1
|
Kowalchuk C, Kanagasundaram P, Belsham DD, Hahn MK. Antipsychotics differentially regulate insulin, energy sensing, and inflammation pathways in hypothalamic rat neurons. Psychoneuroendocrinology 2019; 104:42-48. [PMID: 30802709 DOI: 10.1016/j.psyneuen.2019.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/16/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Second generation antipsychotic (AP)s remain the gold-standard treatment for schizophrenia and are widely used on- and off-label for other psychiatric illnesses. However, these agents cause serious metabolic side-effects. The hypothalamus is the primary brain region responsible for whole body energy regulation, and disruptions in energy sensing (e.g. insulin signaling) and inflammation in this brain region have been implicated in the development of insulin resistance and obesity. To elucidate mechanisms by which APs may be causing metabolic dysregulation, we explored whether these agents can directly impact energy sensing and inflammation in hypothalamic neurons. METHODS The rat hypothalamic neuronal cell line, rHypoE-19, was treated with olanzapine (0.25-100 uM), clozapine (2.5-100 uM) or aripiprazole (5-20 uM). Western blots measured the energy sensing protein AMPK, components of the insulin signaling pathway (AKT, GSK3β), and components of the MAPK pathway (ERK1/2, JNK, p38). Quantitative real-time PCR was performed to determine changes in the mRNA expression of interleukin (IL)-6, IL-10 and brain derived neurotrophic factor (BDNF). RESULTS Olanzapine (100 uM) and clozapine (100, 20 uM) significantly increased pERK1/2 and pJNK protein expression, while aripiprazole (20 uM) only increased pJNK. Clozapine (100 uM) and aripiprazole (5 and 20 uM) significantly increased AMPK phosphorylation (an orexigenic energy sensor), and inhibited insulin-induced phosphorylation of AKT. Olanzapine (100 uM) treatment caused a significant increase in IL-6 while aripiprazole (20 uM) significantly decreased IL-10. Olanzapine (100 uM) and aripiprazole (20 uM) increased BDNF expression. CONCLUSIONS We demonstrate that antipsychotics can directly regulate insulin, energy sensing, and inflammatory pathways in hypothalamic neurons. Increased MAPK activation by all antipsychotics, alongside olanzapine-associated increases in IL-6, and aripiprazole-associated decreases in IL-10, suggests induction of pro-inflammatory pathways. Clozapine and aripiprazole inhibition of insulin-stimulated pAKT and increases in AMPK phosphorylation (an orexigenic energy sensor) suggests impaired insulin action and energy sensing. Conversely, olanzapine and aripiprazole increased BDNF, which would be expected to be metabolically beneficial. Overall, our findings suggest differential effects of antipsychotics on hypothalamic neuroinflammation and energy sensing.
Collapse
Affiliation(s)
- Chantel Kowalchuk
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Pruntha Kanagasundaram
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| | - Margaret K Hahn
- Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, M5T 1R8, Canada.
| |
Collapse
|
2
|
Salgado PRR, da Fonsêca DV, de Melo CGF, Leite FC, Alves AF, Ferreira PB, Piuvezam MR, de Sousa DP, de Almeida RN. Comparison of behavioral, neuroprotective, and proinflammatory cytokine modulating effects exercised by (+)-cis-EC and (-)-cis-EC stereoisomers in a PTZ-induced kindling test in mice. Fundam Clin Pharmacol 2018; 32:507-515. [PMID: 29577374 DOI: 10.1111/fcp.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Epoxy-carvone (EC) has chiral centers that allow generation of stereoisomers, including (+)-cis-EC and (-)-cis-EC, whose effects in the kindling tests have never been studied. Accordingly, this study aims to comparatively investigate the effect of stereoisomers (+)-cis-epoxy-carvone and (-)-cis-epoxy-carvone on behavioral changes measured in scores, in the levels of cytokines (IL-1β, IL-6, and TNFα) and neuronal protection in the face of continuous treatment with pentylenetetrazol. Swiss mice were divided into five groups (n = 10), receiving vehicle, (+) - cis-EC, (-) - cis-EC (both at the dose of 30 mg/kg), and diazepam (4 mg/kg). Thirty minutes after the respective treatment was administered to the animals one subconvulsive dose of PTZ (35 mg/kg). Seven subconvulsives treatments were made on alternate days, in which each treatment several parameters were recorded. In the eighth treatment, the animals receiving the highest dose of PTZ (75 mg/kg) and were sacrificed for quantification of cytokines and histopathologic analysis. All drugs were administered by intraperitoneal route. In the kindling test, (+)-cis-EC and (-)-cis-EC reduced the average scores. The stereoisomer (+)-cis-EC decreased levels of proinflammatory cytokines IL-1β, IL-6, and TNFα, whereas comparatively (-)-cis-EC did not reduce IL-1β levels. Histopathological analysis of the mice hippocampi undergoing this methodology showed neural protection for treated with (+)-cis-EC. The results suggest that the anticonvulsant effect of (+)-cis-EC possibly takes place due to reduction of proinflammatory cytokines involved in the epileptogenic process, besides neuronal protection, yet further investigation of the mechanisms involved is required.
