1
|
Borghoff S, Rivera B, Fitch S, Buerger A, Choksi N, Franzen A, Vincent M, Covington T, Bus J, Rushton E, Lea I. Systematic evaluation of the evidence base on methyl tert-butyl ether supporting a lack of concern for carcinogenic hazard in humans based on animal cancer studies and mechanistic data. Curr Res Toxicol 2025; 8:100224. [PMID: 40084233 PMCID: PMC11903976 DOI: 10.1016/j.crtox.2025.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Methyl tert-butyl ether (MTBE) is a high-octane fuel component that helps gasoline burn cleaner and reduces automobile emissions. In 1999, the International Agency for Research on Cancer (IARC) categorized MTBE as "not classifiable" regarding human carcinogenicity. Since then, additional studies have been published that substantially added to the evidence base to examine the carcinogenic potential of MTBE in humans. A systematic literature search and review was conducted to identify mechanistic data, as well as studies investigating cancer in MTBE-exposed humans and experimental animals. Critical appraisal was performed for relevant studies with mechanistic data organized and evaluated within Key Characteristics of Carcinogens (KCCs). Three standard animal cancer bioassays showed a low incidence of hepatocellular adenomas in female mice (inhalation exposure), with renal adenomas/carcinoma (inhalation) and brain tumors (drinking water) in male rats exposed to high concentrations of MTBE. Evidence extracted from the literature demonstrate that the mechanism of male rat renal tumors does not operate in humans. Review of the strength of mechanistic data was based on activity, relevancy, and reliability, with information-dense KCC2-is genotoxic, and KCC10-alters cell proliferation, cell death, and nutrient supply, together supporting that MTBE is unlikely to be a carcinogenic hazard to humans.
Collapse
Affiliation(s)
| | | | - S. Fitch
- ToxStrategies, Katy, TX, United States
| | | | | | | | | | | | - J. Bus
- Exponent, Alexandria, VA, United States
| | - E. Rushton
- LyondellBasell Industries, Rotterdam, The Netherlands
| | - I.A. Lea
- ToxStrategies, Durham, NC, United States
| |
Collapse
|
2
|
Bueno B, Heurtaux S, Gagnon A. Synthesis of 1-Methylcyclopropyl Aryl Ethers from Phenols Using an Alkenylation-Cyclopropanation Sequence. J Org Chem 2023; 88:13351-13357. [PMID: 37616498 DOI: 10.1021/acs.joc.3c01289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
1-Methylcyclopropyl aryl ethers (McPAEs) can be viewed as cyclized derivatives of their O-tert-butyl counterparts. Although these compounds can find use in medicinal chemistry, they are much less represented in the literature than their aryl cyclopropyl ether analogues. McPAEs are generally prepared via an SNAr reaction using 1-methylcyclopropanol. However, this method works exclusively with highly deactivated arenes. We report herein a two-step sequence to access McPAEs consisting of the 1-methylvinylation of phenols followed by cyclopropanation of the corresponding 1-methylvinyl aryl ethers. Isomeric mono- and dimethyl analogues were also prepared using this sequence.
Collapse
Affiliation(s)
- Bianca Bueno
- Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Suzanne Heurtaux
- Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Alexandre Gagnon
- Université du Québec à Montréal (UQAM), C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
3
|
He Z, Xian H, Tang M, Chen Y, Lian Z, Fang D, Peng X, Hu D. DNA polymerase β may be involved in protecting human bronchial epithelial cells from the toxic effects induced by methyl tert-butyl ether exposure. Hum Exp Toxicol 2021; 40:2135-2144. [PMID: 34121485 DOI: 10.1177/09603271211022788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methyl tert-butyl ether (MTBE), a widely used gasoline additive and a ubiquitous environmental pollutant in many countries and regions, can cause various kinds of toxic effects on human health. However, the molecular mechanism underlying its toxic effects remains elusive. The present study aimed to explore the cytotoxicity, DNA damage and oxidative damage effects of MTBE on human bronchial epithelial cells (16HBE) and the possible role of DNA polymerase β (pol-β) in this process. RNA interference (RNAi) was used to obtain pol-β gene knocked-down cells (pol-β-). CCK-8 assay was adopted to analyze the cell viability. Alkaline single-cell gel electrophoresis (SCGE) was performed to detect the DNA damage effects of MTBE. The enzyme activity of GSH-Px, SOD, CAT and the level of MDA were assessed. The data indicated that when treated with MTBE at the concentration exceeding 50 μmol/L and for the time exceeding 24 h, the pol-β- exhibited significantly decreased cell viability and increased DNA damage effects, as compared to the control (P < 0.05). Furthermore, there was significant difference in the levels of GSH-pX, SOD, CAT and MDA between the pol-β- and the control (P < 0.05). Our investigation suggests that MTBE can cause obvious cytotoxicity, DNA damage and oxidative damage effects on 16HBE cells. DNA polymerase β may be involved in protecting 16HBE cells from the toxic effects induced by MTBE exposure. These findings provide a novel insight into the molecular mechanism underlying the toxic effects of MTBE on human cells.
Collapse
Affiliation(s)
- Z He
- Shiyan Institute of Preventive Medicine and Health Care, Baoan District, Shenzhen City, People's Republic of China.,Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - H Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - M Tang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Y Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - Z Lian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| | - D Fang
- Department of Environmental Health, Center for Disease Control and Prevention of Shenzhen City, Shenzhen, People's Republic of China
| | - X Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, People's Republic of China
| | - D Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Teschke R. Microsomal Ethanol-Oxidizing System: Success Over 50 Years and an Encouraging Future. Alcohol Clin Exp Res 2019; 43:386-400. [PMID: 30667528 DOI: 10.1111/acer.13961] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/07/2023]
Abstract
Fifty years ago, in 1968, the pioneering scientists Charles S. Lieber and Leonore M. DeCarli discovered the capacity for liver microsomes to oxidize ethanol (EtOH) and named it the microsomal ethanol-oxidizing system (MEOS), which revolutionized clinical and experimental alcohol research. The last 50 years of MEOS are now reviewed and highlighted. Since its discovery and as outlined in a plethora of studies, significant insight was gained regarding the fascinating nature of MEOS: (i) MEOS is distinct from alcohol dehydrogenase and catalase, representing a multienzyme complex with cytochrome P450 (CYP) and its preferred isoenzyme CYP 2E1, NADPH-cytochrome P450 reductase, and phospholipids; (ii) it plays a significant role in alcohol metabolism at high alcohol concentrations and after induction due to prolonged alcohol use; (iii) hydroxyl radicals and superoxide radicals promote microsomal EtOH oxidation, assisted by phospholipid peroxides; (iv) new aspects focus on microsomal oxidative stress through generation of reactive oxygen species (ROS), with intermediates such as hydroxyethyl radical, ethoxy radical, acetyl radical, singlet radical, hydroxyl radical, alkoxyl radical, and peroxyl radical; (v) triggered by CYP 2E1, ROS are involved in the initiation and perpetuation of alcoholic liver injury, consequently shifting the previous nutrition-based concept to a clear molecular-based disease; (vi) intestinal CYP 2E1 induction and ROS are involved in endotoxemia, leaky gut, and intestinal microbiome modifications, together with hepatic CYP 2E1 and liver injury; (vii) circulating blood CYP 2E1 exosomes may be of diagnostic value; (viii) circadian rhythms provide high MEOS activities associated with significant alcohol metabolism and potential toxicity risks as a largely neglected topic; and (ix) a variety of genetic animal models are useful and have been applied elucidating mechanistic aspects of MEOS. In essence, MEOS along with its CYP 2E1 component currently explains several mechanistic steps leading to alcoholic liver injury and has a promising future in alcohol research.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology (RT), Department of Internal Medicine II, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|
5
|
Xie G, Hong WX, Zhou L, Yang X, Huang H, Wu D, Huang X, Zhu W, Liu J. An investigation of methyl tert‑butyl ether‑induced cytotoxicity and protein profile in Chinese hamster ovary cells. Mol Med Rep 2017; 16:8595-8604. [PMID: 29039499 PMCID: PMC5779912 DOI: 10.3892/mmr.2017.7761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the mechanisms underlying the MTBE-induced reproductive toxicological effect in different cell lines, the precise mechanisms remain far from understood. The present study aimed to evaluate whether mammalian ovary cells were sensitive to MTBE exposure in vitro by assessing cell viability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content and antioxidant enzyme activities. In addition, the effect of MTBE exposure on differential protein expression profiles was examined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. MTBE exposure induced significant effects on cell viability, LDH leakage, plasma membrane damage and the activity of antioxidant enzymes. In the proteomic analysis, 24 proteins were demonstrated to be significantly affected by MTBE exposure. Functional analysis indicated that these proteins were involved in catalytic activity, binding, structural molecule activity, metabolic processes, cellular processes and localization, highlighting the fact that the cytotoxic mechanisms resulting from MTBE exposure are complex and diverse. The altered expression levels of two representative proteins, heat shock protein family A (Hsp70) members 8 and 9, were further confirmed by western blot analysis. The results revealed that MTBE exposure affects protein expression in Chinese hamster ovary cells and that oxidative stress and altered protein levels constitute the mechanisms underlying MTBE-induced cytotoxicity. These findings provided novel insights into the biochemical mechanisms involved in MTBE-induced cytotoxicity in the reproductive system.
