1
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
2
|
Prunier C, Chavrier P, Boissan M. Mechanisms of action of NME metastasis suppressors - a family affair. Cancer Metastasis Rev 2023; 42:1155-1167. [PMID: 37353690 PMCID: PMC10713741 DOI: 10.1007/s10555-023-10118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Metastatic progression is regulated by metastasis promoter and suppressor genes. NME1, the prototypic and first described metastasis suppressor gene, encodes a nucleoside diphosphate kinase (NDPK) involved in nucleotide metabolism; two related family members, NME2 and NME4, are also reported as metastasis suppressors. These proteins physically interact with members of the GTPase dynamin family, which have key functions in membrane fission and fusion reactions necessary for endocytosis and mitochondrial dynamics. Evidence supports a model in which NDPKs provide GTP to dynamins to maintain a high local GTP concentration for optimal dynamin function. NME1 and NME2 are cytosolic enzymes that provide GTP to dynamins at the plasma membrane, which drive endocytosis, suggesting that these NMEs are necessary to attenuate signaling by receptors on the cell surface. Disruption of NDPK activity in NME-deficient tumors may thus drive metastasis by prolonging signaling. NME4 is a mitochondrial enzyme that interacts with the dynamin OPA1 at the mitochondria inner membrane to drive inner membrane fusion and maintain a fused mitochondrial network. This function is consistent with the current view that mitochondrial fusion inhibits the metastatic potential of tumor cells whereas mitochondrial fission promotes metastasis progression. The roles of NME family members in dynamin-mediated endocytosis and mitochondrial dynamics and the intimate link between these processes and metastasis provide a new framework to understand the metastasis suppressor functions of NME proteins.
Collapse
Affiliation(s)
- Céline Prunier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Philippe Chavrier
- Actin and Membrane Dynamics Laboratory, Institut Curie - Research Center, CNRS UMR144, PSL Research University, Paris, France
| | - Mathieu Boissan
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, CRSA, Paris, France.
- Laboratoire de Biochimie Endocrinienne Et Oncologique, Oncobiologie Cellulaire Et Moléculaire, APHP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Paris, France.
| |
Collapse
|
3
|
Iuso D, Garcia-Saez I, Couté Y, Yamaryo-Botté Y, Boeri Erba E, Adrait A, Zeaiter N, Tokarska-Schlattner M, Jilkova ZM, Boussouar F, Barral S, Signor L, Couturier K, Hajmirza A, Chuffart F, Bourova-Flin E, Vitte AL, Bargier L, Puthier D, Decaens T, Rousseaux S, Botté C, Schlattner U, Petosa C, Khochbin S. Nucleoside diphosphate kinases 1 and 2 regulate a protective liver response to a high-fat diet. SCIENCE ADVANCES 2023; 9:eadh0140. [PMID: 37672589 PMCID: PMC10482350 DOI: 10.1126/sciadv.adh0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.
Collapse
Affiliation(s)
- Domenico Iuso
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Isabel Garcia-Saez
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Yoshiki Yamaryo-Botté
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Nour Zeaiter
- Univ. Grenoble Alpes, INSERM, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | | | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
- CHU Grenoble Alpes, Service d’hépato-gastroentérologie, Pôle Digidune, La Tronche 38700, France
| | - Fayçal Boussouar
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Sophie Barral
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Karine Couturier
- Univ. Grenoble Alpes, INSERM, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Azadeh Hajmirza
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Florent Chuffart
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Ekaterina Bourova-Flin
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Anne-Laure Vitte
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Lisa Bargier
- Aix Marseille Université, INSERM, TAGC, TGML, Marseille 13288, France
| | - Denis Puthier
- Aix Marseille Université, INSERM, TAGC, TGML, Marseille 13288, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
- CHU Grenoble Alpes, Service d’hépato-gastroentérologie, Pôle Digidune, La Tronche 38700, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Cyrille Botté
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, INSERM, Institut Universitaire de France, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Carlo Petosa
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| |
Collapse
|
4
|
Hunter T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol Cell 2022; 82:2190-2200. [PMID: 35654043 DOI: 10.1016/j.molcel.2022.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification. Nine of the 20 natural amino acids in proteins can be phosphorylated, but most of what we know about the roles of protein phosphorylation has come from studies of serine, threonine, and tyrosine phosphorylation. Much less is understood about the phosphorylation of histidine, lysine, arginine, cysteine, aspartate, and glutamate, so-called non-canonical phosphorylations. Phosphohistidine (pHis) was discovered 60 years ago as a mitochondrial enzyme intermediate; since then, evidence for the existence of histidine kinases and phosphohistidine phosphatases has emerged, together with examples where protein function is regulated by reversible histidine phosphorylation. pHis is chemically unstable and has thus been challenging to study. However, the recent development of tools for studying pHis has accelerated our understanding of the multifaceted functions of histidine phosphorylation, revealing a large number of proteins that are phosphorylated on histidine and implicating pHis in a wide range of cellular processes.
