, Belgium
| | - Leandro Royer
- UCB Biopharma SRL, Chemin du Foriest, Braine-L'Alleud, Belgium
| | - Michael G Rolf
- R&D Biopharmaceuticals, Astra Zeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Chiara Giuliano
- R&D Biopharmaceuticals, Astra Zeneca, Fleming Building (B623), Babraham Research Park, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Martin Traebert
- Novartis Institutes for Biomedical Research, Fabrikstrasse 2, CH-4056, Basel, Switzerland
| | | | | | | | - Sharon D Bryant
- Inte:Ligand GmbH, Mariahilferstrasse 74B/11, 1070, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Imredy JP, Roussignol G, Clouse H, Salvagiotto G, Mazelin-Winum L. Comparative assessment of Ca 2+ oscillations in 2- and 3-dimensional hiPSC derived and isolated cortical neuronal networks. J Pharmacol Toxicol Methods 2023; 123:107281. [PMID: 37390871 DOI: 10.1016/j.vascn.2023.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Human induced Pluripotent Stem Cell (hiPSC) derived neural cells offer great potential for modelling neurological diseases and toxicities and have found application in drug discovery and toxicology. As part of the European Innovative Medicines Initiative (IMI2) NeuroDeRisk (Neurotoxicity De-Risking in Preclinical Drug Discovery), we here explore the Ca2+ oscillation responses of 2D and 3D hiPSC derived neuronal networks of mixed Glutamatergic/GABAergic activity with a compound set encompassing both clinically as well as experimentally determined seizurogenic compounds. Both types of networks are scored against Ca2+ responses of a primary mouse cortical neuronal 2D network model serving as an established comparator assay. Parameters of frequency and amplitude of spontaneous global network Ca2+ oscillations and the drug-dependent directional changes to these were assessed, and predictivity of seizurogenicity scored using contingency table analysis. In addition, responses between models were compared between both 2D models as well as between 2D and 3D models. Concordance of parameter responses was best between the hiPSC neurospheroid and the mouse primary cortical neuron model (77% for frequency and 65% for amplitude). Decreases in spontaneous Ca2+ oscillation frequency and amplitude were found to be the most basic shared determinants of risk of seizurogenicity between the mouse and the neurospheroid model based on testing of clinical compounds with documented seizurogenic activity. Increases in spontaneous Ca2+ oscillation frequency were primarily observed with the 2D hIPSC model, though the specificity of this effect to seizurogenic clinical compounds was low (33%), while decreases to spike amplitude in this model were more predictive of seizurogenicity. Overall predictivities of the models were similar, with sensitivity of the assays typically exceeding specificity due to high false positive rates. Higher concordance of the hiPSC 3D model over the 2D model when compared to mouse cortical 2D responses may be the result of both a longer maturation time of the neurospheroid (84-87 days for 3D vs. 22-24 days for 2D maturation) as well as the 3-dimensional nature of network connections established. The simplicity and reproducibility of spontaneous Ca2+ oscillation readouts support further investigation of hiPSC derived neuronal sources and their 2- and 3-dimensional networks for neuropharmacological safety screening.
Collapse
Affiliation(s)
- John P Imredy
- In Vitro Safety Pharmacology, Merck & Co., Inc., Rahway, NJ, USA.
| | | | - Holly Clouse
- In Vitro Safety Pharmacology, Merck & Co., Inc., Rahway, NJ, USA
| | | | | |
Collapse
|
7
|
Koniuszewski F, Vogel FD, Dajić I, Seidel T, Kunze M, Willeit M, Ernst M. Navigating the complex landscape of benzodiazepine- and Z-drug diversity: insights from comprehensive FDA adverse event reporting system analysis and beyond. Front Psychiatry 2023; 14:1188101. [PMID: 37457785 PMCID: PMC10345211 DOI: 10.3389/fpsyt.2023.1188101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Medications which target benzodiazepine (BZD) binding sites of GABAA receptors (GABAARs) have been in widespread use since the nineteen-sixties. They carry labels as anxiolytics, hypnotics or antiepileptics. All benzodiazepines and several nonbenzodiazepine Z-drugs share high affinity binding sites on certain subtypes of GABAA receptors, from which they can be displaced by the clinically used antagonist flumazenil. Additional binding sites exist and overlap in part with sites used by some general anaesthetics and barbiturates. Despite substantial preclinical efforts, it remains unclear which receptor subtypes and ligand features mediate individual drug effects. There is a paucity of literature comparing clinically observed adverse effect liabilities across substances in methodologically coherent ways. Methods In order to examine heterogeneity in clinical outcome, we screened the publicly available U.S. FDA adverse event reporting system (FAERS) database for reports of individual compounds and analyzed them for each sex individually with the use of disproportionality analysis. The complementary use of physico-chemical descriptors provides a molecular basis for the analysis of clinical observations of wanted and unwanted drug effects. Results and Discussion We found a multifaceted FAERS picture, and suggest that more thorough clinical and pharmacoepidemiologic investigations of the heterogenous side effect profiles for benzodiazepines and Z-drugs are needed. This may lead to more differentiated safety profiles and prescription practice for particular compounds, which in turn could potentially ease side effect burden in everyday clinical practice considerably. From both preclinical literature and pharmacovigilance data, there is converging evidence that this very large class of psychoactive molecules displays a broad range of distinctive unwanted effect profiles - too broad to be explained by the four canonical, so-called "diazepam-sensitive high-affinity interaction sites". The substance-specific signatures of compound effects may partly be mediated by phenomena such as occupancy of additional binding sites, and/or synergistic interactions with endogenous substances like steroids and endocannabinoids. These in turn drive the wanted and unwanted effects and sex differences of individual compounds.