Collapse
Affiliation(s)
- Guangshan Xie
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Wen-Xu Hong
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Weiguo Zhu
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Jianjun Liu
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
6
|
Bogen KT, Heilman JM. Reassessment of MTBE cancer potency considering modes of action for MTBE and its metabolites. Crit Rev Toxicol 2016; 45 Suppl 1:1-56. [PMID: 26414780 DOI: 10.3109/10408444.2015.1052367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A 1999 California state agency cancer potency (CP) evaluation of methyl tert-butyl ether (MTBE) assumed linear risk extrapolations from tumor data were plausible because of limited evidence that MTBE or its metabolites could damage DNA, and based such extrapolations on data from rat gavage and rat and mouse inhalation studies indicating elevated tumor rates in male rat kidney, male rat Leydig interstitial cells, and female rat leukemia/lymphomas. More recent data bearing on MTBE cancer potency include a rodent cancer bioassay of MTBE in drinking water; several new studies of MTBE genotoxicity; several similar evaluations of MTBE metabolites, formaldehyde, and tert-butyl alcohol or TBA; and updated evaluations of carcinogenic mode(s) of action (MOAs) of MTBE and MTBE metabolite's. The lymphoma/leukemia data used in the California assessment were recently declared unreliable by the U.S. Environmental Protection Agency (EPA). Updated characterizations of MTBE CP, and its uncertainty, are currently needed to address a variety of decision goals concerning historical and current MTBE contamination. To this end, an extensive review of data sets bearing on MTBE and metabolite genotoxicity, cytotoxicity, and tumorigenicity was applied to reassess MTBE CP and related uncertainty in view of MOA considerations. Adopting the traditional approach that cytotoxicity-driven cancer MOAs are inoperative at very low, non-cytotoxic dose levels, it was determined that MTBE most likely does not increase cancer risk unless chronic exposures induce target-tissue toxicity, including in sensitive individuals. However, the corresponding expected (or plausible upper bound) CP for MTBE conditional on a hypothetical linear (e.g., genotoxic) MOA was estimated to be ∼2 × 10(-5) (or 0.003) per mg MTBE per kg body weight per day for adults exposed chronically over a lifetime. Based on this conservative estimate of CP, if MTBE is carcinogenic to humans, it is among the weakest 10% of chemical carcinogens evaluated by EPA.
Collapse
|
7
|
Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:204. [PMID: 26861375 PMCID: PMC4772224 DOI: 10.3390/ijerph13020204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/01/2016] [Indexed: 11/16/2022]
Abstract
Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.
Collapse
|
8
|
Weng Z, Suda M, Ohtani K, Mei N, Kawamoto T, Nakajima T, Wang RS. Subchronic exposure to ethyl tertiary butyl ether resulting in genetic damage in Aldh2 knockout mice. Toxicology 2013; 311:107-14. [DOI: 10.1016/j.tox.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/31/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
|
9
|
Martin P, Giardiello M, McDonald TO, Rannard SP, Owen A. Mediation of in Vitro Cytochrome P450 Activity by Common Pharmaceutical Excipients. Mol Pharm 2013; 10:2739-48. [DOI: 10.1021/mp400175n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip Martin
- Department of Molecular
and
Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke
Place, Liverpool, L69 3GF, U.K
| | - Marco Giardiello
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
| | - Tom O. McDonald
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
| | - Steven P. Rannard
- Department of Chemistry, University
of Liverpool, Crown Street, L69 3BX, U.K
- MRC Centre for Drug Safety Science,
University of Liverpool, Liverpool, L69 3GE, U.K
| | - Andrew Owen
- Department of Molecular
and
Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke
Place, Liverpool, L69 3GF, U.K
- MRC Centre for Drug Safety Science,
University of Liverpool, Liverpool, L69 3GE, U.K
| |
Collapse
|
10
|
Yamazoe Y, Ito K, Yoshinari K. Construction of a CYP2E1-template system for prediction of the metabolism on both site and preference order. Drug Metab Rev 2012; 43:409-39. [PMID: 22017508 DOI: 10.3109/03602532.2011.624103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have constructed an in silico system for the prediction of CYP2E1-mediated reaction using a two-dimensional template derived from substrate structures. Although CYP2E1 prefers small-size molecules for the substrates, the enzyme mediates oxidations of large-size molecules, such as benzo[a]pyrene. Overlays of these substrates, to assemble their sites of oxidation into a specific area, suggested a range of regions frequently occupied. The region, having a benzo[a]pyrene-like shape, was thus used as a CYP2E1 template. In this system, atoms in substrates, except for hydrogen atoms, were placed on corners of honeycomb structures of the template after having expanded the structures. Using published data for the metabolism on more than 80 substrates of CYP2E1, the core template was further refined to verify the adjacent area and to define the relative contribution of template positions for the catalysis. The positions on the template were classified into four different point (0-3) groups, depending on relative usage. In addition, we set independent points (-5 to 3) for specific positions to incorporate three-dimensional or functional information. Total scores from both position-occupancy and -function points were calculated for all the orientations of possible conformers of test substrates, and the scores were found to predict the relative abundance (i.e., order) as well as the regioselectivity of human CYP2E1 reactions with high fidelities.