Collapse
Affiliation(s)
- Tony Hunter
- Molecular Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Gupta A, Sinha KM, Abdin MZ, Puri N, Selvapandiyan A. NDK/NME proteins: a host-pathogen interface perspective towards therapeutics. Curr Genet 2021; 68:15-25. [PMID: 34480234 DOI: 10.1007/s00294-021-01198-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets. Here, we discuss Nucleoside diphosphate kinases (NDKs) of pathogens that alter host's intra and extracellular environment, as novel drug targets to simultaneously tackle multiple pathogens. NDKs having diverse functions, are highly conserved among prokaryotes and eukaryotes (the mammal NDKs are called NMEs [non-metastatic enzymes]). However, NDKs and NMEs have been separately analysed in the past for their structure and functions. The role of NDKs of pathogen in modulation of inflammation, phagocytosis, apoptosis, and ROS generation in host is known. Conversely, its combined contribution in host-pathogen interaction has not been studied yet. Through the sequence and domain analysis, we found that NDKs can be classified in two groups. One group comprised NMEs 1-4 and few NDKs of select essential protozoan parasites and the bacterium Mycobacterium tuberculosis. The other group included NME7 and the other NDKs of those parasites, posing challenges in the development of drugs specifically targeting pathogen NDKs, without affecting NME7. However, common drugs targeting group 2 NDKs of pathogens can be designed, as NME7 of group 2 is expressed only in ciliated host cells. This review thus analyses comparatively for the first time the structures and functions of human NMEs and pathogen NDKs and predicts the possibilities of NDKs as drug targets. In addition, pathogen NDKs have been now provided a nomenclature in alignment with the NMEs of humans.
Collapse
Affiliation(s)
- Ankit Gupta
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana, 122413, India
| | - Malik Z Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Angamuthu Selvapandiyan
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
6
|
Ma Z, Li R, Hu R, Deng X, Xu Y, Zheng W, Yi J, Wang Y, Chen C. Brucella abortus BspJ Is a Nucleomodulin That Inhibits Macrophage Apoptosis and Promotes Intracellular Survival of Brucella. Front Microbiol 2020; 11:599205. [PMID: 33281799 PMCID: PMC7688787 DOI: 10.3389/fmicb.2020.599205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
To date, a variety of Brucella effector proteins have been found to mediate host cell secretion, autophagy, inflammation, and other signal pathways, but nuclear effector proteins have not yet been reported. We identified the first Brucella nucleomodulin, BspJ, and we screened out the BspJ interaction host proteins NME/NM23 nucleoside diphosphate kinase 2 (NME2) and creatine kinase B (CKB) through yeast two-hybrid and co-immunoprecipitation assays. These proteins are related to the host cell energy synthesis, metabolism, and apoptosis pathways. Brucella nucleomodulin BspJ will decrease the expression level of NME2 and CKB. In addition, BspJ gene deletion strains promoted the apoptosis of macrophages and reduced the intracellular survival of Brucella in host cells. In short, we found nucleomodulin BspJ may directly or indirectly regulate host cell apoptosis through the interaction with NME2 and CKB by mediating energy metabolism pathways in response to the intracellular circulation of Brucella infection, but the mechanism needs further study.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruirui Li
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruirui Hu
- College of Life Science, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Wei Zheng
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jihai Yi
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Li M, Huang H, Cheng F, Hu X, Liu J. miR-141-3p promotes proliferation and metastasis of nasopharyngeal carcinoma by targeting NME1. Adv Med Sci 2020; 65:252-258. [PMID: 32299022 DOI: 10.1016/j.advms.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to investigate the expression and biological function of miR-141-3p in nasopharyngeal carcinoma (NPC) via targeting neoplasm metastasis 1 (NME1). MATERIALS AND METHODS The expression of miR-141-3p and NME1 in 5-8F, C666-1, CNE-1, CNE-2, 6-10B and NP69 nasopharyngeal epithelial cells were detected using real-time Polymerase Chain Reaction (real-time PCR) and western blot, respectively. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8), and the metastasis was detected using Transwell. The binding of miR-141-3p to NME1 was detected by dual luciferase reporter gene detection system. The effects of miR-141-3p on tumor growth were also determined in vivo. RESULTS The results showed that the expression of miR-141-3p significantly increased in various tumor cell lines and the expression of NME1 was higher in NP69 cells and lower in 5-8F cells, which had significant negative correlation. Furthermore, the expression of NME1 was significantly reduced after transfection of miR-141-3p and miR-141-3p promoted cell proliferation and metastasis. The double luciferase reporter gene detection system confirmed that NME1 was the target gene of miR-141-3p. Knockout of NME1 promoted the proliferation and metastasis of NP69 or 6-10B cells and the activation of p-Akt, which were abrogated by miR-141-3p. In vivo, the tumor volumes and weights in the miR-141-3p group significantly increased followed by down-regulation of NME1 and activation of p-Akt. CONCLUSIONS We confirmed that miR-141-3p promotes the proliferation and metastasis of NPC by targeting NME1.
