1
|
Xue S, Bao W, Lyu J, Wang C, Zhang Y, Li H, Chen D, Lu Y. In vitro nephrotoxicity and structure-toxicity relationships of eight natural aristolactams. Toxicon 2025; 254:108214. [PMID: 39674407 DOI: 10.1016/j.toxicon.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The structural similarity between aristolactams (ALs) and aristolochic acids (AAs) raises constant concerns about the safety of ALs-containing plants. Natural ALs are distributed more extensively than AAs, leading to a higher risk of ALs exposure in daily consumption. This study aimed to evaluate and compare the in vitro nephrotoxicity on human renal tubular epithelial cells (HK-2 cells) of eight natural ALs with different substituents on the phenanthrene ring and amide ring, including aristolactam Ⅰ (AL Ⅰ), AL BⅡ, velutinam, AL AⅡ, sauristolactam, AL AⅠa, AL FⅠ and N-methyl piperolactam A. Their IC50 values of cell viability were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of kidney injury molecule-1 (KIM-1), transforming growth factor-β1 (TGF-β1) and fibronectin (FN). The reactive oxygen species (ROS) assay was used to detect the intracellular oxidative stress level. The results showed that the eight ALs all had specific nephrotoxicity on HK-2 cells. Particularly, AL Ⅰ, AL BⅡ and velutinam exhibited more potent cytotoxicity on HK-2 cells (IC50 = 2.49-2.78 μM) than the other five ALs (IC50 = 12.33-43.84 μM). The structure-toxicity relationships indicated that both methylenedioxy (-OCH2O-) and methoxy (-OCH3) were positively contributing functional groups of ALs on nephrotoxicity, while the hydroxy group (-OH) and methyl substitution on nitrogen (N-CH3) accounted for a detrimental effect conversely. Consistent with this structure-toxicity relationship, the eight ALs increased KIM-1 levels in the same trend as their cytotoxicity at the same concentration of 2.5 μg/mL, associating with different levels of ROS generation. And the four most toxic ALs, AL Ⅰ, AL BⅡ, velutinam and AL AⅡ, could also induce fibrosis by increasing TGF-β1 and FN levels.
Collapse
Affiliation(s)
- Shiyu Xue
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiaren Lyu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Changyue Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
2
|
Liu S, Zhao Y, Li C, Yi Y, Zhang Y, Tian J, Han J, Pan C, Lu X, Su Y, Wang L, Liu C, Meng J, Liang A. Long-term oral administration of Kelisha capsule does not cause hepatorenal toxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118320. [PMID: 38740107 DOI: 10.1016/j.jep.2024.118320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 μg/g, 1.89-2.16 μg/g, and 0.55-1.60 μg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.
Collapse
Affiliation(s)
- Suyan Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yong Zhao
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chunying Li
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan Yi
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yushi Zhang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingzhuo Tian
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jiayin Han
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chen Pan
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao Lu
- Zhejiang Sukean Pharmaceutical CO.LTD, Hangzhou, 311228, China.
| | - Yan Su
- Zhejiang Sukean Pharmaceutical CO.LTD, Hangzhou, 311228, China.
| | - Lianmei Wang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chenyue Liu
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Meng
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aihua Liang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Wang L, Wang Y, Zhao Y, Li C, Yi Y, Tian J, Li G, Xian Z, Wang F, Meng J, Zhang Y, Han J, Pan C, Liu S, Liu M, Liu C, Liang A. Long-term toxicity evaluation of aristolochic acid-IIIa in mice. Toxicology 2024; 506:153838. [PMID: 38797228 DOI: 10.1016/j.tox.2024.153838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Aristolochic acid (AA)-IIIa is an AA analog present in Aristolochiaceae plants. To evaluate the chronic toxicity of AA-IIIa, mice were intragastrically administered with media control, 1 mg/kg AA-IIIa, and 10 mg/kg AA-IIIa, and designated as the control (CTL), AA-IIIa low dose (AA-IIIa-L), and AA-IIIa high dose (AA-IIIa-H) groups, respectively. AA-IIIa was administered three times a week, every other day, for 24 weeks (24-week time point). Thereafter, some mice were sacrificed immediately, while others were sacrificed 29 or 50 weeks after AA-IIIa withdrawal (53- or 74-week time point). Serum and organs were collected for biochemical and pathological analyses, respectively. Whole-genome sequencing was performed on the kidney, liver, and stomach tissues of AA-IIIa-treated mice for single-nucleotide polymorphism (SNP) detection. AA-IIIa-H mice died at 66 weeks, and the remaining mice showed moribund conditions at the 69 weeks. AA-IIIa induced minor kidney tubule injury, fibroblast hyperplasia, and forestomach carcinoma in mice. Bladder, intestine, liver, heart, spleen, lung, and testis tissues were not pathologically altered by AA-IIIa. In addition, AA-IIIa increased the C:G > A:T mutation in the kidney; however, no SNP mutation changes were observed in the liver and forestomach tissues of AA-IIIa-H mice at the 24-week time point compared with control mice. Therefore, we suspect that AA-IIIa is potentially mutagenic for mice after overdose and long-term administration. On the other hand, the forestomach is a unique organ in mice, but it does not exist in humans; thus, we hypothesize that the stomach toxicity induced by AA-IIIa is not a suitable reference for toxicological evaluation in humans. We recommend that Aristolochiaceae plants containing AA-IIIa should be properly supervised, and overdosing and long-term administration of drugs containing AA-IIIa should be avoided.
