1
|
Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt 1]N/OFQ(1-13). Eur J Pharmacol 2016; 794:115-126. [PMID: 27871910 DOI: 10.1016/j.ejphar.2016.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022]
Abstract
An innovative chemical strategy named peptide welding technology (PWT) has been developed for the facile synthesis of tetrabranched peptides. [Dmt1]N/OFQ(1-13)-NH2 acts as a universal agonist for nociceptin/orphanin FQ (N/OFQ) and classical opioid receptors. The present study investigated the pharmacological profile of the PWT derivative of [Dmt1]N/OFQ(1-13)NH2 (PWT2-[Dmt1]) in several assays in vitro and in vivo after spinal administration in monkeys subjected to the tail withdrawal assay. PWT2-[Dmt1] mimicked the effects of [Dmt1]N/OFQ(1-13)-NH2 displaying full agonist activity, similar affinity/potency and selectivity at human recombinant N/OFQ (NOP) and opioid receptors in receptor binding, stimulation of [35S]GTPγS binding, calcium mobilization in cells expressing chimeric G proteins, and BRET studies for measuring receptor/G-protein and receptor/β-arrestin 2 interaction. In vivo in monkeys PWT2-[Dmt1] elicited dose-dependent and robust antinociceptive effects being more potent and longer lasting than [Dmt1]N/OFQ(1-13)-NH2. The analgesic action of PWT2-[Dmt1] was sensitive to the NOP receptor antagonist J-113397, but not naltrexone. Thus, the present study demonstrated that the tetrabranched derivative of [Dmt1]N/OFQ(1-13)-NH2 obtained with the PWT technology maintains the in vitro pharmacological profile of the parent peptide but displays higher potency and longer lasting action in vivo.
Collapse
|
2
|
Bird MF, Cerlesi MC, Brown M, Malfacini D, Vezzi V, Molinari P, Micheli L, Mannelli LDC, Ghelardini C, Guerrini R, Calò G, Lambert DG. Characterisation of the Novel Mixed Mu-NOP Peptide Ligand Dermorphin-N/OFQ (DeNo). PLoS One 2016; 11:e0156897. [PMID: 27272042 PMCID: PMC4896453 DOI: 10.1371/journal.pone.0156897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Opioid receptors are currently classified as Mu (μ), Delta (δ), Kappa (κ) plus the opioid related nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP). Despite compelling evidence for interactions and benefits of targeting more than one receptor type in producing analgesia, clinical ligands are Mu agonists. In this study we have designed a Mu-NOP agonist named DeNo. The Mu agonist component is provided by dermorphin, a peptide isolated from the skin of Phyllomedusa frogs and the NOP component by the endogenous agonist N/OFQ. METHODS We have assessed receptor binding profile of DeNo and compared with dermorphin and N/OFQ. In a series of functional screens we have assessed the ability to (i) increase Ca2+ in cells coexpressing recombinant receptors and a the chimeric protein Gαqi5, (ii) stimulate the binding of GTPγ[35S], (iii) inhibit cAMP formation, (iv) activate MAPKinase, (v) stimulate receptor-G protein and arrestin interaction using BRET, (vi) electrically stimulated guinea pig ileum (gpI) assay and (vii) ability to produce analgesia via the intrathecal route in rats. RESULTS DeNo bound to Mu (pKi; 9.55) and NOP (pKi; 10.22) and with reasonable selectivity. This translated to increased Ca2+ in Gαqi5 expressing cells (pEC50 Mu 7.17; NOP 9.69), increased binding of GTPγ[35S] (pEC50 Mu 7.70; NOP 9.50) and receptor-G protein interaction in BRET (pEC50 Mu 8.01; NOP 9.02). cAMP formation was inhibited and arrestin was activated (pEC50 Mu 6.36; NOP 8.19). For MAPK DeNo activated p38 and ERK1/2 at Mu but only ERK1/2 at NOP. In the gpI DeNO inhibited electrically-evoked contractions (pEC50 8.63) that was sensitive to both Mu and NOP antagonists. DeNo was antinociceptive in rats. CONCLUSION Collectively these data validate the strategy used to create a novel bivalent Mu-NOP peptide agonist by combining dermorphin (Mu) and N/OFQ (NOP). This molecule behaves essentially as the parent compounds in vitro. In the antonocicoeptive assays employed in this study DeNo displays only weak antinociceptive properties.
