1
|
Zhang J, Jia S, Zheng Z, Cao L, Zhou J, Fu X. A multi-omic single-cell landscape of the aging mouse ovary. GeroScience 2025:10.1007/s11357-025-01556-2. [PMID: 39934558 DOI: 10.1007/s11357-025-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The ovary is one of the first organs in humans to exhibit age-related functional impairments. As an organ composed of diverse heterogeneous cell types, the ovary exhibits cell-type-specific changes during the aging process, ultimately leading to a decline in female fertility. Investigating the molecular mechanisms of ovarian aging is crucial for understanding age-related fertility dysfunction in females. In this study, we combine scRNA-seq and scATAC-seq from mouse young/aged ovaries to characterize molecular features during ovarian aging. Using the single-cell multi-omic data, we revealed the cell-type-specific transcriptional changes during the aging process in seven major ovarian cell types and identified the cis/trans-regulatory elements governing these transcriptional changes. Specifically, we uncovered the transcriptional alterations of TGF-beta signaling in mesenchymal cells and endoplasmic reticulum stress in granulosa cells of aged mouse ovaries and further identified the potential corresponding cis/trans-regulatory elements. These molecular alterations may contribute to aging-induced functional impairments in mouse ovaries. In summary, this work provides transcriptome and chromatin accessibility landscape of ovarian aging in mice, which serve as a resource for identifying the cell-type-specific molecular mechanisms underlying ovarian aging, aiding in the identification of potential diagnostic biomarkers and treatment strategies.
Collapse
Affiliation(s)
- Jian Zhang
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shunze Jia
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zehua Zheng
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanrui Cao
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Zhou Q, Zhang X, Chen S, Fan C, Wan K, Wu C, Wang X, Zhang W, Jiang H. Shugan Jianpi Formula attenuate liver fibrosis via regulation of miR-193a-3p/TGF-β2 in hepatic stellate cells: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119120. [PMID: 39603398 DOI: 10.1016/j.jep.2024.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese herbal medicine Shugan Jianpi Formula (SGJPF) has traditionally been used to treat various chronic liver disorders. Previous studies have indicated that SGJPF inhibits hepatic stellate cells (HSCs) activation in rats with liver fibrosis (LF) and that miR-193a-3p may be a crucial molecule in LF. However, the mechanisms by which SGJPF regulates HSCs activation through miR-193a-3p remain unclear. AIM OF THE STUDY This study aimed to determine whether the effect of SGJPF on LF is related to its regulation of miR-193a-3p and TGF-β2, both in a carbon tetrachloride (CCl4)-induced LF mouse model and in TGF-β1-induced JS-1 cells. MATERIALS AND METHODS A CCl4-induced LF mouse model was established to evaluate the anti-fibrotic efficacy of SGJPF by examining liver histopathological changes, collagen deposition, and the expression of α-smooth muscle actin (α-SMA) and collagen-I. To investigate the role of miR-193a-3p in HSCs activation, miR-193a-3p mimics and inhibitors were transfected into TGF-β1-induced JS-1 cells. The potential targets of miR-193a-3p were identified using miRDB, TargetScan 8.0, RNA-seq, and dual-luciferase reporter assays. Finally, the effects of SGJPF on HSCs activation and the miR-193a-3p/TGF-β2 axis were assessed in TGF-β1-treated JS-1 cells using CCK-8, EDU, scratch, RT-qPCR, and Western blotting assays. RESULTS SGJPF significantly reduced liver damage and fibrosis, inhibited HSCs activation, decreased TGF-β2 levels, and increased miR-193a-3p expression in CCl4-induced LF tissue. Additionally, miR-193a-3p was upregulated in HSCs transfected with miR-193a-3p mimics and downregulated in those with miR-193a-3p inhibitors. High levels of miR-193a-3p, combined with miRNA mimics, inhibited HSCs activation, proliferation, and migration. TGF-β2, a target negatively regulated by miR-193a-3p, partially reversed the effects of miR-193a-3p on TGF-β1-induced HSCs activation. SGJPF also reduced HSCs activation, proliferation, and migration in TGF-β1-treated JS-1 cells. Moreover, treatment with SGJPF-containing serum and miR-193a-3p inhibition restored HSCs activation, proliferation, and migration in TGF-β1-induced JS-1 cells. CONCLUSIONS This study demonstrates that SGJPF ameliorates CCl4-induced liver fibrosis, which is associated with the regulation of miR-193a-3p and TGF-β2 in HSCs. These findings provide a new pharmacological basis for SGJPF and suggest a novel strategy for treating LF through TCM by regulating miRNAs.