Collapse
|
8
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
9
|
Adam K, Lesperance J, Hunter T, Zage PE. The Potential Functional Roles of NME1 Histidine Kinase Activity in Neuroblastoma Pathogenesis. Int J Mol Sci 2020; 21:ijms21093319. [PMID: 32392889 PMCID: PMC7247550 DOI: 10.3390/ijms21093319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Gain of chromosome 17q material is found in >60% of neuroblastoma tumors and is associated with poor patient prognosis. The NME1 gene is located in the 17q21.3 region, and high NME1 expression is correlated with poor neuroblastoma patient outcomes. However, the functional roles and signaling activity of NME1 in neuroblastoma cells and tumors are unknown. NME1 and NME2 have been shown to possess histidine (His) kinase activity. Using anti-1- and 3-pHis specific monoclonal antibodies and polyclonal anti-pH118 NME1/2 antibodies, we demonstrated the presence of pH118-NME1/2 and multiple additional pHis-containing proteins in all tested neuroblastoma cell lines and in xenograft neuroblastoma tumors, supporting the presence of histidine kinase activity in neuroblastoma cells and demonstrating the potential significance of histidine kinase signaling in neuroblastoma pathogenesis. We have also demonstrated associations between NME1 expression and neuroblastoma cell migration and differentiation. Our demonstration of NME1 histidine phosphorylation in neuroblastoma and of the potential role of NME1 in neuroblastoma cell migration and differentiation suggest a functional role for NME1 in neuroblastoma pathogenesis and open the possibility of identifying new therapeutic targets and developing novel approaches to neuroblastoma therapy.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Jacqueline Lesperance
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA; (K.A.); (T.H.)
| | - Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence:
| |
Collapse
|
10
|
Nucleoside Diphosphate Kinase B Contributes to Arrhythmogenesis in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes from a Patient with Arrhythmogenic Right Ventricular Cardiomyopathy. J Clin Med 2020; 9:jcm9020486. [PMID: 32050722 PMCID: PMC7073527 DOI: 10.3390/jcm9020486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare, inheritable cardiac disorder characterized by ventricular tachyarrhythmias, progressive loss of cardiomyocytes with fibrofatty replacement and sudden cardiac death. The exact underlying mechanisms are unclear. Methods: This study investigated the possible roles of nucleoside diphosphate kinase B (NDPK-B) and SK4 channels in the arrhythmogenesis of ARVC by using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Results: In hiPSC-CMs from a patient with ARVC, the expression levels of NDPK-B and SK4 channels were upregulated, the cell automaticity was increased and the occurrence rate of arrhythmic events was enhanced. Recombinant NDPK-B applied into hiPSC-CMs from either healthy donors or the patient enhanced SK4 channel current (ISK4), cell automaticity and the occurrence of arrhythmic events, whereas protein histidine phosphatase 1 (PHP-1), a counter actor of NDPK-B, prevented the NDPK-B effect. Application of PHP-1 alone or a SK4 channel blocker also reduced cell automaticity and arrhythmic events. Conclusion: This study demonstrated that the elevated NDPK-B expression, via activating SK4 channels, contributes to arrhythmogenesis in ARVC, and hence, NDPK-B may be a potential therapeutic target for treating arrhythmias in patients with ARVC.
