1
|
Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J Med Chem 2023; 66:3703-3731. [PMID: 36858050 PMCID: PMC10041541 DOI: 10.1021/acs.jmedchem.2c01406] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Since the beginning of history, natural products have been an abundant source of bioactive molecules for the treatment of different diseases, including cancer. Many allyl derivatives, which have shown anticancer activity both in vitro and in vivo in a large number of cancers, are bioactive molecules found in garlic, cinnamon, nutmeg, or mustard. In addition, synthetic products containing allyl fragments have been developed showing potent anticancer properties. Of particular note is the allyl derivative 17-AAG, which has been evaluated in Phase I and Phase II/III clinical trials for the treatment of multiple myeloma, metastatic melanoma, renal cancer, and breast cancer. In this Perspective, we compile extensive literature evidence with descriptions and discussions of the most recent advances in different natural and synthetic allyl derivatives that could generate cancer drug candidates in the near future.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
2
|
Lunz K, Stappen I. Back to the Roots-An Overview of the Chemical Composition and Bioactivity of Selected Root-Essential Oils. Molecules 2021; 26:3155. [PMID: 34070487 PMCID: PMC8197530 DOI: 10.3390/molecules26113155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Since ancient times, plant roots have been widely used in traditional medicine for treating various ailments and diseases due to their beneficial effects. A large number of studies have demonstrated that-besides their aromatic properties-their biological activity can often be attributed to volatile constituents. This review provides a comprehensive overview of investigations into the chemical composition of essential oils and volatile components obtained from selected aromatic roots, including Angelica archangelica, Armoracia rusticana, Carlina sp., Chrysopogon zizanioides, Coleus forskohlii, Inula helenium, Sassafras albidum, Saussurea costus, and Valeriana officinalis. Additionally, their most important associated biological impacts are reported, such as anticarcinogenic, antimicrobial, antioxidant, pesticidal, and other miscellaneous properties. Various literature and electronic databases-including PubMed, ScienceDirect, Springer, Scopus, Google Scholar, and Wiley-were screened and data was obtained accordingly. The results indicate the promising properties of root-essential oils and their potential as a source for natural biologically active products for flavor, pharmaceutical, agricultural, and fragrance industries. However, more research is required to further establish the mechanism of action mediating these bioactivities as well as essential oil standardization because the chemical composition often strongly varies depending on external factors.
Collapse
Affiliation(s)
| | - Iris Stappen
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
3
|
Abstract
Plants and their extracts are the new field of interest for many scientists and also of some pharmaceutical industries. In order to provide more information for their usage in the prevention and treatment of diseases many clinical trials and researches are being carried out. In this review the biological activities and the mechanism of action of volatile phenylpropanoids (PPs) found in essential oils (EOs) are presented. The aim of this overview is to show that volatile PPs found in EOs can exert many of the biological activities which are generally attributed to EOs. Almost all of the PPs possess antimicrobial, anti-inflammatory and anticancer activities. These are related to the different substitution of the phenylpropane molecule. For each isolated group not only one, but more pharmacological activities can be credited.
Collapse
Affiliation(s)
- Radmila Ilijeva
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Gerhard Buchbauer
- Department of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Abstract
Consuming plants for their presumed health benefits has occurred since early civilizations. Phytochemicals are found in various plants that are frequently included in the human diet and are generally thought to be safe for consumption because they are produced naturally. However, this is not always the case and in fact many natural compounds found in several commonly consumed plants are potential carcinogens or tumor promoters and should be avoided.
Collapse
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota.
| |
Collapse
|
5
|
Feng MY, Rao R. New insights into store-independent Ca(2+) entry: secretory pathway calcium ATPase 2 in normal physiology and cancer. Int J Oral Sci 2013; 5:71-4. [PMID: 23670239 PMCID: PMC3707068 DOI: 10.1038/ijos.2013.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/01/2013] [Indexed: 11/09/2022] Open
Abstract
Recent studies in secretory pathway calcium ATPases (SPCA) revealed novel functions of SPCA2 in interacting with store-operated Ca(2+) channel Orai1 and inducing Ca(2+) influx at the cell surface. Importantly, SPCA2-mediated Ca(2+) signaling is uncoupled from its conventional role of Ca(2+)-ATPase and independent of store-operated Ca(2+) signaling pathway. SPCA2-induced store-independent Ca(2+) entry (SICE) plays essential roles in many important physiological processes, while unbalanced SICE leads to enhanced cell proliferation and tumorigenesis. Finally, we have summarized the clinical implication of SICE in oral cancer prognosis and treatment. Inhibition of SICE may be a new target for the development of cancer therapeutics.