Collapse
Affiliation(s)
- Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | | | | |
Collapse
|
11
|
Shamsipur M, Miran Beigi AA, Teymouri M, Poursaberi T, Mostafavi SM, Soleimani P, Chitsazian F, Tash SA. Biotransformation of methyl tert-butyl ether by human cytochrome P450 2A6. Biodegradation 2011; 23:311-8. [DOI: 10.1007/s10532-011-9510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
12
|
Bonventre JA, White LA, Cooper KR. Methyl tert butyl ether targets developing vasculature in zebrafish (Danio rerio) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:29-40. [PMID: 21684239 PMCID: PMC4378653 DOI: 10.1016/j.aquatox.2011.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/28/2011] [Accepted: 05/07/2011] [Indexed: 05/11/2023]
Abstract
Disruption of vascular endothelial growth factor (VEGF) signaling during early development results in abnormal angiogenesis and increased vascular lesions. Embryonic exposure to 0.625-10mM methyl tert butyl ether (MTBE), a highly water soluble gasoline additive, resulted in a dose dependent increase in pooled blood in the common cardinal vein (CCV), cranial hemorrhages and abnormal intersegmental vessels (ISVs). The EC50s for the lesions ranked in terms of likelihood to occur with MTBE exposure were: pooled blood in the CCV, 3.2 mM [95% CI: 2.2-4.7]>cranial hemorrhage, 11 mM [5.9-20.5]>abnormal ISV, 14.5 mM [6.5-32.4]. Organ systems other than the vascular system appear to develop normally, which suggests MTBE toxicity targets developing blood vessels. Equal molar concentrations (0.625-10mM) of the primary metabolites, tertiary butyl alcohol (TBA) and formaldehyde, did not result in vascular lesions, which suggested that the parent compound is responsible for the toxicity. Stage specific exposures were carried out to determine the developmental period most sensitive to MTBE vascular disruption. Embryos treated until 6-somites or treated after Prim-5 stages did not exhibit a significant increase in lesions, while embryos treated between 6-somites and Prim-5 had a significant increase in vascular lesions (p≤0.05). During the critical window for MTBE-induced vascular toxicity, expression of vegfa, vegfc, and flk1/kdr were significantly decreased 50, 70 and 40%, respectively. This is the first study to characterize disruption in vascular development following embryonic exposure to MTBE. The unique specificity of MTBE to disrupt angiogenesis may be mediated by the down regulation of critical genes in the VEGF pathway.
Collapse
Affiliation(s)
| | - Lori A. White
- Rutgers University - Department of Biochemistry and Microbiology
| | - Keith R. Cooper
- Rutgers University - Department of Biochemistry and Microbiology
- Corresponding Author Contact Information: 76 Lipman Drive, New Brunswick, NJ 08901, , Phone: (732) 932-9763, Fax: (732) 932-8965
| |
Collapse
|
13
|
Sgambato A, Iavicoli I, De Paola B, Bianchino G, Boninsegna A, Bergamaschi A, Pietroiusti A, Cittadini A. Differential toxic effects of methyl tertiary butyl ether and tert-butanol on rat fibroblasts in vitro. Toxicol Ind Health 2009; 25:141-51. [DOI: 10.1177/0748233709104867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methyl tertiary butyl ether (MTBE) is the most widely used motor vehicle fuel oxygenate since it reduces harmful emissions due to gasoline combustion. However, the significant increase in its use in recent years has raised new questions related to its potential toxicity. In fact, although available data are somehow conflicting, there is evidence that MTBE is a toxic substance that may have harmful effects on both animals and humans and an unresolved problem is the role played by MTBE metabolites, especially tertiary butyl alcohol (TBA), in determining toxic effects due to MTBE exposure. In this study, the toxic effects of MTBE have been analyzed on a normal diploid rat fibroblast cell line (Rat-1) and compared to the effects of TBA. The results obtained suggest that both MTBE and TBA inhibit cell growth in vitro but with different mechanisms in terms of effects on the cell cycle progression and on the modulation of cell cycle regulatory proteins. In fact, MTBE caused an accumulation of cells in the S-phase of the cell cycle, whereas TBA caused an accumulation in the G0/G1-phase with different effects on the expression of cyclin D1, p27Kip1, and p53. Moreover, both MTBE and TBA were also shown to induce DNA damage, as assessed in terms of oxidative DNA damage and nuclear DNA fragmentation, that appeared to be susceptible of repair by the cell DNA-repair machinery. In conclusion, these findings suggest that both MTBE and TBA can exert, by acting through different molecular mechanisms, important biological effects on fibroblasts in vitro. Further studies are warranted to shed light on the mechanisms responsible for the observed effects and on their potential significance for the in-vivo exposure.
Collapse
Affiliation(s)
- A Sgambato
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy; Laboratory of Molecular Oncology, Centro di Riferimento Oncologico Regionale della Basilicata (CROB), Istituto di Ricovero e Cura a Carattere Scientifico, Rionero in Vulture, Potenza
| | - I Iavicoli
- Institute of Occupational Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - B De Paola
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy
| | - G Bianchino
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy; Laboratory of Molecular Oncology, Centro di Riferimento Oncologico Regionale della Basilicata (CROB), Istituto di Ricovero e Cura a Carattere Scientifico, Rionero in Vulture, Potenza
| | - A Boninsegna
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy
| | - A Bergamaschi
- Institute of Occupational Medicine, Catholic University of Sacred Heart, Rome, Italy
| | - A Pietroiusti
- Department of Biopathology/Occupational Medicine, Tor Vergata University, Rome, Italy
| | - A Cittadini
- Institute of General Pathology, “Giovanni XXIII” Cancer Research Center, Catholic University of Sacred Heart, Rome, Italy; Laboratory of Molecular Oncology, Centro di Riferimento Oncologico Regionale della Basilicata (CROB), Istituto di Ricovero e Cura a Carattere Scientifico, Rionero in Vulture, Potenza
| |
Collapse
|
14
|
Leavens TL, Borghoff SJ. Physiologically based pharmacokinetic model of methyl tertiary butyl ether and tertiary butyl alcohol dosimetry in male rats based on binding to alpha2u-globulin. Toxicol Sci 2009; 109:321-35. [PMID: 19270017 DOI: 10.1093/toxsci/kfp049] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Current physiologically based pharmacokinetic (PBPK) models for the fuel additive methyl tertiary butyl ether (MTBE) and its metabolite tertiary butyl alcohol (TBA) have not included a mechanism for chemical binding to the male rat-specific protein alpha2u-globulin, which has been postulated to be responsible for renal effects in male rats observed in toxicity and carcinogenicity studies with MTBE. The objective of this work was to expand the previously published models for MTBE to include binding to alpha2u-globulin in the kidney of male rats. In the model, metabolism of MTBE was assumed to occur only in the liver via two saturable pathways. TBA metabolism was assumed to occur only in the liver via one saturable, low-affinity pathway and to be inducible following repeated exposures. The binding of MTBE and TBA to alpha2u-globulin was modeled as saturable and competitive and was assumed to only affect the rate of hydrolysis of alpha2u-globulin in the kidney. The developed model characterized the differences in kidney concentrations of MTBE and TBA in male versus female rats from inhalation exposures to MTBE, as well as the observed changes in blood and tissue concentrations from repeated exposure to TBA. The model-predicted binding affinity of MTBE to alpha2u-globulin was greater than TBA, and the hydrolysis rate of chemically bound alpha2u-globulin was approximately 30% of the unbound protein. This PBPK model supports the role of MTBE and TBA binding to the male rat-specific protein alpha2u-globulin as essential for predicting concentrations of these chemicals in the kidney following exposure.
