1
|
Romero-Calvo I, Ocón B, Gámez-Belmonte R, Hernández-Chirlaque C, de Jonge HR, Bijvelds MJ, Martínez-Augustin O, Sánchez de Medina F. Adenylyl cyclase 6 is involved in the hyposecretory status of experimental colitis. Pflugers Arch 2018; 470:1705-1717. [PMID: 30094477 DOI: 10.1007/s00424-018-2187-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022]
Abstract
One of the cardinal symptoms of intestinal inflammation is diarrhea. Acute intestinal inflammation is associated with inhibition of ion absorption and increased secretion, along with fluid leakage due to epithelial injury and changes in permeability. However, in the chronic situation, a downregulation of both absorptive and secretory transport has been reported. We investigated how experimental colitis reduces cAMP levels in intestinal epithelial cells through modulation of adenylyl cyclases (AC). Primary colonic epithelial cells obtained from rats with trinitrobenzenesulfonic acid colitis and non-colitic controls were analyzed for AC expression by RT-qPCR and Western blot, following a preliminary microarray analysis. AC6 and AC5 were found to be expressed in colonocytes, and downregulated by inflammation, with the former exhibiting considerably higher mRNA levels in both cases. To test the hypothesis that inflammatory cytokines may account for this effect, Caco 2 cells were treated with IL-1β, TNF-α, or IFN-γ. All three cytokines inhibited forskolin evoked short-circuit currents in Ussing chambers and lowered intracellular cAMP, but failed to alter AC6 mRNA levels. AC5/AC6 expression was however inhibited in mouse jejunal organoids treated with IFN-γ and TNF-α, but not IL-1β. Gene knockdown of AC6 resulted in a significant decrease of ion secretion in T84 cells. We conclude that the disturbances in ion secretion observed in rat TNBS colitis are associated with low intracellular levels of cAMP in the epithelium, which may be explained in part by the downregulation of AC5/AC6 expression by proinflammatory cytokines.
Collapse
Affiliation(s)
- Isabel Romero-Calvo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Borja Ocón
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Reyes Gámez-Belmonte
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| | - Cristina Hernández-Chirlaque
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marcel J Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Fermín Sánchez de Medina
- Department of Pharmacology, CIBERehd, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain
| |
Collapse
|
2
|
DUBOC H, TOLSTANOVA G, YUAN PQ, WU V, KAJI I, BIRAUD M, AKIBA Y, KAUNITZ J, MILLION M, TACHE Y, LARAUCHE M. Reduction of epithelial secretion in male rat distal colonic mucosa by bile acid receptor TGR5 agonist, INT-777: role of submucosal neurons. Neurogastroenterol Motil 2016; 28:1663-1676. [PMID: 27259385 PMCID: PMC5083223 DOI: 10.1111/nmo.12866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/28/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent evidence from rat neuron-free mucosa study suggests that the membrane bile acid receptor TGR5 decreases colonic secretion under basal and stimulated conditions. As submucosal neurons are key players in secretory processes and highly express TGR5, we investigated their role in TGR5 agonist-induced inhibition of secretion and the pathways recruited. METHODS TGR5 expression and localization were assessed in rat proximal (pC) and distal (dC) colon by qPCR and immunohistochemistry with double labeling for cholinergic neurons in whole-mount preparations. The influence of a selective (INT-777) or weak (ursodeoxycholic acid, UDCA) TGR5 agonist on colonic secretion was assessed in Ussing chambers, in dC preparation removing seromuscular ± submucosal tissues, in the presence of different inhibitors of secretion pathways. KEY RESULTS TGR5 mRNA is expressed in full thickness dC and pC and immunoreactivity is located in colonocytes and pChAT-positive neurons. Addition of INT-777, and less potently UDCA, decreased colonic secretion in seromuscular stripped dC by -58.17± 2.6%. INT-777 effect on basal secretion was reduced in neuron-free and TTX-treated mucosal-submucosal preparations. Atropine, hexamethonium, indomethacin, and L-NAME all reduced significantly INT-777's inhibitory effect while the 5-HT4 antagonist, RS-39604, and lidocaine abolished it. INT-777 inhibited stimulated colonic secretion induced by nicotine, but not cisapride, carbachol or PGE2. CONCLUSIONS & INFERENCES TGR5 activation inhibits basal and stimulated distal colonic secretion in rats by acting directly on epithelial cells and also inhibiting submucosal neurons. This could represent a counter-regulatory mechanism, at the submucosal level, of the known prosecretory effect of bile acids in the colon.