Collapse
|
6
|
Yu FS, Huang AC, Yang JS, Yu CS, Lu CC, Chiang JH, Chiu CF, Chung JG. Safrole induces cell death in human tongue squamous cancer SCC-4 cells through mitochondria-dependent caspase activation cascade apoptotic signaling pathways. ENVIRONMENTAL TOXICOLOGY 2012; 27:433-444. [PMID: 21591240 DOI: 10.1002/tox.20658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 08/15/2010] [Indexed: 05/30/2023]
Abstract
Safrole is one of important food-borne phytotoxin that exhibits in many natural products such as oil of sassafras and spices such as anise, basil, nutmeg, and pepper. This study was performed to elucidate safrole-induced apoptosis in human tongue squamous carcinoma SCC-4 cells. The effect of safrole on apoptosis was measured by flow cytometry and DAPI staining and its regulatory molecules were studied by Western blotting analysis. Safrole-induced apoptosis was accompanied with up-regulation of the protein expression of Bax and Bid and down-regulation of the protein levels of Bcl-2 (up-regulation of the ratio of Bax/Bcl-2), resulting in cytochrome c release, promoted Apaf-1 level and sequential activation of caspase-9 and caspase-3 in a time-dependent manner. We also used real-time PCR to show safrole promoted the mRNA expressions of caspase-3, -8, and -9 in SCC-4 cells. These findings indicate that safrole has a cytotoxic effect in human tongue squamous carcinoma SCC-4 cells by inducing apoptosis. The induction of apoptosis of SCC-4 cells by safrole is involved in mitochondria- and caspase-dependent signal pathways.
Collapse
Affiliation(s)
- Fu-Shun Yu
- Department of Dental Hygiene, China Medical University, Taichung 404, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Chi CC, Chou CT, Kuo CC, Hsieh YD, Liang WZ, Tseng LL, Su HH, Chu ST, Ho CM, Jan CR. Effect of m-3m3FBS on Ca2+ handling and viability in OC2 human oral cancer cells. ACTA ACUST UNITED AC 2012; 99:74-86. [PMID: 22425810 DOI: 10.1556/aphysiol.99.2012.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. M-3M3FBS at concentrations between 10-60 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. M-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, 30 μM m-3M3FBS pretreatment inhibited the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin and 2,5-di-tert-butylhydroquinone (BHQ). Conversely, pretreatment with thapsigargin, BHQ or cyclopiazonic acid partly reduced m-3M3FBS-induced [Ca2+]i rise. Inhibition of inositol 1,4,5-trisphosphate formation with U73122 did not alter m-3M3FBS-induced [Ca2+]i rise. At concentrations between 5 and 100 μM m-3M3FBS killed cells in a concentration-dependent manner. The cytotoxic effect of m-3M3FBS was not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining data suggest that m-3M3FBS (20 or 50 μM) induced apoptosis in a Ca2+-independent manner. Collectively, in OC2 cells, m-3M3FBS induced [Ca2+]i rise by causing inositol 1,4,5-trisphosphate-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive store-operated Ca2+ channels. M-3M3FBS also induced Ca2+-independent cell death and apoptosis.
Collapse
Affiliation(s)
- Chao-Chuan Chi
- Kaohsiung Veterans General Hospital Department of Otolaryngology Kaohsiung Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chien JM, Chou CT, Pan CC, Kuo CC, Tsai JY, Liao WC, Kuo DH, Shieh P, Ho CM, Chu ST, Su HH, Chi CC, Jan CR. The mechanism of sertraline-induced [Ca2+]i rise in human OC2 oral cancer cells. Hum Exp Toxicol 2011; 30:1635-43. [PMID: 21247994 DOI: 10.1177/0960327110396523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Effect of sertraline, an antidepressant, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in human cancer cells is unclear. This study examined if sertraline altered basal [Ca(2+)](i) levels in suspended OC2 human oral cancer by using fura-2 as a Ca(2+)-sensitive fluorescent probe. At concentrations of 10-100 μM, sertraline induced a [Ca(2+)](i) rise in a concentration-dependent fashion. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+) indicating that Ca(2+) entry and release both contributed to the [Ca(2+)](i) rise. Sertraline induced Mn(2+) influx, leading to quench of fura-2 fluorescence suggesting Ca(2+) influx. This Ca(2+) influx was inhibited by suppression of phospholipase A2, inhibition of store-operated Ca(2+) channels or by modulation of protein kinase C activity. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished sertraline-induced Ca(2+) release. Conversely, pretreatment with sertraline greatly reduced the inhibitor-induced [Ca(2+)](i) rise, suggesting that sertraline released Ca(2+) from the endoplasmic reticulum. Inhibition of phospholipase C did not change sertraline-induced [Ca(2+)](i) rise. Together, in human oral cancer cells, sertraline induced [Ca(2+)](i) rises by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via store-operated Ca(2+) channels.