Collapse
MESH Headings
- Animals
- CHO Cells
- Calcium/metabolism
- Cricetulus
- Guinea Pigs
- HEK293 Cells
- Humans
- Male
- Opioid Peptides/chemistry
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/agonists
- Receptors, Opioid/chemistry
- Receptors, Opioid/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Nociceptin Receptor
Collapse
Affiliation(s)
- Mark F. Bird
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Maria Camilla Cerlesi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Mark Brown
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
| | - Davide Malfacini
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Vanessa Vezzi
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba, Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - David G. Lambert
- Department of Cardiovascular Sciences, University of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE2 7LX, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
4
|
Rizzi A, Malfacini D, Cerlesi MC, Ruzza C, Marzola E, Bird MF, Rowbotham DJ, Salvadori S, Guerrini R, Lambert DG, Calo G. In vitro and in vivo pharmacological characterization of nociceptin/orphanin FQ tetrabranched derivatives. Br J Pharmacol 2015; 171:4138-53. [PMID: 24903280 DOI: 10.1111/bph.12799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 05/06/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE An innovative chemical approach, named peptide welding technology (PWT), allows the synthesis of multibranched peptides with extraordinary high yield, purity and reproducibility. With this approach, three different tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ) have been synthesized and named PWT1-N/OFQ, PWT2-N/OFQ and PWT3-N/OFQ. In the present study we investigated the in vitro and in vivo pharmacological profile of PWT N/OFQ derivatives and compared their actions with those of the naturally occurring peptide. EXPERIMENTAL APPROACH The following in vitro assays were used: receptor and [(35)S]-GTPγS binding, calcium mobilization in cells expressing the human N/OFQ peptide (NOP) receptor, or classical opioid receptors and chimeric G proteins, electrically stimulated mouse vas deferens bioassay. In vivo experiments were performed; locomotor activity was measured in normal mice and in animals with the NOP receptor gene knocked out [NOP(-/-)]. KEY RESULTS In vitro PWT derivatives of N/OFQ behaved as high affinity potent and rather selective full agonists at human recombinant and animal native NOP receptors. In vivo PWT derivatives mimicked the inhibitory effects exerted by the natural peptide on locomotor activity showing 40-fold higher potency and extremely longer lasting action. The effects of PWT2-N/OFQ were no longer evident in NOP(-/-) mice. CONCLUSIONS AND IMPLICATIONS The results showed that the PWT can be successfully applied to the peptide sequence of N/OFQ to generate tetrabranched derivatives characterized by a pharmacological profile similar to the native peptide and associated with a higher potency and marked prolongation of action in vivo.
Collapse
Affiliation(s)
- A Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bird MF, Vardanyan RS, Hruby VJ, Calò G, Guerrini R, Salvadori S, Trapella C, McDonald J, Rowbotham DJ, Lambert DG. Development and characterisation of novel fentanyl-delta opioid receptor antagonist based bivalent ligands. Br J Anaesth 2015; 114:646-56. [PMID: 25680364 DOI: 10.1093/bja/aeu454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Opioid tolerance is a limiting factor in chronic pain. Delta opioid peptide (DOP)(δ) receptor antagonism has been shown to reduce tolerance. Here, the common clinical mu opioid peptide (MOP)(µ) receptor agonist fentanyl has been linked to the DOP antagonist Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydrisoquinoline-3-carboxylic acid) to create new bivalent compounds. METHODS Binding affinities of bivalents(#9, #10, #11, #12 and #13) were measured in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, Kappa opioid peptide (KOP)(κ) and