1
|
Ning D, Xue J, Lou X, Shao R, Liu Y, Chen G. Transforming toxins into treatments: the revolutionary role of α-amanitin in cancer therapy. Arch Toxicol 2024; 98:1705-1716. [PMID: 38555326 DOI: 10.1007/s00204-024-03727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Amanita phalloides is the primary species responsible for fatal mushroom poisoning, as its main toxin, α-amanitin, irreversibly and potently inhibits eukaryotic RNA polymerase II (RNAP II), leading to cell death. There is no specific antidote for α-amanitin, which hinders its clinical application. However, with the advancement of precision medicine in oncology, including the development of antibody-drug conjugates (ADCs), the potential value of various toxic small molecules has been explored. These ADCs ingeniously combine the targeting precision of antibodies with the cytotoxicity of small-molecule payloads to precisely kill tumor cells. We searched PubMed for studies in this area using these MeSH terms "Amanitins, Alpha-Amanitin, Therapeutic use, Immunotherapy, Immunoconjugates, Antibodies" and did not limit the time interval. Recent studies have conducted preclinical experiments on ADCs based on α-amanitin, showing promising therapeutic effects and good tolerance in primates. The current challenges include the not fully understood toxicological mechanism of α-amanitin and the lack of clinical studies to evaluate the therapeutic efficacy of ADCs developed based on α-amanitin. In this article, we will discuss the role and therapeutic efficacy of α-amanitin as an effective payload in ADCs for the treatment of various cancers, providing background information for the research and application strategies of current and future drugs.
Collapse
Affiliation(s)
- Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yu Liu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, No 157 Jinbi Road, Xishan District, Kunming, 650032, China.
| |
Collapse
|
2
|
Wu Z, Li H, Zhao W, Zheng M, Cheng J, Cao Z, Sun C. Kidney toxicity and transcriptome analyses of male ICR mice acutely exposed to the mushroom toxin α-amanitin. Food Chem Toxicol 2024; 187:114622. [PMID: 38531469 DOI: 10.1016/j.fct.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Amatoxins are responsible for most fatal mushroom poisoning cases, as it causes both hepatotoxicity and nephrotoxicity. However, studies on amatoxin nephrotoxicity are limited. Here, we investigated nephrotoxicity over 4 days and nephrotoxicity/hepatotoxicity over 14 days in mice. The organ weight ratio, serological indices, and tissue histology results indicated that a nephrotoxicity mouse model was established with two stages: (1) no apparent effects within 24 h; and (2) the appearance of adverse effects, with gradual worsening within 2-14 days. For each stage, the kidney transcriptome revealed patterns of differential mRNA expression and significant pathway changes, and Western blot analysis verified the expression of key proteins. Amanitin-induced nephrotoxicity was directly related to RNA polymerase II because mRNA levels decreased, RNA polymerase II-related pathways were significantly enriched at the transcription level, and RNA polymerase II protein was degraded in the early poisoning stage. In the late stage, nephrotoxicity was more severe than hepatotoxicity. This is likely associated with inflammation because inflammation-related pathways were significantly enriched and NF-κB activation was increased in the kidney.