Collapse
Affiliation(s)
- Henri DUBOC
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,DHU UNITY, Inserm UMR 1149, and Louis Mourier Hospital, Department of Gastroenterology and Hepatology, AP-HP, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Ganna TOLSTANOVA
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Educational-Scientific Center “Institute of Biology” Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Pu-Qing YUAN
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Vincent WU
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Izumi KAJI
- Department of Medicine, School of Medicine, UCLA,Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | - Mandy BIRAUD
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yasutada AKIBA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Department of Medicine, School of Medicine, UCLA,Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | - Jonathan KAUNITZ
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA,Department of Medicine, School of Medicine, UCLA,Department of Surgery, School of Medicine, UCLA,Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | - Mulugeta MILLION
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Yvette TACHE
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Muriel LARAUCHE
- CURE: Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA,VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
3
|
Acute exercises induce disorders of the gastrointestinal integrity in a murine model. Eur J Appl Physiol 2013; 114:609-17. [PMID: 24352573 DOI: 10.1007/s00421-013-2791-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 12/05/2013] [Indexed: 01/16/2023]
Abstract
PURPOSE Many endurance athletes complain about gastrointestinal (GI) symptoms. It is assumed that exercise-induced shift of perfusion with consecutive hypoperfusion of the enteral vascular system leads to an increased GI permeability and tissue damage. Therefore, the aim of the study was to investigate permeability, apoptosis, electrogenic ion transport (Isc), and tissue conductance (Gt) of the small intestine in a murine exercise model. METHODS After spirometry, male Swiss CD-1 mice were subjected to an intensive treadmill exercise (80% VO2max). Sedentary mice served as controls. The small intestine was removed at several time intervals post-exercise. Apoptotic cells were determined by the TUNEL method, while fluorescein isothiocyanate dextran permeation indicated intestinal permeability. The Gt and Isc measurements were carried out in a modified Ussing chamber. RESULTS Apoptosis of epithelial cells increased continuously until 24 h post exercise (0.8 ± 0.42 versus 39.2 ± 26.0%; p < 0.05). Compared with the control group the permeability increased 2 h after exercise (0.47 ± 0.07 versus 0.67 ± 0.14 FU/min; p < 0.05). Isc measurements of the ileum were augmented after 24 h (3.33 ± 0.56 versus 5.77 ± 1.16 μEq/h/cm(2); p < 0.05). At this time the Gt increased as well (28.8 ± 3.37 versus 32.5 ± 2.59 mS/cm(2); p < 0.05). CONCLUSION In the murine exercise model there is evidence that after intense endurance exercise repair processes occur in small intestinal epithelial cells, which affect permeability, Gt, and Isc. The formation of lamellipodia to close the "leaky" tight junctions caused by apoptosis might be an underlying mechanism.
Collapse
|
4
|
Scharl M, Rudenko I, McCole DF. Loss of protein tyrosine phosphatase N2 potentiates epidermal growth factor suppression of intestinal epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 2010; 299:G935-45. [PMID: 20689057 PMCID: PMC2957338 DOI: 10.1152/ajpgi.00106.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Crohn's disease candidate gene, protein tyrosine phosphatase nonreceptor type 2 (PTPN2), has been shown to regulate epidermal growth factor (EGF)-induced phosphatidylinositol 3-kinase (PI3K) activation in fibroblasts. In intestinal epithelial cells (IECs), EGF-induced EGF receptor (EGFR) activation and recruitment of PI3K play a key role in regulating many cellular functions including Ca(2+)-dependent Cl(-) secretion. Moreover, EGFR also serves as a conduit for signaling by other non-growth factor receptor ligands such as the proinflammatory cytokine, IFN-γ. Here we investigated a possible role for PTPN2 in the regulation of EGFR signaling and Ca(2+)-dependent Cl(-) secretion in IECs. PTPN2 knockdown enhanced EGF-induced EGFR tyrosine phosphorylation in T(84) cells. In particular, PTPN2 knockdown promoted EGF-induced phosphorylation of EGFR residues Tyr-992 and Tyr-1068 and led subsequently to increased association of the catalytic PI3K subunit, p110, with EGFR and elevated phosphorylation of the downstream marker, Akt. As a functional consequence, loss of PTPN2 potentiated EGF-induced inhibition of carbachol-stimulated Ca(2+)-dependent Cl(-) secretion. In contrast, PTPN2 knockdown affected neither IFN-γ-induced EGFR transactivation nor EGF- or IFN-γ-induced phosphorylation of ERK1/2. In summary, our data establish a role for PTPN2 in the regulation of EGFR signaling in IECs in response to EGF but not IFN-γ. Knockdown of PTPN2 directs EGFR signaling toward increased PI3K activation and increased suppression of epithelial chloride secretory responses. Moreover, our findings suggest that PTPN2 dysfunction in IECs leads to altered control of intestinal epithelial functions regulated by EGFR.