nociceptin/orphanin FQ opioid peptide (NOP) receptors. Functional studies, measuring GTPγ[(35)S] or β-arrestin recruitment, were performed in membranes or whole cells respectively expressing MOP and DOP. RESULTS The new bivalents bound to MOP (pKi : #9:7.31; #10:7.58; #11:7.91; #12:7.94; #13:8.03) and DOP (#9:8.03; #10:8.16; #11:8.17; #12:9.67; #13:9.71). In GTPγ[(35)S] functional assays, compounds #9(pEC50:6.74; intrinsic activity:0.05) #10(7.13;0.34) and #11(7.52;0.27) showed weak partial agonist activity at MOP. Compounds #12 and #13, with longer linkers, showed no functional activity at MOP. In antagonist assays at MOP, compounds #9 (pKb:6.87), #10(7.55) #11(7.81) #12(6.91) and #13(7.05) all reversed the effects of fentanyl. At DOP, all compounds showed antagonist affinity (#9:6.85; #10:8.06; #11:8.11; #12:9.42; #13:9.00), reversing the effects of DPDPE ([D-Pen(2,5)]enkephalin). In β-arrestin assays, compared with fentanyl (with response at maximum concentration (RMC):13.62), all compounds showed reduced ability to activate β-arrestin (#9 RMC:1.58; #10:2.72; #11:2.40; #12:1.29; #13:1.58). Compared with fentanyl, the intrinsic activity was: #9:0.12; #10:0.20; #11:0.18; #12:0.09 and #13:0.12. CONCLUSIONS The addition of a linker between fentanyl and Dmt-Tic did not alter the ability to bind to MOP and DOP, however a substantial loss in MOP functional activity was apparent. This highlights the difficulty in multifunctional opioid development.
Collapse
Affiliation(s)
- M F Bird
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - R S Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - G Calò
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and Italian Institute of Neuroscience, Ferrara, Italy
| | - R Guerrini
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - S Salvadori
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - C Trapella
- Department of Chemical and Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Ferrara, Italy
| | - J McDonald
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - D J Rowbotham
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - D G Lambert
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| |
Collapse
|
6
|
Lohman RJ, Harrison RS, Ruiz-Gómez G, Hoang HN, Shepherd NE, Chow S, Hill TA, Madala PK, Fairlie DP. Helix-constrained nociceptin peptides are potent agonists and antagonists of ORL-1 and nociception. VITAMINS AND HORMONES 2015; 97:1-55. [PMID: 25677767 DOI: 10.1016/bs.vh.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus. This likely anchors the receptor-activating N-terminus of nociception nearby for insertion in the membrane-spanning helices of ORL-1. In search of higher agonist potency, two lysine and two aspartate residues were strategically incorporated into the receptor-binding C-terminus of the nociceptin sequence and two Lys(i)→Asp(i+4) side chain-side chain condensations were used to generate lactam cross-links that constrained nociceptin into a highly stable α-helix in water. A cell-based assay was developed using natively expressed ORL-1 receptors on mouse neuroblastoma cells to measure phosphorylated ERK as a reporter of agonist-induced receptor activation and intracellular signaling. Agonist activity was increased up to 20-fold over native nociceptin using a combination of this helix-inducing strategy and other amino acid modifications. An NMR-derived three-dimensional solution structure is described for a potent ORL-1 agonist derived from nociceptin, along with structure-activity relationships leading to the most potent known α-helical ORL-1 agonist (EC₅₀ 40 pM, pERK, Neuro-2a cells) and antagonist (IC₅₀ 7 nM, pERK, Neuro-2a cells). These α-helix-constrained mimetics of nociceptin(1-17) had enhanced serum stability relative to unconstrained peptide analogues and nociceptin itself, were not cytotoxic, and displayed potent thermal analgesic and antianalgesic properties in rats (ED₅₀ 70 pmol, IC₅₀ 10 nmol, s.c.), suggesting promising uses in vivo for the treatment of pain and other ORL-1-mediated responses.