Collapse
|
11
|
Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, Yuan J, Cheng YL, Bush EC, Dogra P, Thapa P, Farber DL, Sims PA. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nat Commun 2019; 10:4706. [PMID: 31624246 PMCID: PMC6797728 DOI: 10.1038/s41467-019-12464-3] [Citation(s) in RCA: 380] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Human T cells coordinate adaptive immunity in diverse anatomic compartments through production of cytokines and effector molecules, but it is unclear how tissue site influences T cell persistence and function. Here, we use single cell RNA-sequencing (scRNA-seq) to define the heterogeneity of human T cells isolated from lungs, lymph nodes, bone marrow and blood, and their functional responses following stimulation. Through analysis of >50,000 resting and activated T cells, we reveal tissue T cell signatures in mucosal and lymphoid sites, and lineage-specific activation states across all sites including distinct effector states for CD8+ T cells and an interferon-response state for CD4+ T cells. Comparing scRNA-seq profiles of tumor-associated T cells to our dataset reveals predominant activated CD8+ compared to CD4+ T cell states within multiple tumor types. Our results therefore establish a high dimensional reference map of human T cell activation in health for analyzing T cells in disease.
Collapse
Affiliation(s)
- Peter A Szabo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanna Mendes Levitin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle Miron
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark E Snyder
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jinzhou Yuan
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yim Ling Cheng
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Erin C Bush
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Puspa Thapa
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Bulged and Canonical G-Quadruplex Conformations Determine NDPK Binding Specificity. Molecules 2019; 24:molecules24101988. [PMID: 31126138 PMCID: PMC6572678 DOI: 10.3390/molecules24101988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/17/2022] Open
Abstract
Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K+. In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5′ untranslated region of the Zea mayshexokinase4 gene. This sequence adopted an extensively polymorphic G-quadruplex, including non-canonical bulged G-quadruplex folds that co-existed in solution. The nature of this polymorphism depended, in part, on the incorporation of different sets of adjacent guanines into a quadruplex core, which permitted the formation of the different conformations. Additionally, we showed that the maize homolog of the human nucleoside diphosphate kinase (NDPK) NM23-H2 protein—ZmNDPK1—specifically recognizes and promotes formation of a subset of these conformations. Heteromorphic G-quadruplexes play a role in microorganisms’ ability to evade the host immune system, so we also discuss how the underlying properties that determine heterogeneity of this sequence could apply to microorganism G4s.
Collapse
|
13
|
Wang Y, Leonard MK, Snyder DE, Fisher ML, Eckert RL, Kaetzel DM. NME1 Drives Expansion of Melanoma Cells with Enhanced Tumor Growth and Metastatic Properties. Mol Cancer Res 2019; 17:1665-1674. [PMID: 31123173 DOI: 10.1158/1541-7786.mcr-18-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Melanoma is a lethal skin cancer prone to progression and metastasis, and resistant to therapy. Metastasis and therapy resistance of melanoma and other cancers are driven by tumor cell plasticity, largely via acquisition/loss of stem-like characteristics and transitions between epithelial and mesenchymal phenotypes (EMT/MET). NME1 is a metastasis suppressor gene that inhibits metastatic potential when its expression is enforced in melanoma and other cancers. Herein, we have unmasked a novel role for NME1 as a driver of melanoma growth distinct from its canonical function as a metastasis suppressor. NME1 promotes expansion of stem-like melanoma cells that exhibit elevated expression of stem cell markers (e.g., Sox2, Sox10, Oct-4, KLF4, and Ccnb-1), enhanced growth as melanoma spheres in culture, and enhanced tumor growth and lung colonizing activities in vivo. In contrast, NME1 expression did not affect the proliferation of melanoma cell lines in monolayer culture conditions. Silencing of NME1 expression resulted in a dramatic reduction in melanoma sphere size, and impaired tumor growth and metastatic activities of melanoma sphere cells when xenografted in immunocompromised mice. Individual cells within melanoma sphere cultures displayed a wide range of NME1 expression across multiple melanoma cell lines. Cell subpopulations with elevated NME1 expression were fast cycling and displayed enhanced expression of stem cell markers. IMPLICATIONS: Our findings suggest the current model of NME1 as a metastasis-suppressing factor requires refinement, bringing into consideration its heterogeneous expression within melanoma sphere cultures and its novel role in promoting the expansion and tumorigenicity of stem-like cells.