Collapse
Affiliation(s)
- Jau-Min Chien
- Department of Pediatrics, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tseng LL, Shu SS, Kuo CC, Chou CT, Hsieh YD, Chu ST, Chi CC, Liang WZ, Ho CM, Jan CR. Effect of methoxychlor on Ca2+ handling and viability in OC2 human oral cancer cells. Basic Clin Pharmacol Toxicol 2011; 108:341-8. [PMID: 21205218 DOI: 10.1111/j.1742-7843.2010.00662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of the insecticide methoxychlor on the physiology of oral cells is unknown. This study aimed to explore the effect of methoxychlor on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in human oral cancer cells (OC2) by using the Ca(2+)-sensitive fluorescent dye fura-2. Methoxychlor at 5-20 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by 70% by removing extracellular Ca(2+). Methoxychlor-induced Ca(2+) entry was not affected by nifedipine, econazole, SK&F96365 and protein kinase C modulators but was inhibited by the phospholipase A2 inhibitor aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished methoxychlor-induced [Ca(2+)](i) rise. Incubation with methoxychlor also inhibited thapsigargin- or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter methoxychlor-induced [Ca(2+)](i) rise. At 5-20 μM, methoxychlor killed cells in a concentration-dependent manner. The cytotoxic effect of methoxychlor was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM). Annexin V-FITC data suggest that methoxychlor (10 and 20 μM) evoked apoptosis in a concentration-dependent manner. Together, in human OC2, methoxychlor induced a [Ca(2+)](i) rise probably by inducing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive channels. Methoxychlor induced cell death that may involve apoptosis.
Collapse
Affiliation(s)
- Li-Ling Tseng
- Department of Dentistry, Kaohsiung Veterans General Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yu FS, Yang JS, Yu CS, Lu CC, Chiang JH, Lin CW, Chung JG. Safrole induces apoptosis in human oral cancer HSC-3 cells. J Dent Res 2010; 90:168-74. [PMID: 21173435 DOI: 10.1177/0022034510384619] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals have been used as potential chemopreventive or chemotherapeutic agents. However, there are data suggesting a mutagenic effect of some phytochemicals. We hypothesized that safrole would have anticancer effects on human oral squamous cell carcinoma HSC-3 cells. Safrole decreased the percentage of viable HSC-3 cells via induction of apoptosis by an increased level of cytosolic Ca(2+) and a reduction in the mitochondrial membrane potential (ΔΨ(m)). Changes in the membrane potential were associated with changes in the Bax, release of cytochrome c from mitochondria, and activation of downstream caspases-9 and -3, resulting in apoptotic cell death. In vivo studies also showed that safrole reduced the size and volume of an HSC-3 solid tumor on a xenograft athymic nu/nu mouse model. Western blotting and flow cytometric analysis studies confirmed that safrole-mediated apoptotic cell death of HSC-3 cells is regulated by cytosolic Ca(2+) and by mitochondria- and Fas-dependent pathways.