Collapse
Affiliation(s)
- Michael Scharl
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Ivan Rudenko
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Declan F. McCole
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| |
Collapse
|
5
|
Yang N, Liu SM, Zheng LF, Ji T, Li Y, Mi XL, Xue H, Ren W, Xu JD, Zhang XH, Li LS, Zhang Y, Zhu JX. Activation of submucosal 5-HT(3) receptors elicits a somatostatin-dependent inhibition of ion secretion in rat colon. Br J Pharmacol 2010; 159:1623-5. [PMID: 20233224 DOI: 10.1111/j.1476-5381.2010.00653.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Hydroxytryptamine (5-HT) is a key regulator of the gastrointestinal system and we have shown that submucosal neuronal 5-HT(3) receptors exerted a novel inhibitory effect on colonic ion transport. The aim of the present study was to investigate the precise mechanism(s) underlying this inhibitory effect. EXPERIMENTAL APPROACH Mucosa/submucosa or mucosa-only preparations from rat distal colon were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as an indicator of ion secretion. Somatostatin release was determined with radioimmunoassay. Intracellular cAMP content was measured with enzyme-linked immunoadsorbent assay (elisa). Immunohistochemical techniques were used to study the expression of 5-HT(3) receptors, somatostatin and somatostatin receptors in colonic tissue. KEY RESULTS In rat distal colonic mucosa/submucosa preparations, pretreatment with 5-HT(3) receptor antagonists enhanced 5-HT-induced increases in I(sc). However, in mucosa-only preparations without retained neural elements, pretreatment with 5-HT(3) receptor antagonists inhibited 5-HT-induced DeltaI(sc). Pretreatment with a somatostatin-2 (sst(2)) receptor antagonist in mucosa/submucosa preparations augmented 5-HT-induced DeltaI(sc). Combination of sst(2) and 5-HT(3) receptor antagonists did not cause further enhancement of 5-HT-induced DeltaI(sc). Moreover, both sst(2) and 5-HT(3) receptor antagonists enhanced 5-HT-induced increase in intracellular cAMP concentration in the mucosa/submucosa preparations. 5-HT released somatostatin from rat colonic mucosa/submucosa preparations, an effect prevented by pretreatment with 5-HT(3) receptor antagonists. Immunohistochemical staining demonstrated the presence of 5-HT(3) receptors on submucosal somatostatin neurons and of sst(2) receptors on colonic mucosa. CONCLUSION AND IMPLICATIONS Activation of neuronal 5-HT(3) receptors in the submucosal plexus of rat colon suppressed 5-HT-induced ion secretion by releasing somatostatin from submucosal neurons.
Collapse
Affiliation(s)
- N Yang
- Department of Physiology, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil 2010; 22:7-18. [PMID: 19686308 DOI: 10.1111/j.1365-2982.2009.01381.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Knowledge of neural circuits, neurotransmitters and receptors involved in the sympathetic regulation of gastrointestinal (GI) function is well established. However, it is only recently that the interaction of sympathetic neurons, and of sympathetic transmitters, with the GI immune system and with gut flora has begun to be explored. Changes in the behaviour of sympathetic nerves when gut function is compromised, for example in ileus and in inflammation, have been observed, but the roles of the sympathetic innervation in these and other pathologies are not adequately understood. In this article, we first review the principal roles of the sympathetic innervation of the GI tract in controlling motility, fluid exchange and gut blood flow in healthy individuals. We then discuss the evidence that there are important interactions of sympathetic transmitters with the gut immune system and enteric glia, and evidence that inflammation has substantial effects on sympathetic neurons. These reciprocal interactions contribute to pathological changes in ways that are not yet clarified. Finally, we focus on inflammation, diabetes and postoperative ileus as conditions in which there is sympathetic involvement in compromised gut function.