Collapse
Affiliation(s)
- Ying Wang
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - M Kathryn Leonard
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Devin E Snyder
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Matthew L Fisher
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland
| | - Richard L Eckert
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, Maryland
| | - David M Kaetzel
- School of Medicine, University of Maryland-Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland-Baltimore, Baltimore, Maryland
| |
Collapse
|
14
|
Jankauskas SS, Wong DW, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57:76-88. [DOI: 10.1016/j.cellsig.2019.01.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
|
15
|
Hernández-Ramírez LC, Morgan RM, Barry S, D’Acquisto F, Prodromou C, Korbonits M. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland. Oncotarget 2018; 9:9177-9198. [PMID: 29507682 PMCID: PMC5823669 DOI: 10.18632/oncotarget.24183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/01/2018] [Indexed: 11/25/2022] Open
Abstract
Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-specific function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant findings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was confirmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/stability of multiple chaperone client proteins could be perturbed by a deficient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identified. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our findings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP.
Collapse
Affiliation(s)
- Laura C. Hernández-Ramírez
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
- Present address: Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892-1862, USA
| | - Rhodri M.L. Morgan
- Genome Damage and Stability Centre, University of Sussex, Brighton, Falmer, BN1 9RQ, UK
- Present address: Protein Crystallography Facility, Centre for Structural Biology, Flowers Building, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sayka Barry
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fulvio D’Acquisto
- Centre for Microvascular Research, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
16
|
The dosage-dependent effect exerted by the NM23-H1/H2 homolog NDK-1 on distal tip cell migration in C. elegans. J Transl Med 2018; 98:182-189. [PMID: 28920944 DOI: 10.1038/labinvest.2017.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in ndk-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.
Collapse
|
17
|
Adam K, Hunter T. Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. J Transl Med 2018; 98:233-247. [PMID: 29058706 PMCID: PMC5815933 DOI: 10.1038/labinvest.2017.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is the most common type of post-translational modification in eukaryotes. The phosphoproteome is defined as the complete set of experimentally detectable phosphorylation sites present in a cell's proteome under various conditions. However, we are still far from identifying all the phosphorylation sites in a cell mainly due to the lack of information about phosphorylation events involving residues other than Ser, Thr and Tyr. Four types of phosphate-protein linkage exist and these generate nine different phosphoresidues-pSer, pThr, pTyr, pHis, pLys, pArg, pAsp, pGlu and pCys. Most of the effort in studying protein phosphorylation has been focused on Ser, Thr and Tyr phosphorylation. The recent development of 1- and 3-pHis monoclonal antibodies promises to increase our understanding of His phosphorylation and the kinases and phosphatases involved. Several His kinases are well defined in prokaryotes, especially those involved in two-component system (TCS) signaling. However, in higher eukaryotes, NM23, a protein originally characterized as a nucleoside diphosphate kinase, is the only characterized protein-histidine kinase. This ubiquitous and conserved His kinase autophosphorylates its active site His, and transfers this phosphate either onto a nucleoside diphosphate or onto a protein His residue. Studies of NM23 protein targets using newly developed anti-pHis antibodies will surely help illuminate the elusive His phosphorylation-based signaling pathways. This review discusses the role that the NM23/NME/NDPK phosphotransferase has, how the addition of the pHis phosphoproteome will expand the phosphoproteome and make His phosphorylation part of the global phosphorylation world. It also summarizes why our understanding of phosphorylation is still largely restricted to the acid stable phosphoproteome, and highlights the study of NM23 histidine kinase as an entrée into the world of histidine phosphorylation.
Collapse
Affiliation(s)
- Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
18
|
Abstract
Nucleoside diphosphate kinases (NDPK) are nucleotide metabolism enzymes encoded by NME genes (also called NM23). Given the fact that not all NME-encoded proteins are catalytically active NDPKs and that NM23 generally refers to clinical studies on metastasis, we use here NME/NDPK to denote the proteins. Since their discovery in the 1950's, NMEs/NDPKs have been shown to be involved in multiple physiological and pathological cellular processes, but the molecular mechanisms have not been fully determined. Recent progress in elucidating these underlying mechanisms has been presented by experts in the field at the 10th International Congress on the NDPK/NME/AWD protein family in October 2016 in Dubrovnik, Croatia, and is summarized in review articles or original research in this and an upcoming issue of Laboratory Investigation. Within this editorial, we discuss three major cellular processes that involve members of the multi-functional NME/NDPK family: (i) cancer and metastasis dissemination, (ii) membrane remodeling and nucleotide channeling, and iii) protein histidine phosphorylation.