Collapse
Affiliation(s)
- F-S Yu
- Department of Dental Hygiene, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen CY, Yang YH, Kuo SY. Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2). JOURNAL OF NATURAL PRODUCTS 2010; 73:1370-1374. [PMID: 20669930 DOI: 10.1021/np100213a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of [6]-shogaol (1) on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and viability has not been explored previously in oral epithelial cells. The present study has examined whether 1 alters [Ca(2+)](i) and viability in OC2 human oral cancer cells. Compound 1 at concentrations > or = 5 microM increased [Ca(2+)](i) in a concentration-dependent manner with a 50% effective concentration (EC(50)) value of 65 microM. The Ca(2+) signal was reduced substantially by removing extracellular Ca(2+). In a Ca(2+)-free medium, the 1-induced [Ca(2+)](i) elevation was mostly attenuated by depleting stored Ca(2+) with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). The [Ca(2+)](i) signal was inhibited by La(3+) but not by L-type Ca(2+) channel blockers. The elevation of [Ca(2+)](i) caused by 1 in a Ca(2+)-containing medium was not affected by modulation of protein kinase C activity, but was inhibited by 82% with the phospholipase A2 inhibitor aristolochic acid I (20 microM). U73122, a selective inhibitor of phospholipase C, abolished 1-induced [Ca(2+)](i) release. At concentrations of 5-100 microM, 1 killed cells in a concentration-dependent manner. These findings suggest that [6]-shogaol induces a significant rise in [Ca(2+)](i) in oral cancer OC2 cells by causing stored Ca(2+) release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-dependent manner and by inducing Ca(2+) influx via a phospholipase A2- and La(3+)-sensitive pathway.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Medical Technology, School of Medical and Health Sciences, Fooyin University, Ta-liao, Kaohsiung County 83101, Taiwan, Republic of China
| | | | | |
Collapse
|
12
|
Kuo DH, Liu LM, Chen HW, Chen FA, Jan CR. Econazole-induced Ca2+ fluxes and apoptosis in human oral cancer cells. Drug Dev Res 2010. [DOI: 10.1002/ddr.20366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Kuo LN, Huang CJ, Fang YC, Huang CC, Wang JL, Lin KL, Chu ST, Chang HT, Chien JM, Su HH, Chi CC, Chen WC, Tsai JY, Liao WC, Tseng LL, Jan CR. Effect of thimerosal on Ca2+ movement and viability in human oral cancer cells. Hum Exp Toxicol 2009; 28:301-8. [DOI: 10.1177/0960327109106548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of thimerosal on cytosolic free Ca2+ concentrations ([Ca2+]i ) in human oral cancer cells (OC2) is unclear. This study explored whether thimerosal changed basal [Ca2+]i levels in suspended OC2 cells using fura-2. Thimerosal at concentrations between 1and 50 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca 2+. Thimerosal-induced Ca2+ influx was not blocked by L-type Ca2+ entry inhibitors and protein kinase C modulators (phorbol 12-myristate 13-acetate [PMA] and GF109203X). In Ca2+-free medium, 50 μM thimerosal failed to induce a [Ca2+]i rise after pretreatment with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Inhibition of phospholipase C with U73122 did not change thimerosal-induced [Ca2+]i rises. At concentrations between 5 and 10 μM, thimerosal killed cells in a concentration-dependent manner. The cytotoxic effect of 8 μM thimerosal was potentiated by prechelating cytosolic Ca2+ with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetate/acetomethyl (BAPTA/ AM). Flow cytometry data suggested that 1—7 μM thimerosal-induced apoptosis in a concentration-dependent manner. Collectively, in OC2 cells, thimerosal-induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx through non—L-type Ca2+ channels. Thimerosal killed cells in a concentration-dependent manner through apoptosis.
Collapse
Affiliation(s)
- LN Kuo
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - CJ Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - YC Fang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Laboratory Medicine Division, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - CC Huang
- Department of Nursing, Tzu Hui Institute of Technology; Pingtung, Taiwan
| | - JL Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - KL Lin
- Department of Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - ST Chu
- Department of Otolaryngology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - HT Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - JM Chien
- Department of Pediatrics, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | - HH Su
- Department of Otolaryngology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - CC Chi
- Department of Otolaryngology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - WC Chen
- Department of Surgery, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | - JY Tsai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - WC Liao
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - LL Tseng
- Department of Dentist, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - CR Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan,
| |
Collapse
|
14
|
Huang C, Huang C, Cheng J, Liu S, Chen I, Tsai J, Chou C, Tseng P, Jan C. Fendiline-evoked [Ca2+]i rises and non-Ca2+-triggered cell death in human oral cancer cells. Hum Exp Toxicol 2009; 28:41-8. [PMID: 19411560 DOI: 10.1177/0960327108097436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of fendiline on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and proliferation has not been explored in human oral cancer cells. This study examined whether fendiline altered Ca(2+) levels and caused cell death in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Fendiline at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The fendiline-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers. In Ca(2+)-free medium, after pretreatment with 50 microM fendiline, 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor)-induced [Ca(2+)](i) rises were inhibited; and conversely, thapsigargin pretreatment nearly abolished fendiline-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change fendiline-induced [Ca(2+)](i) rises. At concentrations between 5 and 25 microM, fendiline killed cells in a concentration-dependent manner. The cytotoxic effect of 15 microM fendiline was not reversed by prechelating cytosolic Ca(2+) with BAPTA/AM. Collectively, in OC2 cells, fendiline induced [Ca(2+)](i) rises by causing Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, fendiline-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.