Collapse
Affiliation(s)
- Paula Regina Rodrigues Salgado
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Diogo Vilar da Fonsêca
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Cynthia Germoglio Farias de Melo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Fagner Carvalho Leite
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Adriano Francisco Alves
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Paula Benvindo Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Márcia Regina Piuvezam
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Damião Pergentino de Sousa
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| |
Collapse
|
3
|
Obuchowicz E, Bielecka-Wajdman AM, Paul-Samojedny M, Nowacka M. Different influence of antipsychotics on the balance between pro- and anti-inflammatory cytokines depends on glia activation: An in vitro study. Cytokine 2017; 94:37-44. [PMID: 28411046 DOI: 10.1016/j.cyto.2017.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
The microglial hypothesis of schizophrenia suggests that its neuropathology is closely associated with neuroinflammation manifested, inter alia, by an increased expression of cytokines. However, clinical investigations imply that schizophrenia is a heterogeneous disease and in some groups of patients the activated inflammatory process does not contribute to the disease-associated impairment of brain function. Clinical studies revealed also an equivocal impact of antipsychotics on peripheral and CSF cytokines, whereas experimental research performed on the stimulated glia cultures showed their inhibitory effect on pro-inflammatory cytokine levels. In the present study, the effect of chlorpromazine, haloperidol and risperidone (0.5, 5 or 10μM) on production of pro-inflammatory cytokines IL-1β and TNF-α and anti-inflammatory IL-10 was investigated in the unstimulated and lipopolysaccharide-stimulated primary rat mixed glial cell cultures. In the unstimulated cultures, haloperidol at all applied concentrations, risperidone at 5, 10μM and chlorpromazine at 10μM increased IL-10 levels in the culture supernatants without a significant influence on IL-1β or TNF-α levels, and all drugs applied at 10μM induced a robust increase in IL-10 mRNA expression. Under strong inflammatory activation, haloperidol and risperidone at all concentrations reduced production of both pro-inflammatory cytokines, without adverse effects on IL-10 expression when used at 10μM. Chlorpromazine at all concentrations diminished the production of three cytokines and did not induce anti-inflammatory effect. These results suggest that dependently on glia activation antipsychotics via different mechanisms may induce anti-inflammatory effect and that this activity is not common for all drugs under conditions of strong glia activation.
Collapse
Affiliation(s)
- Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Anna M Bielecka-Wajdman
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmacy with Division of Laboratory Medicine, Sosnowiec, Medical University of Silesia in Katowice, Poland
| | - Marta Nowacka
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland; Laboratory of Molecular Biology, Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Center for Experimental Medicine, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of IL-1β and glutamate in the effects of lipopolysaccharide on the hippocampal electrical kindling of seizures. J Neuroimmunol 2016; 298:146-52. [PMID: 27609288 DOI: 10.1016/j.jneuroim.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
In our study, we used rapid electrical hippocampal kindling and in vivo microdialysis methods to assess the involvement of inflammatory mediators: lipopolysaccharide (LPS) and proinflammatory interleukin-1β (IL-1β) in mechanisms of epileptogenesis. We observed, that both, LPS and IL-1β, administered into stimulated hippocampus, accelerated kindling process. LPS also increased the expression of IL-1β in stimulated hippocampus in kindled rats. In vivo acute LPS perfusion, via a microdialysis cannula implanted into the naïve rat's hippocampus, produced an increase in extracellular glutamate release. We suppose, that particularly IL-1β action and increased glutamate concentration may significantly contribute to LPS effects on kindling development.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| |
Collapse
|
5
|
The effect of the antipsychotic drug quetiapine and its metabolite norquetiapine on acute inflammation, memory and anhedonia. Pharmacol Biochem Behav 2015; 135:136-44. [PMID: 26047769 DOI: 10.1016/j.pbb.2015.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022]
Abstract
The atypical antipsychotic drug, quetiapine, has recently been suggested to not only show efficacy in schizophrenia, bipolar, major depressive and general anxiety disorders, but to also have a possible anti-inflammatory effect, which could be important in the treatment of the inflammatory aspects of psychiatric diseases. Male C57BL/6 mice were given either quetiapine (i.p. 10mg/kg), its main active metabolite norquetiapine (i.p. 10mg/kg), or saline as a vehicle control, once a day for 14days. On the 14th day, this dose was followed by a single dose of either LPS (i.p. 1mg/kg) or saline. 24h post LPS short-term recognition memory and anhedonia behaviour were measured using the Y-maze and saccharin preference test respectively. Immediately following behavioural testing, mice were culled before serum, prefrontal cortex and hippocampal analysis of cytokine levels was conducted. It was found that LPS challenge led to increased serum and brain cytokine levels as well as anhedonia, with no significant effect on recognition memory. Quetiapine and norquetiapine both increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the pro-inflammatory cytokine IFN-γ in serum 4h post LPS. Within the brain, a similar pattern was seen in gene expression in the hippocampus at 4h for Il-10 and Ifn-γ, however norquetiapine led to an increase in Il-1β expression in the PFC at 4h, while both drugs attenuated the increased Il-10 in different regions of the brain at 24h. These effects in the serum and brain, however, had no effect on the observed LPS induced changes in behaviour. Both quetiapine and its metabolite norquetiapine appear to have a partial anti-inflammatory effect on IL-10 and IFN-γ following acute LPS challenge in serum and brain, however these effects did not translate into behavioural changes.