Collapse
Affiliation(s)
- Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Florian D. Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Irena Dajić
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Matthäus Willeit
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
8
|
Lipponen A, Kajevu N, Natunen T, Ciszek R, Puhakka N, Hiltunen M, Pitkänen A. Gene Expression Profile as a Predictor of Seizure Liability. Int J Mol Sci 2023; 24:ijms24044116. [PMID: 36835526 PMCID: PMC9963992 DOI: 10.3390/ijms24044116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Analysis platforms to predict drug-induced seizure liability at an early phase of drug development would improve safety and reduce attrition and the high cost of drug development. We hypothesized that a drug-induced in vitro transcriptomics signature predicts its ictogenicity. We exposed rat cortical neuronal cultures to non-toxic concentrations of 34 compounds for 24 h; 11 were known to be ictogenic (tool compounds), 13 were associated with a high number of seizure-related adverse event reports in the clinical FDA Adverse Event Reporting System (FAERS) database and systematic literature search (FAERS-positive compounds), and 10 were known to be non-ictogenic (FAERS-negative compounds). The drug-induced gene expression profile was assessed from RNA-sequencing data. Transcriptomics profiles induced by the tool, FAERS-positive and FAERS-negative compounds, were compared using bioinformatics and machine learning. Of the 13 FAERS-positive compounds, 11 induced significant differential gene expression; 10 of the 11 showed an overall high similarity to the profile of at least one tool compound, correctly predicting the ictogenicity. Alikeness-% based on the number of the same differentially expressed genes correctly categorized 85%, the Gene Set Enrichment Analysis score correctly categorized 73%, and the machine-learning approach correctly categorized 91% of the FAERS-positive compounds with reported seizure liability currently in clinical use. Our data suggest that the drug-induced gene expression profile could be used as a predictive biomarker for seizure liability.
Collapse
Affiliation(s)
- Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, FIN-70701 Kuopio, Finland
| | - Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Robert Ciszek
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
- Correspondence: ; Tel.: +358-50-517-2091; Fax: +358-17-16-3030
| |
Collapse
|
9
|
Soldatos TG, Kim S, Schmidt S, Lesko LJ, Jackson DB. Advancing drug safety science by integrating molecular knowledge with post-marketing adverse event reports. CPT Pharmacometrics Syst Pharmacol 2022; 11:540-555. [PMID: 35143713 PMCID: PMC9124355 DOI: 10.1002/psp4.12765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Promising drug development efforts may frequently fail due to unintended adverse reactions. Several methods have been developed to analyze such data, aiming to improve pharmacovigilance and drug safety. In this work, we provide a brief review of key directions to quantitatively analyzing adverse events and explore the potential of augmenting these methods using additional molecular data descriptors. We argue that molecular expansion of adverse event data may provide a path to improving the insights gained through more traditional pharmacovigilance approaches. Examples include the ability to assess statistical relevance with respect to underlying biomolecular mechanisms, the ability to generate plausible causative hypotheses and/or confirmation where possible, the ability to computationally study potential clinical trial designs and/or results, as well as the further provision of advanced features incorporated in innovative methods, such as machine learning. In summary, molecular data expansion provides an elegant way to extend mechanistic modeling, systems pharmacology, and patient‐centered approaches for the assessment of drug safety. We anticipate that such advances in real‐world data informatics and outcome analytics will help to better inform public health, via the improved ability to prospectively understand and predict various types of drug‐induced molecular perturbations and adverse events.
Collapse
Affiliation(s)
| | - Sarah Kim
- Department of PharmaceuticsCenter for Pharmacometrics and Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | - Stephan Schmidt
- Department of PharmaceuticsCenter for Pharmacometrics and Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | - Lawrence J. Lesko
- Department of PharmaceuticsCenter for Pharmacometrics and Systems PharmacologyUniversity of FloridaOrlandoFloridaUSA
| | | |
Collapse
|