Collapse
Affiliation(s)
- Teresa L Leavens
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
15
|
Zhang Z, Kleinstreuer C, Kim CS. Transport and Uptake of MTBE and Ethanol Vapors in a Human Upper Airway Model. Inhal Toxicol 2008; 18:169-84. [PMID: 16399659 DOI: 10.1080/08958370500434172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Potential human exposure to vapors of methyl tertiary-butyl ether (MTBE) and ethanol is of increasing concern because these materials are widely used as gasoline additives. In this study we analyzed numerically the transport and deposition of MTBE and ethanol vapors in a model of the human upper respiratory airway, consisting of an oral airway and the first four generations of the tracheobronchial tree. Airflow characteristics and mass transfer processes were analyzed at different inspiratory flow conditions using a three-dimensional computational fluid and particle dynamics method. The deposition data were analyzed in terms of regional deposition fractions (DF = regional uptake/mouth concentration) and deposition enhancement factors (DEF = local DF/average DF) at local micro surface areas. Results show that DF in the entire upper airway model is 21.9%, 12.4%, and 6.9% for MTBE and 67.5%, 51.5%, and 38.5% for ethanol at a flow rate of 15, 30, and 60 L/min, respectively. Of the total DF, 65-70% is deposited in the oral airway for both vapors. Deposition is localized at various sites within the upper airway structure, with a maximum DEF of 1.5 for MTBE and 7.8 for ethanol. Local deposition patterns did not change with inhalation conditions, but DF and the maximum DEF increased with diffusivity, solubility, and the degree of airway wall absorption of vapors, as shown by a greater deposition of ethanol than MTBE. The vapor deposition efficiency as expressed by the dimensionless mass transfer coefficient correlated well with a product of Reynolds (Re) and Schmidt (Sc) numbers. In conclusion, MTBE and ethanol vapors deposit substantially in the upper airway structure with a marked enhancement of dose at local sites, and the deposition dose may be reasonably estimated by a functional relationship with dimensionless fluid flow and diffusion parameters.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
16
|
Epidemiology, toxicokinetics, and health effects of methyl tert-butyl ether (MTBE). J Med Toxicol 2008; 4:115-26. [PMID: 18570173 DOI: 10.1007/bf03160966] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
This paper reviews the published information assessing the kinetics and potential for adverse health effects related to exposure to the fuel oxygenate, methyl tert-butyl ether (MTBE). Data were obtained from previously published reports, using human data where possible. If human data were not available, animal studies were cited. The kinetic profile of MTBE in humans is similar for ingestion and inhalation. The concentrations of MTBE to which the general public is expected to be exposed are orders of magnitude below concentrations that have caused adverse health effects in animals. Controlled human studies have not replicated early epidemiology studies that suggested, but did not confirm, a possible association between MTBE exposure and nonspecific health complaints.
Collapse
|
17
|
Yuan Y, Wang HF, Sun HF, Du HF, Xu LH, Liu YF, Ding XF, Fu DP, Liu KX. Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry. ENVIRONMENTAL TOXICOLOGY 2007; 22:630-635. [PMID: 18000852 DOI: 10.1002/tox.20295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Methyl tert-butyl ether (MTBE) is a currently worldwide used octane enhancer substituting for lead alkyls and gasoline oxygenate. Our previous study using doubly (14)C-labeled MTBE [(CH(3))(3) (14)CO(14)CH(3)] has shown that MTBE binds DNA to form DNA adducts at low dose levels in mice. To elucidate the mechanism of the binding reaction, in this study, the DNA adducts with singly (14)C-labeled MTBE, which was synthesized from (14)C-methanol and tert-butyl alcohol (TBA), or (14)C-labeled TBA in mice have been measured by ultra sensitive accelerator mass spectrometry. The results show that the methyl group of MTBE and tert-butyl alcohol definitely form adducts with DNA in mouse liver, lung, and kidney. The methyl group of MTBE is the predominant binding part in liver, while the methyl group and the tert-butyl group give comparable contributions to the adduct formation in lung and kidney.
Collapse
Affiliation(s)
- Y Yuan
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
A number of oxygenated compounds (oxygenates) are available for use in gasoline to reduce vehicle exhaust emissions, reduce the aromatic compound content, and avoid the use of organo-lead compounds, while maintaining high octane numbers. Ethyl tertiary-butyl ether (ETBE) is one such compound. The current use of ETBE in gasoline or petrol is modest but increasing, with consequently similar trends in the potential for human exposure. Inhalation is the most likely mode of exposure, with about 30% of inhaled ETBE being retained by the lungs and distributed around the body. Following cessation of exposure, the blood concentration of ETBE falls rapidly, largely as a result of its metabolism to tertiary-butyl alcohol (TBA) and acetaldehyde. TBA may be further metabolized, first to 2-methyl-1,2-propanediol and then to 2-hydroxyisobutyrate, the two dominant metabolites found in urine of volunteers and rats. The rapid oxidation of acetaldehyde suggests that its blood concentration is unlikely to rise above normal as a result of human exposure to sources of ETBE. Single-dose toxicity tests show that ETBE has low toxicity and is essentially nonirritant to eyes and skin; it did not cause sensitization in a maximization test in guinea pigs. Neurological effects have been observed only at very high exposure concentrations. There is evidence for an effect of ETBE on the kidney of rats. Increases in kidney weight were seen in both sexes, but protein droplet accumulation (with alpha(2u)-globulin involvement) and sustained increases in cell proliferation occurred only in males. In liver, centrilobular necrosis was induced in mice, but not rats, after exposure by inhalation, although this lesion was reported in some rats exposed to very high oral doses of ETBE. The proportion of liver cells engaged in S-phase DNA synthesis was increased in mice of both sexes exposed by inhalation. ETBE has no specific effects on reproduction, development, or genetic material. Carcinogenicity studies have been conducted with ETBE, TBA, and ethanol (included in this review as an endogenous precursor of acetaldehyde in the absence of TBA). A single experiment with ETBE in rats and several experiments with ethanol in rats and mice were not considered adequate for an evaluation of ETBE carcinogenicity. In male rats only, TBA induced alpha(2u)-globulin nephropathy-related renal tubule adenomas. These are generally considered to have no human relevance. In addition, increases in thyroid follicular cell adenoma incidence were associated with TBA treatment in female mice. This result lacks independent confirmation and is not supported by experiments in which similar or higher internal doses of TBA were delivered.