Collapse
Affiliation(s)
- Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Sen Chen
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Kaiqiang Wan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chao Wu
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoli Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Afliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Afliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China; Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Afliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
3
|
Sadasivam N, Park WR, Choi B, Seok Jung Y, Choi HS, Kim DK. Exploring the impact of estrogen-related receptor gamma on metabolism and disease. Steroids 2024; 211:109500. [PMID: 39159854 DOI: 10.1016/j.steroids.2024.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Estrogen-related receptor gamma (ERRγ) is a member of the ERR orphan nuclear receptor family which possesses three subtypes, α, β, and γ. ERRγ is reportedly predominantly expressed in metabolically active tissues and cells, which promotes positive and negative effects in different tissues. ERRγ overexpression in the liver, pancreas, and thyroid cells is related to liver cancer, oxidative stress, reactive oxygen species (ROS) regulation, and carcinoma. Reduced ERRγ expression in the brain, immune cells, tumor cells, and energy metabolism causes neurological dysfunction, gastric cancer, and obesity. ERRγ is a constitutive receptor; however, its transcriptional activity also depends on co-regulators, agonists, and antagonists, which, when after forming a complex, can play a role in targeting and treating diseases. Moreover, ERRγ has proven crucial in regulating cellular and metabolic activity. However, many functions mediated via ERRγ remain unknown and require further exploration. Hence, considering the importance of ERRγ, this review focuses on the critical findings and interactions between ERRγ and co-regulators, agonists, and antagonists alongside its relationship with downstream and upstream signaling pathways and diseases. This review highlights new findings and provides a path to understanding the current ideas and future studies on ERRγ-mediated cellular activity.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Byungyoon Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yoon Seok Jung
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Wang MY, Liu WJ, Wu LY, Wang G, Zhang CL, Liu J. The Research Progress in Transforming Growth Factor-β2. Cells 2023; 12:2739. [PMID: 38067167 PMCID: PMC10706148 DOI: 10.3390/cells12232739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor-beta 2 (TGF-β2), an important member of the TGF-β family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-β2 had been thought to be functionally identical to TGF-β1; however, an increasing number of recent studies uncovered the distinctive features of TGF-β2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-β2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-β2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-β2 to support further research on TGF-β2.
Collapse
Affiliation(s)
- Meng-Yan Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Wen-Juan Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Gang Wang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China; (M.-Y.W.); (W.-J.L.); (L.-Y.W.); (J.L.)
| |
Collapse
|
5
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Fan Y, Na SY, Jung YS, Radhakrishnan K, Choi HS. Estrogen-related receptor γ (ERRγ) is a key regulator of lysyl oxidase gene expression in mouse hepatocytes. Steroids 2023; 194:109226. [PMID: 36948345 DOI: 10.1016/j.steroids.2023.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Lysyl oxidase (LOX), the copper-dependent extracellular enzyme, plays a critical role in the regulation of protein cross-linking in the extracellular matrix (ECM). It is also involved in liver regeneration and liver fibrosis. However, the mechanism of LOX regulation in mouse hepatocytes is still unclear. Here, we identify a molecular mechanism showing that orphan nuclear receptor estrogen-related receptor γ (ERRγ) regulates LOX gene expression in the presence of the pro-inflammatory cytokine, interleukin 6 (IL6). IL6 significantly stimulated the expression of ERRγ and LOX in mouse hepatocytes. Overexpression of ERRγ increased LOX mRNA and protein levels. Moreover, knockdown of ERRγ attenuated IL6-mediated LOX gene expression at mRNA and protein levels. Overexpression of ERRγ or IL6 treatment upregulated LOX gene promoter activity, while knockdown of ERRγ decreased the IL6-induced LOX promoter activity. Furthermore, GSK5182, a specific ERRγ inverse agonist, inhibited the induction effect of IL6 on LOX promoter activity and gene expression in mouse hepatocytes. Overall, our study elucidates the mechanism involved in the LOX gene regulation by nuclear receptor ERRγ in response to IL6 in mouse hepatocytes, suggesting that, in conditions such as chronic inflammation, IL6 may contribute to liver fibrosis via inducing LOX gene expression. Thus, LOX gene regulation by the inverse agonist of ERRγ can be applied to improve liver fibrosis.