Collapse
Affiliation(s)
- Zhijun Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Haijiao Li
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Juan Cheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhengjie Cao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chengye Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
3
|
Xu Y, Wang S, Leung CK, Chen H, Wang C, Zhang H, Zhang S, Tan Y, Wang H, Miao L, Li Y, Huang Y, Zhang X, Yang G, Zhang R, Zeng X. α-amanitin induces autophagy through AMPK-mTOR-ULK1 signaling pathway in hepatocytes. Toxicol Lett 2023:S0378-4274(23)00204-7. [PMID: 37329965 DOI: 10.1016/j.toxlet.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Amanitin poisoning is one of the most life-threatening mushroom poisonings. α-Amanitin plays a key role in Amanita phalloides intoxication. α-Amanitin shows toxic effects on the liver. However, the mechanism by which α-amanitin induces liver injury has not been elucidated. Autophagy plays a crucial role in maintaining cellular homeostasis and is closely related to the occurrence of a variety of diseases. Studies have shown that autophagy may play an important role in the process of α-amanitin-induced liver injury. However, the mechanism of α-amanitin-induced autophagy remains unclear. Thus, this study aimed to explore the mechanisms of α-amanitin in inducing hepatotoxicity in Sprague Dawley (SD) rats and the normal human liver cell line L02 cells. The SD rats and L02 cells exposed to α-amanitin were observed to determine whether α-amanitin could induce the autophagy of rat liver and L02 cells. The regulatory relationship between autophagy and the AMPK-mTOR- ULK pathway by exposing the autophagy agonist (rapamycin (RAPA)), autophagy inhibitor (3-methylademine (3-MA)), and AMPK inhibitor (compound C) was also explored. Autophagy-related proteins and AMPK-mTOR-ULK pathway-related proteins were detected using Western blot. The results of the study indicated that exposure to different concentrations of α-amanitin led to morphological changes in liver cells and significantly elevated levels of ALT and AST in the serum of SD rats. Additionally, the expression levels of LC3-II, Beclin-1, ATG5, ATG7, AMPK, p-AMPK, mTOR, p-mTOR, and ULK1 were significantly increased in the rat liver. And we found that L02 cells exposed to 0.5μM α-amanitin for 6h significantly induced autophagy and activated the AMPK-mTOR-ULK1 pathway. Pretreated with RAPA, 3-MA, and compound C for 1h, the expression levels of autophagy-related proteins and AMPK-mTOR-ULK pathway-related proteins significantly changed. Our results indicates that autophagy and the AMPK-mTOR-ULK pathway are involved in the process of α-amanitin-induced liver injury. This study may foster the identification of actionable therapeutic targets for A. phalloides intoxication.
Collapse
Affiliation(s)
- Yue Xu
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shangwen Wang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong; CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Chen
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Huijie Zhang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shuwei Zhang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Tan
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Haowei Wang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lin Miao
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yi Li
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yizhen Huang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xiaoxing Zhang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Ruilin Zhang
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| | - Xiaofeng Zeng
- Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Determination of protein-bound α-amanitin in mouse plasma: A potential new indicator of poisoning with the mushroom toxin α-amanitin. Toxicon 2023; 226:107067. [PMID: 36871921 DOI: 10.1016/j.toxicon.2023.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Approximately 70%∼90% of mushroom poisoning deaths are caused by the class of mushroom toxins known as amatoxins. However, the rapid elimination of amatoxins from plasma within 48 h after mushroom ingestion limits the practical value of plasma amatoxin analysis as a diagnostic indicator of Amanita mushroom poisoning. To increase the positive detection rate and extend the detection window of amatoxin poisoning, we developed a new method to detect protein-bound α-amanitin based on the hypothesis that RNAP II-bound α-amanitin released from the tissue into the plasma could be degraded by trypsin hydrolysis and then detected by conventional liquid chromatography-mass spectrometry (LC‒MS). Toxicokinetic studies on mice intraperitoneally injected with 0.33 mg/kg α-amanitin were conducted to obtain and compare the concentration trends, detection rates, and detection windows of both free α-amanitin and protein-bound α-amanitin. By comparing detection results with and without trypsin hydrolysis in the liver and plasma of α-amanitin-poisoned mice, we verified the credibility of this method and the existence of protein-bound α-amanitin in plasma. Under the optimized trypsin hydrolysis conditions, we obtained a time-dependent trend of protein-bound α-amanitin in mouse plasma at 1-12 days postexposure. In contrast to the short detection window (0-4 h) of free α-amanitin in mouse plasma, the detection window of protein-bound α-amanitin was extended to 10 days postexposure, with a total detection rate of 53.33%, ranging from the limit of detection to 23.94 μg/L. In conclusion, protein-bound α-amanitin had a higher positive detection rate and a longer detection window than free α-amanitin in mice.
Collapse
|