Collapse
Affiliation(s)
- Douglas McGregor
- Toxicity Evaluation Consultants. Aberdour, Scotland. United Kingdom.
| |
Collapse
|
19
|
Kim D, Andersen ME, Pleil JD, Nylander-French LA, Prah JD. Refined PBPK model of aggregate exposure to methyl tertiary-butyl ether. Toxicol Lett 2007; 169:222-35. [PMID: 17336003 DOI: 10.1016/j.toxlet.2007.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/23/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
Aggregate (multiple pathway) exposures to methyl tertiary-butyl ether (MTBE) in air and water occur via dermal, inhalation, and oral routes. Previously, physiologically based pharmacokinetic (PBPK) models have been used to quantify the kinetic behavior of MTBE and its primary metabolite, tertiary-butyl alcohol (TBA), from inhalation exposures. However, the contribution of dermal and oral exposures to the internal dose of MTBE and TBA were not characterized well. The objective of this study was to develop a multi-route PBPK model of MTBE and TBA in humans. The model was based entirely on blood MTBE and TBA measurements from controlled human exposures. The PBPK model consists of nine primary compartments representing the lungs, skin, fat, kidney, stomach, intestine, liver, rapidly perfused tissue, and slowly perfused tissue. The MTBE and TBA models are linked by a single metabolic pathway. Although the general structure of the model is similar to previously published models of volatile organic compounds, we have now developed a detailed mathematical description of the lung, skin, and gastrointestinal tract. This PBPK model represents the most comprehensive and accurate description of MTBE and TBA pharmacokinetics in humans to date. The aggregate exposure model application for MTBE can be generalized to other environmental chemicals under this framework given appropriate empirical measurement data.
Collapse
Affiliation(s)
- David Kim
- Department of Environmental Science and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
20
|
Elovaara E, Stockmann-Juvala H, Mikkola J, Gelboin HV. Interactive effects of methyl tertiary-butyl ether (MTBE) and tertiary-amyl methyl ether (TAME), ethanol and some drugs: Triglyceridemia, liver toxicity and induction of CYP (2E1, 2B1) and phase II enzymes in female Wistar rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 23:64-72. [PMID: 21783738 DOI: 10.1016/j.etap.2006.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/19/2006] [Accepted: 07/02/2006] [Indexed: 05/31/2023]
Abstract
The abilities of the gasoline additives methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME) to cause liver damage following oral administration, dosed alone or in combination with model hepatotoxins, were investigated in the rat. Inducibility of liver drug-metabolizing enzyme activities was also studied. Exposure to these ethers (10-20mmol/kg) for 3 days resulted in hepatomegaly (13-30%) and induction of cytochrome P450 (CYP) activity towards N-nitrosodimethylamine (NDMAD), 7-pentoxyresorufin (PROD), and 7-ethoxyresorufin (EROD). Immunoinhibition assays with monoclonal antibodies showed that the ethers were equipotent as inducers of CYP2E1 activity (2-fold increase) but not of CYP2B1, which was elevated up to 260-fold in TAME-treated rats but only by 20-fold in MTBE rats. A slight or no modifying effect was observed on the NADPH:quinone oxidoreductase (NQO1), glutathione S-transferase (GST), and UDP-glucuronosyltransferase (UGT) activities. Alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) were elevated in blood plasma after administration of the ethers. No dramatic enhancement of liver damage could be detected by plasma enzyme analysis (ALT, AST, alkaline phosphatase, γ-glutamyltransferase) following ether administration (13.5mmol/kg) to rats pretreated with mildly hepatotoxic dosages of ethanol, pyrazole, phenobarbital, acetaminophen (paracetamol), or 13-cis-retinoic acid (13-cis-RA or isotretinoin). Plasma triglycerides increased in TAME-treated rats (1.7-fold) and in all 13-cis-RA-treated groups (2.1-2.8-fold). The findings that MTBE and TAME exhibited a clear but differential inducing effect on two ether-metabolizing CYP forms (2E1 and 2B1) with no marked effect on phase II activities may reflect the importance of these pathways in vivo. The observation that only TAME by itself induced hypertriglyceridemia while acetaminophen- and 13-cis-RA-induced hypertriglyceridemia were aggravated by both ethers, points to differences in their effects on lipid metabolism. TAME was clearly a more potent CNS depressant than MTBE. There was no marked potentiation of drug/chemical-induced acute liver damage either by MTBE or TAME.
Collapse
Affiliation(s)
- Eivor Elovaara
- Finnish Institute of Occupational Health, FIN-00250 Helsinki, Finland
| | | | | | | |
Collapse
|
21
|
Kim D, Wu ZL, Guengerich FP. Analysis of coumarin 7-hydroxylation activity of cytochrome P450 2A6 using random mutagenesis. J Biol Chem 2005; 280:40319-27. [PMID: 16207711 DOI: 10.1074/jbc.m508171200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450) 2A6 is an important human enzyme involved in the metabolism of many xenobiotic chemicals including coumarin, indole, nicotine, and carcinogenic nitrosamines. A combination of random mutagenesis and high-throughput screening was used in the analysis of P450 2A6, utilizing a fluorescent coumarin 7-hydroxylation assay. The steady-state kinetic parameters (k(cat) and Km) for coumarin 7-hydroxylation by wild-type P450 2A6 and 35 selected mutants were measured and indicated that mutants throughout the coding region can have effects on activity. Five mutants showing decreased catalytic efficiency (k(cat)/Km) were further analyzed for substrate selectivity and binding affinities and showed reduced catalytic activities for 7-methoxycoumarin O-demethylation, tert-butyl methyl ether O-demethylation, and indole 3-hydroxylation. All mutants except one (K476E) showed decreased coumarin binding affinities (and also higher Km values), indicating that this is a major basis for the decreased enzymatic activities. A recent x-ray crystal structure of P450 2A6 bound to coumarin (Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005) Nat. Struct. Mol. Biol. 12, 822-823) indicates that the recovered A481T and N297S mutations appear to be close to coumarin, suggesting direct perturbation of substrate interaction. The decreased enzymatic activity of the K476E mutant was associated with decreases both in NADPH oxidation and the reduction rate of the ferric P450 2A6-coumarin complex. The attenuation is caused in part to lower binding affinity for NADPH-P450 reductase, but the K476E mutant did not achieve the wild-type coumarin 7-hydroxylation activity even at high reductase concentrations.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
22
|
Du HF, Xu LH, Wang HF, Liu YF, Tang XY, Liu KX, Peng SX. Formation of MTBE-DNA adducts in mice measured with accelerator mass spectrometry. ENVIRONMENTAL TOXICOLOGY 2005; 20:397-401. [PMID: 16007660 DOI: 10.1002/tox.20124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Methyl tert-butyl ether (MTBE) is a gasoline oxygenate and antiknock additive substituting for lead alkyls currently in use worldwide. Previous studies have shown that MTBE at very high doses induces tumors in rodents. The aim of the present study was to examine directly the binding ability of MTBE onto DNA, demonstrating its potential genotoxicity. MTBE-DNA adducts and their decay kinetics in mice have been measured by using doubly 14C-labeled MTBE with an advanced, ultrasensitive technique: accelerator mass spectrometry (AMS). It was found that MTBE definitely formed adducts with DNA in mouse lung, liver, and kidney in a log/log linear dose-response relationship. The distribution sequence of DNA adducts in these tissues is: lung > liver > kidney. The level of MTBE-DNA adducts peaked at 12 h postadministration in the lung and peaked at 6 h postadministration in the liver. Then the adducts declined rapidly until 5 days postadministration and thereafter declined much more slowly. To our knowledge, this is the first report on DNA adduction with MTBE in vivo. The mechanism of the formation of MTBE-DNA adducts also is discussed.