Collapse
Affiliation(s)
- Rink-Jan Lohman
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Rosemary S Harrison
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Gloria Ruiz-Gómez
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Huy N Hoang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas E Shepherd
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Shiao Chow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Timothy A Hill
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Praveen K Madala
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
7
|
Abstracts of the Anaesthetic Research Society Meeting. Br J Anaesth 2014. [DOI: 10.1093/bja/aeu190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Brookes ZLS, Stedman EN, Brown NJ, Hebbes CP, Guerrini R, Calo G, Reilly CS, Lambert DG. The nociceptin/orphanin FQ receptor antagonist UFP-101 reduces microvascular inflammation to lipopolysaccharide in vivo. PLoS One 2013; 8:e74943. [PMID: 24086402 PMCID: PMC3781147 DOI: 10.1371/journal.pone.0074943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/07/2013] [Indexed: 12/23/2022] Open
Abstract
Microvascular inflammation occurs during sepsis and the endogenous opioid-like peptide nociceptin/orphanin FQ (N/OFQ) is known to regulate inflammation. This study aimed to determine the inflammatory role of N/OFQ and its receptor NOP (ORL1) within the microcirculation, along with anti-inflammatory effects of the NOP antagonist UFP-101 (University of Ferrara Peptide-101) in an animal model of sepsis (endotoxemia). Male Wistar rats (220 to 300 g) were administered lipopolysaccharide (LPS) for 24 h (-24 h, 1 mg kg(-1); -2 h, 1 mg kg(-1) i.v., tail vein). They were then either anesthetised for observation of the mesenteric microcirculation using fluorescent in vivo microscopy, or isolated arterioles (~200 µm) were studied in vitro with pressure myography. 200 nM kg(-1) fluorescently labelled N/OFQ (FITC-N/OFQ, i.a., mesenteric artery) bound to specific sites on the microvascular endothelium in vivo, indicating sparse distribution of NOP receptors. In vitro, arterioles (~200 µm) dilated to intraluminal N/OFQ (10(-5)M) (32.6 + 8.4%) and this response was exaggerated with LPS (62.0 +7.9%, p=0.031). In vivo, LPS induced macromolecular leak of FITC-BSA (0.02 g kg(-1) i.v.) (LPS: 95.3 (86.7 to 97.9)%, p=0.043) from post-capillary venules (<40 µm) and increased leukocyte rolling as endotoxemia progressed (p=0.027), both being reduced by 150 nmol kg(-1) UFP-101 (i.v., jugular vein). Firstly, the rat mesenteric microcirculation expresses NOP receptors and secondly, NOP function (ability to induce dilation) is enhanced with LPS. UFP-101 also reduced microvascular inflammation to endotoxemia in vivo. Hence inhibition of the microvascular N/OFQ-NOP pathway may have therapeutic potential during sepsis and warrants further investigation.
Collapse
Affiliation(s)
- Zoë L. S. Brookes
- Microcirculation Research Group, Department of Cardiovascular Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Emily N. Stedman
- Microcirculation Research Group, Department of Cardiovascular Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Nicola J. Brown
- Microcirculation Research Group, Department of Cardiovascular Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Christopher P. Hebbes
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, Ferrara, Italy
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and Italian Institute of Neuroscience, Ferrara, Italy
| | - Charles S. Reilly
- Microcirculation Research Group, Department of Cardiovascular Sciences, University of Sheffield, Sheffield, United Kingdom
| | - David G. Lambert
- Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
9
|
|
10
|
Le Maître E, Dourmap N, Vilpoux C, Leborgne R, Janin F, Bonnet JJ, Costentin J, Leroux-Nicollet I. Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin. Brain Res 2013; 1520:51-60. [PMID: 23669068 DOI: 10.1016/j.brainres.2013.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022]
Abstract
Nociceptin/Orphanin FQ is the endogenous ligand of NOP receptor, formerly referred to as the Opioid Receptor-Like 1 receptor. We have previously shown that NOP receptors were located on serotonergic neurons in the rat dorsal raphe nucleus, suggesting possible direct interactions between nociceptin and serotonin in this region, which is a target for antidepressant action. In the present study, we investigated further the link between Selective Serotonin Reuptake Inhibitor (SSRI) antidepressant treatments and the nociceptin/NOP receptor system. Intraperitoneal administration of the SSRI citalopram induced an increase in NOP-receptor density, measured by autoradiographic [(3)H] nociceptin binding, in the rat dorsal raphe nucleus, from the first to the 21st day of treatment. This effect was also observed with other SSRIs (sertraline, fluoxetine), but not with two tricyclic antidepressants (imipramine, clomipramine) and was abolished by pre-treatment with para-chlorophenylalanine, an inhibitor of serotonin synthesis. Using microdialysis experiments, we demonstrated that NOP-receptor activation by infusion of nociceptin 10(-6) M or 10(-5) M increased the level of extracellular serotonin in the dorsal raphe nucleus. This effect was abolished by co-infusion of the NOP-receptor antagonist UFP 101. These results confirm the existence of reciprocal interactions between serotonin and nociceptin/NOP transmissions in the dorsal raphe nucleus.