Collapse
Affiliation(s)
- Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guiqin Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiting Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Tu DZ, Liu PQ, Zhu GH, Zeng HR, Deng YY, Huang J, Niu XT, Liu YF, Hu J, Liang XM, Finel M, Wang P, Ge GB. Human UDP-glucuronosyltransferase 1As catalyze aristolochic acid D O-glucuronidation to form a lesser nephrotoxic glucuronide. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118116. [PMID: 38548118 DOI: 10.1016/j.jep.2024.118116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-β-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 μM, 9.05 μM, 3.87 μM, and 7.00 μM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.
Collapse
Affiliation(s)
- Dong-Zhu Tu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei-Qi Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai-Rong Zeng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Yan Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Huang
- Pharmacology and Toxicology Division, Shanghai Institute of Food and Drug Control, Shanghai, 201203, China
| | - Xiao-Ting Niu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan-Fang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jing Hu
- Department of Nephrology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Xin-Miao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Liu M, Wang L, Qin S, Zhao Y, Liu S, Yi Y, Li C, Tian J, Liu C, Meng J, Wang Y, Zhang Y, Wang F, Pan C, Han J, Tang X, Wang L, Liang A. Long-term oral administration of Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. decoction and its aristolochic acid analogs do not cause renal toxicity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116202. [PMID: 36708883 DOI: 10.1016/j.jep.2023.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Asarum heterotropoides f. mandshuricum (Maxim.) Kitag. (AH) is widely used to treat influenza, COVID-19, allergic rhinitis, headache, toothache, rheumatoid arthritis, and peptic ulcer. However, its clinical use is controversial due to the concern of aristolochic acid nephropathy (AAN) caused by its component aristolochic acid analogs (AAs). AIM OF THE STUDY The chronic toxicity of AH decoction and its main components AA IVa (AA-IVa) and aristolactam I (AL-I) was evaluated in mice. MATERIALS AND METHODS AAs contents in AH were quantitated by liquid chromatography-mass spectrometry. A parallel design was employed to examine the potential chronic toxicity of AH decoction at doses equivalent to 0.5, 1.6, and 5.0 g/kg AH (approximately 10-100 times the clinical doses for humans) and its major AA components at doses equivalent to that in 5.0 g/kg AH to mice after consecutive daily oral administration for 12 and 24 weeks, and at 32 weeks after withdrawal for 8 weeks. RESULTS AH crude herb contained 2.18 μg/g of AA-I, 48.49 μg/g of AA-IVa, and 14.0 μg/g of AL-I. AH decoction contained 5.45 μg/g of AA-IVa and 2.71 μg/g of AL-I. None of AA-II and AA-IIIa were detected in AH. After long-term administration of AH decoction and its major components AA-IVa and AL-I, mice showed no signs of illness or body weight changes. In addition, biochemical and pathohistological examinations showed that long-term administration of AH decoction and its major components AA-IVa and AL-I did not alter 1) serum levels of glutamic-pyruvic transaminase, glutamic oxalacetic transaminase, alkaline phosphatase, creatinine, and urea nitrogen, 2) renal tissue mRNA expression of kidney injury molecule 1 and neutrophil gelatinase-associated lipocalin, and 3) pathological morphology in the mouse liver, kidney, stomach, and bladder. CONCLUSIONS AH has no obvious toxicity to mice and is relatively safe when it is used in the form of decoction. AA-IVa and AL-I, the two major AAs in AH, are not toxic to mice at the dose equivalent to that in the high dose of AH decoction. Considering the limited toxicological data on AH, we recommend that AH decoction medication should not overdose and the duration should not be too long.