Collapse
Affiliation(s)
- H F Du
- Department of Environmental Science and Technology, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
23
|
McGregor DB, Cruzan G, Callander RD, May K, Banton M. The mutagenicity testing of tertiary-butyl alcohol, tertiary-butyl acetate™ and methyl tertiary-butyl ether in Salmonella typhimurium. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 565:181-9. [PMID: 15661616 DOI: 10.1016/j.mrgentox.2004.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/23/2004] [Accepted: 10/28/2004] [Indexed: 11/17/2022]
Abstract
Tertiary-Butyl alcohol (TBA), tertiary-butyl acetate (TBAc) and methyl tertiary-butyl ether (MTBE) are chemicals to which the general public may be exposed either directly or as a result of their metabolism. There is little evidence that they are genotoxic; however, an earlier publication reported that significant results were obtained in Salmonella typhimurium TA102 mutagenicity tests with both TBA and MTBE. We now present results of testing these chemicals and TBAc against S. typhimurium strains in two laboratories. The emphasis was placed on testing with S. typhimurium TA102 and the use of both dimethyl sulphoxide and water as vehicles. Dose levels up to 5000 microg/plate were used and incubations were conducted in both the presence and absence of liver S9 prepared from male rats treated with either Arochlor 1254 or phenobarbital-beta-naphthoflavone. The experiments were replicated, but in none of them was a significant mutagenic response observed, thus the current evidence indicates the TBA, TBAc and MTBE are not mutagenic in bacteria.
Collapse
Affiliation(s)
- D B McGregor
- Toxicity Evaluation Consultants, 38 Shore Road, Aberdour KY3 0TU, UK.
| | | | | | | | | |
Collapse
|
24
|
Sumner SCJ, Asgharian B, Moore TA, Parkinson HD, Bobbitt CM, Fennell TR. Characterization of metabolites and disposition of tertiary amyl methyl ether in male F344 rats following inhalation exposure. J Appl Toxicol 2004; 23:411-7. [PMID: 14635265 DOI: 10.1002/jat.929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tertiary amyl methyl ether (TAME) is a fuel additive used to reduce carbon monoxide in automobile emissions. Because of the potential for human exposure, this study was conducted to develop methods for the characterization and quantitation of metabolites in expired air and excreta of rats exposed to a mixture of [13C]- and [14C]TAME ([2,3,4-13C]- and [2-14C]2-methoxy-2-methylbutane). The distribution of TAME in rats was determined following inhalation exposure, and TAME-derived metabolites were characterized in expired air and urine. Male rats were exposed for 6 h via nose-only inhalation to 2500 ppm [14C/13C]TAME, and expired air, urine and feces were collected for up to 7 days. Over 95% of the total recovered radioactivity was excreted by 48 h after exposure. Recovered radioactivity was expired as organic volatiles (44%) and 14CO2 (3%) and excreted in urine (51%) and feces (1%). Both TAME and its metabolite tertiary amyl alcohol (TAA) accounted for > or =90% of the radiolabel in expired air 0-8 h following exposure termination. Three major urinary metabolites of TAME were identified: (1) a direct glucuronide conjugate of TAA; (2) a product of oxidation at the methylene carbon of TAA (2,3-dihydroxy-2-methylbutane); (3) a glucuronide conjugate of metabolite 2. Metabolite 1 accounted for most of the TAME-derived metabolites excreted 0-8 h following exposure termination. Further metabolic products of TAA (metabolites 2 and 3) accounted for most of the excreted TAME-derived metabolites at later time points.
Collapse
Affiliation(s)
- Susan C J Sumner
- CIIT Centers for Health Research, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sumner SCJ, Janszen DB, Asgharian B, Moore TA, Parkinson HD, Fennell TR. Species and gender differences in the metabolism and distribution of tertiary amyl methyl ether in male and female rats and mice after inhalation exposure or gavage administration. J Appl Toxicol 2003; 23:427-36. [PMID: 14635267 DOI: 10.1002/jat.931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tertiary amyl methyl ether (TAME) is a gasoline fuel additive used to reduce emissions. Understanding the metabolism and distribution of TAME is needed to assess potential human health issues. The effect of dose level, duration of exposure and route of administration on the metabolism and distribution of TAME were investigated in male and female F344 rats and CD-1 mice following inhalation or gavage administration. By 48 h after exposure, >96% of the administered radioactivity was expired in air (16-71%) or eliminated in urine and feces (28-72%). Following inhalation exposure, mice had a two- to threefold greater relative uptake of [14C]TAME compared with rats. Metabolites were excreted in urine of rats and mice that are formed by glucuronide conjugation of tertiary amyl alcohol (TAA), oxidation of TAA to 2,3-dihydroxy-2-methylbutane and glucuronide conjugation of 2,3-dihydroxy-2-methylbutane. A saturation in the uptake and metabolism of TAME with increased exposure concentration was indicated by a decreased relative uptake of total [14C]TAME equivalents and an increase in the percentage expired as volatiles. A saturation of P-450 oxidation of TAA was indicated by a disproportional decrease of 2,3-dihydroxy-2-methylbutane and its glucuronide conjugate with increased exposure concentration.
Collapse
Affiliation(s)
- Susan C J Sumner
- CIIT Centers for Health Research, 6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709-2194, USA
| | | | | | | | | | | |
Collapse
|
26
|
Martin JV, Bilgin NM, Iba MM. Influence of oxygenated fuel additives and their metabolites on the binding of a convulsant ligand of the gamma-aminobutyric acid(A) (GABA(A)) receptor in rat brain membrane preparations. Toxicol Lett 2002; 129:219-26. [PMID: 11888705 DOI: 10.1016/s0378-4274(02)00020-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As a foundation for evaluating potential mechanisms of the neurological effects (e.g. headache, nausea, dizziness) of some octane boosters, we studied the gamma-aminobutyric acid(A) (GABA(A)) receptor in a series of binding assays in membranes from rat brain. The GABA(A) receptor was probed using the radioligand [3H]t-butylbicycloorthobenzoate ([3H]TBOB) which binds to the convulsant recognition site of the receptor. The results demonstrated that the short-chain t-ethers and their t-alcohol metabolites inhibit binding at the convulsant site of the GABA(A) receptor. The potency of the inhibition tended to correlate with carbon chain length. For agents having an equal number of carbon atoms, potency of inhibition of [3H]TBOB binding was greater in magnitude for the alcohols than for the ethers. The descending rank order of potency for the ethers and alcohols were as follows, t-amyl alcohol (TAA); t-amyl-methyl ether (TAME); ethyl-t-butyl ether (ETBE)>t-butyl alcohol (TBA)>methyl-t-butyl ether (MTBE)>ethanol. In additional saturation binding assays, MTBE reduced apparent density of convulsant binding (B(max)).
Collapse
Affiliation(s)
- Joseph V Martin
- Department of Biology, Rutgers University, 315 Penn Street, Camden, NJ 08055, USA.
| | | | | |
Collapse
|
27
|
Abstract
The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.