Collapse
Affiliation(s)
- Erwan Le Maître
- Unité de Neuropsychopharmacologie de la Dépression, EA 4359, IRIB, Faculté de Médecine-Pharmacie, 22 Bd. Gambetta, 76183 Rouen Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Calo’ G, Guerrini R. Medicinal Chemistry, Pharmacology, and Biological Actions of Peptide Ligands Selective for the Nociceptin/Orphanin FQ Receptor. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1131.ch015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Girolamo Calo’
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| | - Remo Guerrini
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, Italy
- Department of Pharmaceutical Sciences and LTTA (Laboratorio per le Tecnologie delle Terapie Avanzate), University of Ferrara, Italy
| |
Collapse
|
13
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
14
|
Dietis N, McDonald J, Molinari S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. Pharmacological characterization of the bifunctional opioid ligand H-Dmt-Tic-Gly-NH-Bzl (UFP-505). Br J Anaesth 2011; 108:262-70. [PMID: 22194444 DOI: 10.1093/bja/aer377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND While producing good-quality analgesia, µ-opioid (MOP) receptor activation produces a number of side-effects including tolerance. Simultaneous blockade of δ-opioid (DOP) receptors has been shown to reduce tolerance to morphine. Here, we characterize a prototype bifunctional opioid H-Dmt-Tic-Gly-NH-Bzl (UFP-505). METHODS We measured receptor binding affinity in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, k-opioid (KOP), nociceptin/orphanin (NOP) receptors. For activation, we measured the binding of GTPγ(35)S to membranes from CHO(hMOP), CHO(hDOP), rat cerebrocortex, and rat spinal cord. In addition, we assessed 'end organ' responses in the guinea pig ileum and mouse vas deferens. RESULTS UFP-505 bound to CHO(hMOP) and CHO(hDOP) with (binding affinity) pK(i) values of 7.79 and 9.82, respectively. There was a weak interaction at KOP and NOP (pK(i) 6.29 and 5.86). At CHO(hMOP), UFP-505 stimulated GTPγ(35)S binding with potency (pEC(50)) of 6.37 and in CHO(hDOP) reversed the effects of a DOP agonist with affinity (pK(b)) of 9.81 (in agreement with pK(i) at DOP). UFP-505 also stimulated GTPγ(35)S binding in rat cerebrocortex and spinal cord with pEC(50) values of 6.11-6.53. In the guinea pig ileum (MOP-rich preparation), UFP-505 inhibited contractility with pEC(50) of 7.50 and in the vas deferens (DOP-rich preparation) reversed the effects of a DOP agonist with an affinity (pA(2)) of 9.15. CONCLUSIONS We have shown in a range of preparations and assays that UFP-505 behaves as a potent MOP agonist and DOP antagonist; a MOP/DOP bifunctional opioid. Further studies in dual expression systems and whole animals with this prototype are warranted.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mustazza C, Bastanzio G. Development of nociceptin receptor (NOP) agonists and antagonists. Med Res Rev 2011; 31:605-48. [PMID: 20099319 DOI: 10.1002/med.20197] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nociceptin opioid (NOP) receptor is the most recently discovered member of the family of the opioid receptors; its endogenous agonist is the peptide nociceptin. Due to the subsequent elucidation of its physiological role in both central and peripheral nervous system and in some non-neural tissues, there is a rapidly growing interest in the pharmacological application of substances active on this receptor. Despite the current clinical use of a morphinane-based NOP/MOP mixed ligand (buprenorphine) as an analgesic and in the treatment of drug addictions, so far just a few clinical trials have been made with selective NOP ligands. However, the perspective of their utilization is rapidly growing. Agonists can find applications in the treatment of neuropathic pain, anxiety, cough, drug addition, urinary incontinence, anorexia, congestive heart failure, hypertension; and antagonists for pain, depression, Parkinson's disease, obesity, and as memory enhancers. Besides peptide ligands, which are still subjected to many pharmacological investigations, many different chemical classes of NOP ligands have been discovered: piperidines, nortropanes, spiropiperidines, 4-amino-quinolines and quinazolines, and others. The new advances in establishing structure-activity relationships, also with the help of modeling studies, can permit the development of more active and selective molecules.