Collapse
Affiliation(s)
- Meiting Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China; Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, China.
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Shasha Qin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yuan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Xuan Tang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China.
| |
Collapse
|
6
|
Liu W, Shao F, You X, Cao Y, Xi J, Wu J, Wan J, Zhang X, Fei J, Luan Y. Non-carcinogenic/non-nephrotoxic aristolochic acid IVa exhibited anti-inflammatory activities in mice. J Nat Med 2023; 77:251-261. [PMID: 36525161 DOI: 10.1007/s11418-022-01665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Aristolochic acid (AA)-containing herbs have been prescribed for thousands of years as anti-inflammatory drugs, despite the active pharmaceutical ingredients remaining unclear. However, exposure to AAI and AAII has been proven to be a significant risk factor for severe nephropathy and carcinogenicity. AAIVa, an analogue abundant in AA-containing herbs, showed neither carcinogenicity nor nephrotoxicity in our study and other reports, implying that the pharmacological effects of AAIVa on inflammation are worth studying. Herein, we employed RAW 264.7 cells, the ear edema mouse model, and the lipopolysaccharide (LPS)-induced systematic inflammation model in TNF-IRES-Luc mice (tracking TNFα luciferase activities in real-time) to evaluate the anti-inframammary effect of AAIVa. Our results showed that AAIVa could decrease pro-inflammatory cytokines (TNFα and IL-6) production in LPS-stimulated RAW 264.7 cells, indicating its anti-inflammatory effects in vitro. Furthermore, the application of AAIVa (400 and 600 μg/ear) could significantly inhibit phorbol 12-myristate 13-acetate-induced ear edema, suggesting its topical anti-inflammatory activity in vivo. Moreover, LPS-stimulated TNF-IRES-Luc mice were used to investigate the onset and duration of AAIVa on systematic inflammation. A single dosage of AAIVa (100 mg/kg, i.g.) could suppress LPS-triggered inflammation, by decreasing luciferase activities of TNFα at 3 h in TNF-IRES-Luc mice. In addition, the online pharmacological databases predicted that AAIVa might target the regulation of T cell activation-related protein (ADA, ADORA2A, ERBB2) to exhibit anti-inflammatory effect. In conclusion, we demonstrated that AAIVa had anti-inflammatory effect for the first time; our findings are constructive for further studies on pharmacological mechanism of AAIVa.
Collapse
Affiliation(s)
- Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Fangyang Shao
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jiaying Wu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jingjing Wan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
Xian Z, Tian J, Zhang Y, Meng J, Zhao Y, Li C, Yi Y, Han J, Liu S, Wang L, Pan C, Wang D, Wang F, Liang A. Study on the potential nephrotoxicity and mutagenicity of aristolochic acid IVa and its mechanism. Biomed Pharmacother 2021; 142:112081. [PMID: 34463271 DOI: 10.1016/j.biopha.2021.112081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
Previous reports demonstrated that aristolochic acids (AAs) exposure-induced nephrotoxicity, mutations, and tumorigenesis are mainly due to aristolochic acid I (AAI). Notably, the chemical structure of aristolochic acid IVa (AAIVa), which exists at higher levels in many Aristolochiaceae herbs, is extremely similar to AAI. In lack of toxicological data, it is unknown whether AAIVa exposure leads to aristolochic acid nephropathy (AAN), mutations, and tumorigenesis as of AAI. To answer these questions, mice were administered AAIVa by single or repeated long-term gavage, while AAI was used as a positive control. We found that single gavage of 40 mg/kg of AAIVa exhibited no obvious toxicity. Also, there were no tumors or death in mice administrated with 1 and 10 mg/kg of AAIVa for 6 months followed by a 12-month recovery time. There were no noteworthy alterations in gene mutation frequency in the kidney, liver, and stomach between the AAIVa and control mice. Fascinatingly, AA-associated mutational signatures, adenine-to-thymine (A>T) transversions, were absent in AAIVa-treated mice. Nonetheless, 10 mg/kg of AAIVa triggered lymphocytic infiltration and slight fibrous hyperplasia in the kidney at the 6th month; however, these were alleviated at the 12th and 18th months. On the contrary, AAI (positive control) caused severe diffuse fibrosis, tubular atrophy, necrosis, tumors in the forestomach and kidney, and death after the 6th month. It seems that long-term AAIVa exposure induced mild renal lesions could be due to the activation of the canonical or noncanonical transforming growth factor-β (TGFβ) pathway. Overall, these findings suggest that the mutagenicity and carcinogenic risk of AAIVa are very low.
Collapse
Affiliation(s)
- Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dunfang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|