Collapse
|
19
|
Li Y, Song J, Tong Y, Chung SK, Wong YH. RGS19 upregulates Nm23-H1/2 metastasis suppressors by transcriptional activation via the cAMP/PKA/CREB pathway. Oncotarget 2017; 8:69945-69960. [PMID: 29050254 PMCID: PMC5642529 DOI: 10.18632/oncotarget.19509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
The Nm23 metastasis suppressor family is involved in physiological and pathological processes including tumorigenesis and metastasis. Although the inverse correlation of Nm23 level with tumor metastasis potential has been widely observed, the mechanisms that regulate the expression of Nm23 remain poorly understood. Our previous studies have revealed that Nm23-H1/2 isoforms are upregulated by RGS19, a regulator of G protein signaling (RGS) protein which accelerates the termination of Gi signals. Here, we examined the ability of RGS19 to stimulate transcriptional regulation of Nm23 by screening a panel of luciferase reporter genes. Transient and stable overexpression of RGS19 upregulated the Nm23-H1/2 protein levels and activated several transcription factors including CREB, AP-1 and SRE in HEK293 cells. Interestingly, agents that increase the intracellular cAMP level and the phosphorylation of CREB (e.g., adrenergic receptor agonist, forskolin, and cAMP analogues) upregulated the expression of Nm23-H1/2 in HEK293 cells and several cancer cell lines including A549, HeLa, MDA-MB-231, and MDA-MB-435s cells. Conversely, inhibition of protein kinase A (PKA) by H-89 suppressed the phosphorylation of CREB and reduced the expression of Nm23-H1/2. Furthermore, activation of PKA attenuated cancer cell migration in wound healing and transwell assays. Collectively, these results revealed a PKA-dependent mechanism for controlling Nm23-H1/2 expression.
Collapse
Affiliation(s)
- Yuanjun Li
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiaxing Song
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yao Tong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sookja Kim Chung
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yung H Wong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
20
|
Dautant A, Meyer P, Georgescauld F. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization. Biochemistry 2017; 56:2886-2896. [DOI: 10.1021/acs.biochem.7b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Dautant
- Université
de Bordeaux, CNRS, Institut de Biochimie et Génétique
Cellulaires, UMR 5095, Bordeaux, France
| | - Philippe Meyer
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Florian Georgescauld
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
21
|
Francois-Moutal L, Ouberai MM, Maniti O, Welland ME, Strzelecka-Kiliszek A, Wos M, Pikula S, Bandorowicz-Pikula J, Marcillat O, Granjon T. Two-Step Membrane Binding of NDPK-B Induces Membrane Fluidity Decrease and Changes in Lipid Lateral Organization and Protein Cluster Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12923-12933. [PMID: 27934520 DOI: 10.1021/acs.langmuir.6b03789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.