Collapse
Affiliation(s)
- A E Lomax
- Gastrointestinal Diseases Research Unit, Department of Physiology, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
7
|
Structural changes in the epithelium of the small intestine and immune cell infiltration of enteric ganglia following acute mucosal damage and local inflammation. Virchows Arch 2009; 455:55-65. [PMID: 19517133 DOI: 10.1007/s00428-009-0795-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/24/2009] [Accepted: 05/25/2009] [Indexed: 01/06/2023]
Abstract
An acute enteritis is commonly followed by intestinal neuromuscular dysfunction, including prolonged hyperexcitability of enteric neurons. Such motility disorders are associated with maintained increases in immune cells adjacent to enteric ganglia and in the mucosa. However, whether the commonly used animal model, trinitrobenzene sulphonate (TNBS)-induced enteritis, causes histological and immune cell changes similar to human enteric neuropathies is not clear. We have made a detailed study of the mucosal damage and repair and immune cell invasion following intralumenal administration of TNBS. Intestines from untreated, sham-operated and TNBS-treated animals were examined at 3 h to 56 days. At 3 h, the mucosal surface was completely ablated, by 6 h an epithelial covering was substantially restored and by 1 day there was full re-epithelialisation. The lumenal epithelium developed from a squamous cell covering to a fully differentiated columnar epithelium with mature villi at about 7 days. Prominent phagocytic activity of enterocytes occurred at 1-7 days. A surge of eosinophils and T lymphocytes associated with the enteric nerve ganglia occurred at 3 h to 3 days. However, elevated immune cell numbers occurred in the lamina propria of the mucosa until 56 days, when eosinophils were still three times normal. We conclude that the disruption of the mucosal surface that causes TNBS-induced ileitis is brief, a little more than 6 h, and causes a transient immune cell surge adjacent to enteric ganglia. This is much briefer than the enteric neuropathy that ensues. Ongoing mucosal inflammatory reaction may contribute to the persistence of enteric neuropathy.
Collapse
|
8
|
Hirota CL, McKay DM. Loss of Ca-mediated ion transport during colitis correlates with reduced ion transport responses to a Ca-activated K channel opener. Br J Pharmacol 2009; 156:1085-97. [PMID: 19298254 DOI: 10.1111/j.1476-5381.2009.00122.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Epithelial surface hydration is critical for proper gut function. However, colonic tissues from individuals with inflammatory bowel disease or animals with colitis are hyporesponsive to Cl(-) secretagogues. The Cl(-) secretory responses to the muscarinic receptor agonist bethanechol are virtually absent in colons of mice with dextran sodium sulphate (DSS)-induced colitis. Our aim was to define the mechanism underlying this cholinergic hyporesponsiveness. EXPERIMENTAL APPROACH Colitis was induced by 4% DSS water, given orally. Epithelial ion transport was measured in Ussing chambers. Colonic crypts were isolated and processed for mRNA expression via RT-PCR and protein expression via immunoblotting and immunolocalization. KEY RESULTS Expression of muscarinic M(3) receptors in colonic epithelium was not decreased during colitis. Short-circuit current (I(SC)) responses to other Ca(2+)-dependent secretagogues (histamine, thapsigargin, cyclopiazonic acid and calcium ionophore) were either absent or severely attenuated in colonic tissue from DSS-treated mice. mRNA levels of several ion transport molecules (a Ca(2+)-regulated Cl(-) channel, the intermediate-conductance Ca(2+)-activated K(+) channel, the cystic fibrosis transmembrane conductance regulator, the Na(+)/K(+)-ATPase pump or the Na(+)/K(+)/2Cl(-) co-transporter) were not reduced in colonic crypts from DSS-treated mice. However, protein expression of Na(+)/K(+)-ATPase alpha1 subunits was decreased twofold during colitis. Activation of Ca(2+)-activated K(+) channels increased I(SC) significantly less in DSS colons compared with control, as did the protein kinase C activator, phorbol 12-myristate 13-acetate. CONCLUSIONS AND IMPLICATIONS Decreased Na(+)/K(+)-ATPase expression probably contributes to overall epithelial hyporesponsiveness during colitis, while dysfunctional K(+) channels may account, at least partially, for lack of epithelial secretory responses to Ca(2+)-mediated secretagogues.
Collapse
Affiliation(s)
- Christina L Hirota
- Intestinal Disease Research Programme, Department of Pathology and Molecular Medicine, McMaster University, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada.