Collapse
|
6
|
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of interleukin-1β in the pentylenetetrazole-induced kindling of seizures, in the rat hippocampus. Eur J Pharmacol 2014; 731:31-7. [PMID: 24642361 DOI: 10.1016/j.ejphar.2014.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
Because the contribution of inflammatory mediators to seizure disorders is unclear, we investigated the changes in the expression of interleukin-1β (IL-β) and its receptor - IL-1 receptor type 1 (IL-1R1), tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the rat hippocampus at different stages of pentylenetetrazole (PTZ)-induced kindling. The occurrence and progressive development of seizures were induced by repeated systemic administration of PTZ, a non-competitive antagonist of the γ-aminobutyric acid type A (GABAA) receptor at a subconvulsive dose of 30 mg/kg. We also examined the effects of continuous intracerebroventricular administration of IL-1β and lipopolysaccharide (LPS) in this model of epilepsy using subcutaneously implanted osmotic mini-pumps. We observed enhanced IL-1R1 expression in the dentate gyrus (DG) at different stages of kindling, whereas the elevated IL-1β level was distinctive to fully kindled seizures. We did not detect significant changes in the concentration of IL-6 or TNF-α throughout the kindling process. LPS accelerated transiently the process of kindling, while IL-1β showed a predisposition to delay kindling acquisition. Our study supports the concept of seizure-related modifications in brain cytokine production during epileptogenesis. Although some evidence indicates a proconvulsant property of IL-1β activity, it cannot be ruled out that the alterations in IL-1 system reflect the activation of endogenous protective mechanisms with respect to the kindling of seizures.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 26/28 Krakowskie Przedmieście Street, 00-927 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
7
|
Breese GR, Knapp DJ, Overstreet DH, Navarro M, Wills TA, Angel RA. Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology 2008; 33:867-76. [PMID: 17551540 PMCID: PMC2268634 DOI: 10.1038/sj.npp.1301468] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Previous investigations demonstrated that repeated stresses before an ethanol exposure sensitize ethanol withdrawal-induced anxiety-like behavior ('anxiety'). In addition to activating the hypothalamic-pituitary-adrenal axis, acute stress also elevates cytokines in brain. Initially, to test possible cytokine involvement in this stress/withdrawal protocol, cytokines were increased in brain with 2 weekly repeated lipopolysaccharide (LPS) administrations (1000 microg/kg) [corrected] (LPS/withdrawal protocol) or with twice weekly intracerebroventricular (i.c.v.) administrations of the cytokines IL-1 beta, CCL2 (MCP-1) or TNFalpha (cytokine/withdrawal protocol) before exposure and withdrawal from a 5-day cycle of chronic ethanol diet. Both protocols sensitized withdrawal-induced anxiety and confirm cytokine involvement in the sensitized anxiety response. Testing of various doses of LPS (16-1000 microg/kg) and TNFalpha (3-100 ng, i.c.v.) demonstrated the dose-related nature of these protocols to sensitize withdrawal-induced anxiety. The sensitized anxiety was not produced by a single 5-day ethanol diet cycle or by repeated LPS or cytokine treatments alone. Likewise, sensitized anxiety in these protocols could not be attributed to differences in ethanol ingestion. When challenged with a subsequent re-exposure to a 5-day ethanol diet cycle 16 days after completion of the LPS/withdrawal or cytokine/withdrawal protocols, an increase in withdrawal-induced anxiety was observed-an indication of induction of an underlying persistent adaptive change. Finally, just as found previously with the stress/withdrawal protocol, administration of the benzodiazepine receptor antagonist flumazenil before the LPS or TNF treatments prevented anxiety sensitization. Together, these findings indicate that increased cytokine activity induces adaptive change that supports sensitization of ethanol withdrawal-induced anxiety that may be linked to GABA(A)-receptor function.
Collapse
Affiliation(s)
- George R Breese
- Department of Psychiatry, UNC School of Medicine, Chapel Hill, NC, USA.
| | | | | | | | | | | |
Collapse
|