Collapse
Affiliation(s)
- Cc Huang
- Department of Nursery, Tzu Hui Institute of Technology; Pingtung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
L-type Ca2+channel opener BayK 8644-induced Ca2+influx and Ca2+release in human oral cancer cells (OC2). Drug Dev Res 2008. [DOI: 10.1002/ddr.20259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Chang HC, Cheng HH, Huang CJ, Chen WC, Chen IS, Liu SI, Hsu SS, Chang HT, Wang JK, Lu YC, Chou CT, Jan CR. Safrole-Induced Ca2+Mobilization and Cytotoxicity in Human PC3 Prostate Cancer Cells. J Recept Signal Transduct Res 2008; 26:199-212. [PMID: 16777715 DOI: 10.1080/10799890600662595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The effect of the carcinogen safrole on intracellular Ca2+ mobilization and on viability of human PC3 prostate cancer cells was examined. Cytosolic free Ca2+ levels ([Ca2+]i) were measured by using fura-2 as a probe. Safrole at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 350 microM. The Ca2+ signal was reduced by more than half after removing extracellular Ca2+ but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem, or verapamil. In Ca2+-free medium, after treatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release Ca2+. Neither inhibition of phospholipase C with U73122 nor modulation of protein kinase C activity affected safrole-induced Ca2+ release. Overnight incubation with 0.65-65 microM safrole did not affect cell viability, but incubation with 325-625 microM safrole decreased viability. Collectively, the data suggest that in PC3 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C- and protein kinase C-independent fashion, and by inducing Ca2+ influx. Safrole can decrease cell viability in a concentration-dependent manner.
Collapse
Affiliation(s)
- H C Chang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
CHU SAUTUNG, HUANG CHORNGCHIH, HUANG CHUNJEN, CHENG JINSHIUNG, CHAI KUOLIANG, CHENG HEHSIUNG, FANG YICHIEN, CHI CHAOCHUAN, SU HSINGHAO, CHOU CHIANGTING, JAN CHUNGREN. Tamoxifen-Induced [Ca2+]iRises and Ca2+-Independent Cell Death in Human Oral Cancer Cells. J Recept Signal Transduct Res 2008; 27:353-67. [DOI: 10.1080/10799890701699660] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Nomura H, Uzawa K, Yamano Y, Fushimi K, Ishigami T, Kato Y, Saito K, Nakashima D, Higo M, Kouzu Y, Ono K, Ogawara K, Shiiba M, Bukawa H, Yokoe H, Tanzawa H. Network-based analysis of calcium-binding protein genes identifies Grp94 as a target in human oral carcinogenesis. Br J Cancer 2007; 97:792-801. [PMID: 17726464 PMCID: PMC2360381 DOI: 10.1038/sj.bjc.6603948] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To characterise Ca(2+) -binding protein gene expression changes in oral squamous cell carcinomas (OSCCs), we compared the gene expression profiles in OSCC-derived cell lines with normal oral tissues. One hundred Ca(2+) -binding protein genes differentially expressed in OSCCs were identified, and genetic pathways associated with expression changes were generated. Among genes mapped to the network with the highest significance, glucose-regulated protein 94 kDa (Grp94) was evaluated further for mRNA and protein expression in the OSCC cell lines, primary OSCCs, and oral premalignant lesions (OPLs). A significant (P<0.001) overexpression of Grp94 protein was observed in all cell lines compared to normal oral epithelium. Immunohistochemical analysis showed highly expressed Grp94 in primary OSCCs and OPLs, whereas most of the corresponding normal tissues had no protein immunoreaction. Real-time quantitative reverse transcriptase-PCR data agreed with the protein expression status. Moreover, overexpression of Grp94 in primary tumours was significantly (P<0.001) correlated with poor disease-free survival. The results suggested that Grp94 may have potential clinical application as a novel diagnosis and prognostic biomarker for human OSCCs.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Calcium-Binding Proteins/genetics
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Disease-Free Survival
- Fluorescent Antibody Technique, Direct
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/genetics
- Mouth Neoplasms/pathology
- Neoplasm Staging
- Predictive Value of Tests
- Prognosis
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- H Nomura
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Uzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- E-mail:
| | - Y Yamano
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Fushimi
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - T Ishigami
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Y Kato
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Saito
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - D Nakashima
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - M Higo
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Y Kouzu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Ono
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - K Ogawara
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - M Shiiba
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Bukawa
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Yokoe
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - H Tanzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Center of Excellence (COE) Program in the 21st Century, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|