| | | |
Collapse
|
9
|
Martínez-Augustin O, Romero-Calvo I, Suárez MD, Zarzuelo A, de Medina FS. Molecular bases of impaired water and ion movements in inflammatory bowel diseases. Inflamm Bowel Dis 2009; 15:114-27. [PMID: 18626965 DOI: 10.1002/ibd.20579] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The intestine is dedicated to the absorption of water and nutrients. Fine tuning of this process is necessary to maintain an adequate balance and inflammation disrupts the equilibrium. This review summarizes the current evidence in this field. Classical mechanisms proposed include alteration of epithelial integrity, augmented secretion, and reduced absorption. In addition, intestinal inflammation is associated with defects in epithelial barrier function. However, our understanding of the phenomenon has been complicated by the fact that ionic secretion is in fact diminished in vivo, even after inflammation has subsided. Inhibited ionic secretion can be reversed partially or totally in vitro by maneuvers such as blockade of inducible nitric oxide synthase or removal of the submucosal layer. Disturbances in ionic absorption are less well characterized but clearly involve both electroneutral and electrogenic Na(+) absorption. Altered ionic transport is associated with changes in the expression and function of the transporters, including the Na(+)/K(+) ATPase, the sodium/potassium/chloride cotransporter 1 (NKCC1), the sodium/hydrogen exchanger 3 (NHE3), and the epithelial sodium channel (ENaC), as well as to the modulation of intracellular signaling. Further investigation is needed in this area in order to provide an integrated paradigm of ionic transport in the inflamed intestine. In particular, we do not know exactly how diarrhea ensues in inflammation and, consequently, we do not have specific pharmacological tools to combat this condition effectively and without side effects. Moreover, whether transport disturbances are reversible independently of inflammatory control is unknown.
Collapse
Affiliation(s)
- Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
10
|
Anti-Inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzene sulfonic acid-induced colitis in a murine model. Infect Immun 2008; 76:4772-82. [PMID: 18644879 DOI: 10.1128/iai.00744-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent studies showed that enteric helminth infection improved symptoms in patients with inflammatory bowel disease as well as in experimental models of colitis. The aim of this study was to determine the mechanism of the protective effect of helminth infection on colitis-induced changes in immune and epithelial cell function. BALB/c mice received an oral infection of Heligmosomoides polygyrus third-stage larvae, were given intrarectal saline or trinitrobenzene sulfonic acid (TNBS) on day 10 postinfection, and were studied 4 days later. Separate groups of mice received intrarectal saline or TNBS on day 10 and were studied on day 14. Muscle-free colonic mucosae were mounted in Ussing chambers to measure mucosal permeability and secretion. Expression of cytokines was assessed by quantitative real-time PCR, and mast cells were visualized by immunohistochemistry. TNBS-induced colitis induced mucosal damage, upregulated Th1 cytokines, and depressed secretory responses. Heligmosomoides polygyrus elevated Th2 cytokine expression, increased mast cell infiltration and mucosal resistance, and also reduced some secretory responses. Prior H. polygyrus infection prevented TNBS-induced upregulation of Th1 cytokines and normalized secretory responses to specific agonists. TNBS-induced colitis did not alter H. polygyrus-induced mast cell infiltration or upregulation of Th2 cytokine expression. The results indicate that the protective mechanism of enteric nematode infection against TNBS-induced colitis involves prevention of Th1 cytokine expression and improved colonic function by a mechanism that may involve mast cell-mediated protection of neural control of secretory function. Similar response patterns could account for the clinical improvement seen in inflammatory bowel disease with helminthic therapy.
Collapse
|
11
|
Seidler U, Lenzen H, Cinar A, Tessema T, Bleich A, Riederer B. Molecular mechanisms of disturbed electrolyte transport in intestinal inflammation. Ann N Y Acad Sci 2006; 1072:262-75. [PMID: 17057206 DOI: 10.1196/annals.1326.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diarrhea is the hallmark of both ulcerative colitis (UC) and Crohn's disease. Loss of resorptive area, destruction of epithelial cells, leaky tight junctions, and release of inflammatory mediators and products from immune cells that stimulate fluid secretion all have been implicated in the pathogenesis of inflammatory diarrhea. Very early studies in patients, however, have pinpointed the overwhelming transport abnormality in inflamed intestinal mucosa: a virtually complete loss of sodium resorptive capacity. Recently, tools have become available to study the molecular basis of disturbances in the major electrolyte transport systems during intestinal inflammation. This review gives a brief overview of the historical development of research related to electrolyte transport in inflammatory bowel disorders, focusing on the studies performed in humans, and highlights recent understanding of the molecular mechanisms that may help explain the origin of diarrhea in intestinal inflammation.
Collapse
Affiliation(s)
- Ursula Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Hirota CL, McKay DM. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 2006; 149:463-79. [PMID: 16981004 PMCID: PMC2014671 DOI: 10.1038/sj.bjp.0706889] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only.
Collapse
Affiliation(s)
- C L Hirota
- Department Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
13
|
Lammers WJEP, Lammers-van den Berg AM, Morrison JFB, Petroianu GA. Translating Trendelenburg; back to the future. Naunyn Schmiedebergs Arch Pharmacol 2006; 373:134-8. [PMID: 16557377 DOI: 10.1007/s00210-006-0051-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Wim J E P Lammers
- Department of Physiology, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | | | | | | |
Collapse
|