Collapse
Affiliation(s)
- W Dekant
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg D, Germany.
| | | | | | | |
Collapse
|
28
|
Le Gal A, Dréano Y, Gervasi PG, Berthou F. Human cytochrome P450 2A6 is the major enzyme involved in the metabolism of three alkoxyethers used as oxyfuels. Toxicol Lett 2001; 124:47-58. [PMID: 11684357 DOI: 10.1016/s0378-4274(00)00286-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), and t-amyl methyl ether (TAME) are three alkoxyethers added to gasoline to improve combustion and thereby to reduce the level of carbon monoxide and aromatic hydrocarbons in automobile exhaust. Oxidative demethylation of MTBE and TAME and deethylation of ETBE by CYP enzymes results in the formation of tertiary alcohols and aldehydes, both potentially toxic. The metabolism of these three alkoxyethers was studied in a panel of 12 human liver microsomes. The relatively low apparent Km(1) was 0.25+/-0.17 (mean+/-SD), 0.11+/-0.08 and 0.10+/-0.07 mM and the high apparent Km(2) was 2.9+/-1.8, 5.0+/-2.7 and 1.7+/-1.0 mM for MTBE, ETBE and TAME, respectively. Kinetic data, correlation studies, chemical inhibition and metabolism by heterologously expressed human CYPs support the assertion that the major enzyme involved in MTBE, ETBE and TAME metabolisms is CYP2A6, with a minor contribution of CYP3A4 at low substrate concentration.
Collapse
Affiliation(s)
- A Le Gal
- Laboratoire de Biochimie, EA-948, Faculté de Médecine, BP 815, F-29285 Brest Cedex, France
| | | | | | | |
Collapse
|
29
|
Ahmed FE. Toxicology and human health effects following exposure to oxygenated or reformulated gasoline. Toxicol Lett 2001; 123:89-113. [PMID: 11641038 DOI: 10.1016/s0378-4274(01)00375-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to replace antiknock leaded derivatives in gasoline, legislations were enacted in the United States and other countries to find safer additives and to reduce CO, O3, and volatile organic compounds (VOCs) in non-attainment areas. Oxygenates commonly used include various alcohols and aliphatic ethers. Methyl tert-butyl ether (MTBE) is the most widely used and studied ether oxygenate and is added to gasoline at concentrations up to 15% by volume. Inhalation of fumes while fueling automobiles is the main source of human exposure to MTBE. Humans are also exposed when drinking water contaminated with MTBE. Epidemiological, clinical, animal, metabolic and kinetic studies have been carried out to address human health risks resulting from exposure to MTBE. MTBE is an animal carcinogen, but its human carcinogenic potential remains unclear. Because MTBE functions as a non-traditional genotoxicant, several mechanisms were suggested to explain its mode of action, such as, functioning as a cytotoxic as opposed to a mitogenic agent; involvement of hormonal mechanisms; or operating as a promoter instead of being a complete carcinogen. Some studies suggested that carcinogenicity of MTBE might be due to its two main metabolites, formaldehyde or tributanol. A role for DNA repair in MTBE carcinogenesis was recently unveiled, which explains some, but not all effects. The totality of the evidence shows that, for the majority of the non-occupationally exposed human population, MTBE is unlikely to produce lasting adverse health effects, and may in some cases improve health by reducing the composition of emitted harmful VOCs and other substances. A small segment of the population (e.g. asthmatic children, the elderly, and those with immunodeficiency) may be at increased risk for toxicity. However, no studies have been conducted to investigate this hypothesis. Concern over ground and surface water contamination caused by persistent MTBE has lead the Environmental Protection Agency (EPA) to proposed reducing or eliminating its use as a gasoline additive. The major potential alternatives to MTBE are other forms of ethers such as ethyl tert-butyl ether (ETBE) or tert-amyl methyl ether (TAME), and alcohols such as ethanol. More definitive studies are needed to understand the mechanism(s) by which aliphatic ethers may pose health and environmental impacts. The switch from MTBE to ethanol is not without problems. Ethanol costs more to produce, poses challenges to the gasoline distribution system, extends the spread of hydrocarbons through ground water in gasoline plumes, and in the short-term is unlikely to be available in sufficient quantity. Moreover, its metabolite acetaldehyde is a possible carcinogen that undergoes a photochemical reaction in the atmosphere to produce the respiratory irritant peroxylacetate nitrate (PAN). Congress is addressing whether the Clean Air Act Amendments (CAA) provisions concerning reformulated gasoline (RFG) should be modified to allow refineries to discontinue or lessen the use of oxygenates.
Collapse
Affiliation(s)
- F E Ahmed
- Department of Radiation Oncology, Leo W. Jenkins Cancer Center, LSB 014, East Carolina University School of Medicine, Greenville, NC 27858, USA.
| |
Collapse
|
30
|
Fortin NY, Morales M, Nakagawa Y, Focht DD, Deshusses MA. Methyl tert-butyl ether (MTBE) degradation by a microbial consortium. Environ Microbiol 2001; 3:407-16. [PMID: 11472505 DOI: 10.1046/j.1462-2920.2001.00206.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (BTEX). In the present paper, the characteristics of a consortium degrading MTBE in liquid cultures are presented and discussed. MTBE degradation rate was fast and followed zero order kinetics when added at 100 mg l(-1). The residual MTBE concentration in batch degradation experiments ranged from below the detection limit (1 microg l(-1)) to 50 microg l(-1). The specific activity of the consortium ranged from 7 to 52 mgMTBE g(dw)(-1) h(-1) (i.e. 19-141 mgCOD g(dw) (-1) h(-1)). Radioisotope experiments showed that 79% of the carbon-MTBE was converted to carbon-carbon dioxide. The consortium was also capable of degrading a variety of hydrocarbons, including tert-butyl alcohol (TBA), tert-amyl methyl ether (TAME) and gasoline constituents such as benzene, toluene, ethylbenzene and xylene (BTEX). The consortium was also characterized by a very slow growth rate (0.1 d(-1)), a low overall biomass yield (0.11 gdw g(-1)MTBE; i.e. 0.040 gdw gCOD(-1)), a high affinity for MTBE and a low affinity for oxygen, which may be a reason for the slow or absence of MTBE biodegradation in situ. Still, the results presented here show promising perspectives for engineering the in situ bioremediation of MTBE.
Collapse
Affiliation(s)
- N Y Fortin
- Departments of Chemical and Environmental Engineering, and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
31
|
Lee CW, Mohr SN, Weisel CP. Toxicokinetics of human exposure to methyl tertiary-butyl ether (MTBE) following short-term controlled exposures. JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY 2001; 11:67-78. [PMID: 11409007 DOI: 10.1038/sj.jea.7500149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Methyl tertiary-butyl ether (MTBE) is an oxygenated compound added to gasoline to improve air quality as part of the US Federal Clean Air Act. Due to the increasing and widespread use of MTBE and suspected health effects, a controlled, short-term MTBE inhalation exposure kinetics study was conducted using breath and blood analyses to evaluate the metabolic kinetics of MTBE and its metabolite, tertiary-butyl alcohol (TBA), in the human body. In order to simulate common exposure situations such as gasoline pumping, subjects were exposed to vapors from MTBE in gasoline rather than pure MTBE. Six subjects (three females, three males) were exposed to 1.7 ppm of MTBE generated by vaporizing 15 LV% MTBE gasoline mixture for 15 min. The mean percentage of MTBE absorbed was 65.8 +/- 5.6% following exposures to MTBE. The mean accumulated percentages expired through inhalation for 1 and 8 h after exposure for all subjects were 40.1% and 69.4%, respectively. The three elimination half-lives of the triphasic exponential breath decay curves for the first compartment was 1-4 min, for the second compartment 9-53 min, and for the third compartment 2-8 h. The half-lives data set for the breath second and blood first compartments suggested that the second breath compartment rather than the first breath compartment is associated with a blood compartment. Possible locations for the very short breath half-life observed are in the lungs or mucous membranes. The third compartment calculated for the blood data represent the vessel poor tissues or adipose tissues. A strong correlation between blood MTBE and breath MTBE was found with mean blood-to-breath ratio of 23.5. The peak blood TBA levels occurred after the MTBE peak concentration and reached the highest levels around 2-4 h after exposures. Following the exposures, immediate increases in MTBE urinary excretion rates were observed with lags in the TBA excretion rate. The TBA concentrations reached their highest levels around 6-8 h, and then gradually returned to background levels around 20 h after exposure. Approximately 0.7-1.5% of the inhaled MTBE dose was excreted as unchange urinary MTBE, and 1-3% was excreted as unconjugated urinary TBA within 24 h after exposure.