Collapse
Affiliation(s)
- Carlo Mustazza
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena, Roma, Italy.
| | | |
Collapse
|
16
|
Vitale G, Ruggieri V, Filaferro M, Frigeri C, Alboni S, Tascedda F, Brunello N, Guerrini R, Cifani C, Massi M. Chronic treatment with the selective NOP receptor antagonist [Nphe 1, Arg 14, Lys 15]N/OFQ-NH 2 (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacology (Berl) 2009; 207:173-89. [PMID: 19711054 DOI: 10.1007/s00213-009-1646-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 08/10/2009] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The present study was designed to assess the antidepressant effects of UFP-101, a selective nociceptin/orphanin FQ peptide (NOP) receptor antagonist, in a validated animal model of depression: the chronic mild stress (CMS). MATERIALS AND METHODS AND RESULTS UFP-101 (5, 10 and 20 nmol/rat; i.c.v., once a day for 21 days) dose- and time-dependently reinstated sucrose consumption in stressed animals without affecting the same parameter in non-stressed ones. In the forced swimming test, UFP-101 reduced immobility of stressed rats from day 8 of treatment. After a 3-week treatment, rats were killed for biochemical evaluations. UFP-101 abolished increase in serum corticosterone induced by CMS and reverted changes in central 5-HT/5-HIAA ratio. The behavioural and biochemical effects of UFP-101 mimicked those of imipramine, the reference antidepressant drug, administered at the dose of 15 mg/kg (i.p.). Co-administration of nociceptin/orphanin FQ (5 nmol/rat, from day 12 to 21) prevented the effects of UFP-101. Brain-derived neurotrophic factor mRNA and protein in hippocampus were not reduced by CMS nor did UFP-101 modify these parameters. DISCUSSION AND CONCLUSION This study demonstrated that chronic treatment with UFP-101 produces antidepressant-like effects in rats subjected to CMS supporting the proposal that NOP receptors represent a candidate target for the development of innovative antidepressant drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Biomedical Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, 41100, Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Selective and high affinity labeling of neuronal and recombinant nociceptin receptors with the hexapeptide radioprobe [3H]Ac-RYYRIK-ol. Neurochem Int 2009; 55:458-66. [DOI: 10.1016/j.neuint.2009.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
|
18
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
19
|
Michel MC, Wieland T, Tsujimoto G. How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 2009; 379:385-8. [PMID: 19172248 DOI: 10.1007/s00210-009-0395-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 11/29/2022]
Abstract
A cluster of manuscripts in this issue of the Journal highlights a lack of selectivity of 49 antibodies against 19 subtypes of alpha(1)- and beta-adrenoceptors, muscarinic, dopamine and galanin receptors as well as vanilloid (TRPV1) receptors. Taken together these data demonstrate that lack of selectivity appears to be the rule rather than the exception for antibodies against G-protein-coupled and perhaps also other receptors. Thus, the previously often applied validation of such antibodies by the disappearance of staining in the presence of blocking peptide, i.e. the antigen against which the antibody was raised, alone is insufficient to demonstrate specificity. We propose that receptor antibodies should be validated by at least one of the following techniques: a) disappearance of staining in knock-out animals of the target receptor, b) reduction of staining upon knock-down approaches such as siRNA treatment, c) selectivity of staining in immunoblots or immunocytochemistry for the target receptor vs. related subtypes when expressed in the same cell line and/or d) antibodies raised against multiple distinct epitopes of a receptor yielding very similar staining patterns. Other issues of consideration to obtain reliable results based on receptor antibodies in applications such as immunohistochemistry or immunoblotting are also being discussed.
Collapse
|