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Wen Y, Zhang X, Wei L, Wu M, Cheng Y, Zheng H, Shen A, Fu C, Ali F, Long L, Lu Y, Li J, Peng J. Gastrodin attenuates renal injury and collagen deposition via suppression of the TGF-β1/Smad2/3 signaling pathway based on network pharmacology analysis. Front Pharmacol 2023; 14:1082281. [PMID: 36733505 PMCID: PMC9887022 DOI: 10.3389/fphar.2023.1082281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Background: Gastrodin has been widely used clinically in China as an antihypertensive drug. However, its effect on hypertensive renal injury is yet to be elucidated. The current study aimed to investigate the effects of gastrodin on hypertensive renal injury and its underlying mechanisms by network pharmacology analysis and validation in vivo and in vitro. Methods: A total of 10 spontaneously hypertensive rats (SHRs) were randomly categorized into the following two groups: SHR and SHR + Gastrodin groups. Wistar Kyoto (WKY) rats were used as the control group (n = 5). The SHR + Gastrodin group was intragastrically administered gastrodin (3.5 mg/kg/day), and the rats in both WKY and SHR groups were intragastrically administered an equal amount of double-distilled water for 10 weeks. Hematoxylin-eosin, Masson's trichrome, and Sirius red staining were used to detect the pathological changes and collagen content in the renal tissues. Network pharmacology analysis was performed to explore its potential targets and related pathways. In vitro, the CCK-8 assay was used to determine the cell viability. Immunohistochemistry and western-blotting analyses were employed to assess the protein expression associated with renal fibrosis and transforming growth factor-β1 (TGF-β1) pathway-related proteins in the renal tissues or in TGF-β1-stimulated rat kidney fibroblast cell lines (NRK-49F). Results: Gastrodin treatment attenuates renal injury and pathological alterations in SHRs, including glomerular sclerosis and atrophy, epithelial cell atrophy, and tubular dilation. Gastrodin also reduced the accumulation of collagen in the renal tissues of SHRs, which were confirmed by downregulation of α-SMA, collagen I, collagen III protein expression. Network pharmacology analysis identified TGFB1 and SMAD2 as two of lead candidate targets of gastrodin on against hypertensive renal injury. Consistently, gastrodin treatment downregulated the increase of the protein expression of TGF-β1, and ratios of both p-Smad2/Smad2 and p-Samd3/Smad3 in renal tissues of SHRs. In vitro, gastrodin (25-100 μM) treatment significantly reversed the upregulation of α-SMA, fibronectin, collagen I, as well as p-Smad2 and p-Smad3 protein expressions without affecting the cell viability of TGF-β1 stimulated NRK-49F cells. Conclusion: Gastrodin treatment significantly attenuates hypertensive renal injury and renal fibrosis and suppresses TGF-β1/Smad2/3 signaling in vivo and in vitro.
Collapse
Affiliation(s)
- Ying Wen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China,Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Huifang Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China,Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Changgeng Fu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Linzi Long
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yao Lu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China,*Correspondence: Jiapeng Li, ; Jun Peng,
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China,Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, China,*Correspondence: Jiapeng Li, ; Jun Peng,
| |
Collapse
|
8
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
9
|
Na SY, Kim KS, Jung YS, Kim DK, Kim J, Cho SJ, Lee IK, Chung J, Kim JS, Choi HS. An Inverse Agonist GSK5182 Increases Protein Stability of the Orphan Nuclear Receptor ERRγ via Inhibition of Ubiquitination. Int J Mol Sci 2022; 24:ijms24010096. [PMID: 36613556 PMCID: PMC9820335 DOI: 10.3390/ijms24010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is a constitutively active transcription factor involved in mitochondrial metabolism and energy homeostasis. GSK5182, a specific inverse agonist of ERRγ that inhibits transcriptional activity, induces a conformational change in ERRγ, resulting in a loss of coactivator binding. However, the molecular mechanism underlying the stabilization of the ERRγ protein by its inverse agonist remains largely unknown. In this study, we found that GSK5182 inhibited ubiquitination of ERRγ, thereby stabilizing the ERRγ protein, using cell-based assays and confocal image analysis. Y326 of ERRγ was essential for stabilization by GSK5182, as ligand-induced stabilization of ERRγ was not observed with the ERRγ-Y326A mutant. GSK5182 suppressed ubiquitination of ERRγ by the E3 ligase Parkin and subsequent degradation. The inhibitory activity of GSK5182 was strong even when the ERRγ protein level was elevated, as ERRγ bound to GSK5182 recruited a corepressor, small heterodimer partner-interacting leucine zipper (SMILE), through the activation function 2 (AF-2) domain, without alteration of the nuclear localization or DNA-binding ability of ERRγ. In addition, the AF-2 domain of ERRγ was critical for the regulation of protein stability. Mutants in the AF-2 domain were present at higher levels than the wild type in the absence of GSK5182. Furthermore, the ERRγ-L449A/L451A mutant was no longer susceptible to GSK5182. Thus, the AF-2 domain of ERRγ is responsible for the regulation of transcriptional activity and protein stability by GSK5182. These findings suggest that GSK5182 regulates ERRγ by a unique molecular mechanism, increasing the inactive form of ERRγ via inhibition of ubiquitination.
Collapse
Affiliation(s)
- Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ki-Sun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jongkyeong Chung
- SRC Center for Systems Geroscience, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: ; Tel.: +82-62-530-0503
| |
Collapse
|
10
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|