Collapse
Affiliation(s)
- C W Lee
- Department of Industrial Safety and Hygiene, Foo Yin Institute of Technology, Kaohsiung Hsien, 831 Taiwan, R.O.C
| | | | | |
Collapse
|
32
|
Hong JY, Wang YY, Bondoc FY, Lee M, Yang CS, Hu WY, Pan J. Metabolism of methyl tert-butyl ether and other gasoline ethers by human liver microsomes and heterologously expressed human cytochromes P450: identification of CYP2A6 as a major catalyst. Toxicol Appl Pharmacol 1999; 160:43-8. [PMID: 10502501 DOI: 10.1006/taap.1999.8750] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Previously, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA) and that cytochrome P450 (CYP) enzymes play a critical role in the metabolism of MTBE. The present study demonstrates that human liver is also active in the oxidative metabolism of ETBE and TAME. A large interindividual variation in metabolizing these gasoline ethers was observed in 15 human liver microsomal samples. The microsomal activities in metabolizing MTBE, ETBE, and TAME were highly correlated among each other (r, 0.91-0. 96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the liver microsomes showed that the highest degree of correlation was with human CYP2A6 (r, 0. 90-0.95), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. Kinetic studies on MTBE metabolism with three human liver microsomes exhibited apparent Km values that ranged from 28 to 89 microM and the V(max) values from 215 to 783 pmol/min/mg, with similar catalytic efficiency values (7.7 to 8.8 microl/min/mg protein). Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75% to 95%) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that in human liver, CYP2A6 is the major enzyme responsible for the metabolism of MTBE, ETBE, and TAME.
Collapse
Affiliation(s)
- J Y Hong
- College of Pharmacy, Rutgers University, Piscataway, New Jersey 08854-8020, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hong JY, Wang YY, Bondoc FY, Yang CS, Gonzalez FJ, Pan Z, Cokonis CD, Hu WY, Bao Z. Metabolism of methyl tert-butyl ether and other gasoline ethers in mouse liver microsomes lacking cytochrome P450 2E1. Toxicol Lett 1999; 105:83-8. [PMID: 10092060 DOI: 10.1016/s0378-4274(98)00389-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To reduce the production of pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE) and other ethers such as ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Metabolism of these gasoline ethers is catalyzed by cytochrome P450 (P450) enzymes. P450 2E1, which metabolizes diethyl ether, was suggested to be an enzyme involved. The present study used 2E1 knock-out mice (2E1-/-) to assess the contribution of 2E1 to the metabolism of MTBE, ETBE and TAME. Liver microsomes prepared from the 2E1 knock-out mice lacked 2E1 activity (assayed as N-nitrosodimethylamine demethylation), but were still active in metabolizing all three gasoline ethers. The levels of ether-metabolizing activity (nmol/min per mg) in the liver microsomes from 7 week old female 2E1 knock-out mice were 0.54+/-0.17 for MTBE, 0.51+/-0.24 for ETBE and 1.14+/-0.25 for TAME at a 1 mM substrate concentration. These activity levels were not significantly different from those of the sex- and age-matched C57BL/6N and 129/Sv mice, which are the parental lineage strains of the 2E1 knock-out mice and are both 2E1+/+. Our results clearly demonstrate that 2E1 plays a negligible role in the metabolism of MTBE, ETBE and TAME in mouse livers.
Collapse
Affiliation(s)
- J Y Hong
- Department of Chemical Biology, College of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Caprino L, Togna GI. Potential health effects of gasoline and its constituents: A review of current literature (1990-1997) on toxicological data. ENVIRONMENTAL HEALTH PERSPECTIVES 1998; 106:115-25. [PMID: 9452413 PMCID: PMC1533055 DOI: 10.1289/ehp.98106115] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We reviewed toxicological studies, both experimental and epidemiological, that appeared in international literature in the period 1990-1997 and included both leaded and unleaded gasolines as well as their components and additives. The aim of this overview was to select, arrange, and present references of scientific papers published during the period under consideration and to summarize the data in order to give a comprehensive picture of the results of toxicological studies performed in laboratory animals (including carcinogenic, teratogenic, or embryotoxic activity), mutagenicity and genotoxic aspects in mammalian and bacterial systems, and epidemiological results obtained in humans in relation to gasoline exposure. This paper draws attention to the inherent difficulties in assessing with precision any potential adverse effects on health, that is, the risk of possible damage to man and his environment from gasoline. The difficulty of risk assessment still exists despite the fact that the studies examined are definitely more technically valid than those of earlier years. The uncertainty in overall risk determination from gasoline exposure also derives from the conflicting results of different studies, from the lack of a correct scientific approach in some studies, from the variable characteristics of the different gasoline mixtures, and from the difficulties of correctly handling potentially confounding variables related to lifestyle (e.g., cigarette smoking, drug use) or to preexisting pathological conditions. In this respect, this paper highlights the need for accurately assessing the conclusive explanations reported in scientific papers so as to avoid the spread of inaccurate or misleading information on gasoline toxicity in nonscientific papers and in mass-media messages.
Collapse
Affiliation(s)
- L Caprino
- Institute of Medical Pharmacology, University of Rome "La Sapienza," Rome, Italy
| | | |
Collapse
|
35
|
Jones BC, Tyman CA, Smith DA. Identification of the cytochrome P450 isoforms involved in the O-demethylation of 4-nitroanisole in human liver microsomes. Xenobiotica 1997; 27:1025-37. [PMID: 9364740 DOI: 10.1080/004982597240000] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. 4-Nitroanisole is O-demethylated to 4-nitrophenol by human liver microsomes. Kinetic studies indicate that this metabolic route is mediated by two cytochrome P450 isoforms, one with a K(m) = 2.1 microM and the other with a K(m) = 220 microM. 2. Chemical inhibition and correlation studies in human liver microsomes indicate that the low K(m) enzyme is CYP2A6 and the high K(m) enzyme is CYP2E1 suggesting that44-nitroanisole is not a general cytochrome P450 substrate. 3. Studies using expressed recombinant cytochrome P450s indicated that all the cytochrome P450s investigated metabolized 4-nitroanisole but CYP2A6 and CYP2E1 produced the highest rates. Kinetic studies with these two isoforms produced a K(m) for CYP2A6 of 9 microM and 54 microM for CYP2E1. 4. The involvement of these two isoforms in the O-demethylation of 4-nitroanisole can be rationalized in terms of a hydrogen bond interaction with the nitro group and the active site of CYP2A6 and a hydrophobic interaction with the active site of CYP2E1.
Collapse
Affiliation(s)
- B C Jones
- Department of Drug Metabolism, Pfizer Central Research, Sandwich, UK
| | | | | |
Collapse
|