Collapse
Affiliation(s)
- Liberty Francois-Moutal
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Myriam M Ouberai
- Nanoscience Centre, University of Cambridge , 11 J.J. Thomson Avenue Cambridge, Cambridge CB3 0FF, U.K
| | - Ofelia Maniti
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Mark E Welland
- Nanoscience Centre, University of Cambridge , 11 J.J. Thomson Avenue Cambridge, Cambridge CB3 0FF, U.K
| | - Agnieszka Strzelecka-Kiliszek
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Marcin Wos
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Joanna Bandorowicz-Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences , 3 Pasteur Street, Warsaw 02-093, Poland
| | - Olivier Marcillat
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| | - Thierry Granjon
- Organisation et Dynamique des Membrane Biologiques, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CNRS UMR 5246 ICBMS , Bâtiment Chevreul, 43 Boulevard du 11 Novembre 1918, Villeurbanne Cedex 69622, France
| |
Collapse
|
22
|
Ghosh S, Das PJ, McQueen CM, Gerber V, Swiderski CE, Lavoie JP, Chowdhary BP, Raudsepp T. Analysis of genomic copy number variation in equine recurrent airway obstruction (heaves). Anim Genet 2016; 47:334-44. [PMID: 26932307 DOI: 10.1111/age.12426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Abstract
We explored the involvement of genomic copy number variants (CNVs) in susceptibility to recurrent airway obstruction (RAO), or heaves-an asthmalike inflammatory disease in horses. Analysis of 16 RAO-susceptible (cases) and six RAO-resistant (control) horses on a custom-made whole-genome 400K equine tiling array identified 245 CNV regions (CNVRs), 197 previously known and 48 new, distributed on all horse autosomes and the X chromosome. Among the new CNVRs, 30 were exclusively found in RAO cases and were further analyzed by quantitative PCR, including additional cases and controls. Suggestive association (P = 0.03; corrected P = 0.06) was found between RAO and a loss on chromosome 5 involving NME7, a gene necessary for ciliary functions in lungs and involved in primary ciliary dyskinesia in humans. The CNVR could be a potential marker for RAO susceptibility but needs further study in additional RAO cohorts. Other CNVRs were not associated with RAO, although several involved genes of interest, such as SPI2/SERPINA1 from the serpin gene family, which are associated with chronic obstructive pulmonary disease and asthma in humans. The SPI2/SERPINA1 CNVR showed striking variation among horses, but it was not significantly different between RAO cases and controls. The findings provide baseline information on the relationship between CNVs and RAO susceptibility. Discovery of new CNVs and the use of a larger population of RAO-affected and control horses are needed to shed more light on their significance in modulating this complex and heterogeneous disease.
Collapse
Affiliation(s)
- S Ghosh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - P J Das
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,National Research Centre on Yak (ICAR), Dirang, Arunachal Pradesh, 790101, India
| | - C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - V Gerber
- Department of Veterinary Medicine, University of Bern, Bern, Switzerland
| | - C E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - J-P Lavoie
- Department of Clinical Sciences, University of Montreal, Montreal, QC, J2S 7C6, Canada
| | - B P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.,New Research Complex, Qatar University, Doha, 2713, Qatar
| | - T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
23
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
24
|
Wang YF, Chang CJ, Chiu JH, Lin CP, Li WY, Chang SY, Chu PY, Tai SK, Chen YJ. NM23-H1 expression of head and neck squamous cell carcinoma in association with the response to cisplatin treatment. Oncotarget 2015; 5:7392-405. [PMID: 25277180 PMCID: PMC4202131 DOI: 10.18632/oncotarget.1912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We recently reported that low NM23-H1 expression of head and neck squamous cell carcinoma (HNSCC) correlated with poor patients' prognosis. Growing evidence has indicated that high tumor NM23-H1 expression contributes to a good response to chemotherapy. Therefore, we investigated the role of NM23-H1 in susceptibility of HNSCC cells to cisplatin and its clinical significance, as well as the in vitro study for validation was performed. Using immunohistochemistry, we analyzed NM23-H1 expression in surgical specimens from 46 HNSCC patients with cervical metastases receiving surgery and adjuvant chemoradiotherapy. Low tumor NM23-H1 expression correlated with locoregional recurrence of HNSCC following postoperative cisplatin-based therapy (p = 0.056) and poor patient prognosis (p = 0.001). To validate the clinical observation and the effect of NM23-H1 on cisplatin cytotoxicity, we established several stable clones derived from a human HNSCC cell line (SAS) by knockdown and overexpression. Knockdown of NM23-H1 attenuated the chemosensitivity of SAS cells to cisplatin, which was associated with reduced cisplatin-induced S-phase accumulation and downregulation of cyclin E1 and A. Overexpression of NM23-H1 reversed these results, indicating the essential role of NM23-H1 in treatment response to cisplatin. NM23-H1 may participate in HNSCC cell responses to cisplatin and be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Yi-Fen Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chun-Ju Chang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chin-Ping Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wing-Yin Li
- Department of Medicine, National Yang Ming University, Taipei, Taiwan. Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shyue-Yih Chang
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pen-Yuan Chu
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Shyh-Kuan Tai
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan. Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan. Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Zhou XB, Feng YX, Sun Q, Lukowski R, Qiu Y, Spiger K, Li Z, Ruth P, Korth M, Skolnik EY, Borggrefe M, Dobrev D, Wieland T. Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries. Arterioscler Thromb Vasc Biol 2015; 35:1852-61. [PMID: 26088577 DOI: 10.1161/atvbaha.115.305881] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/29/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular smooth muscle cells (VSMC) proliferation is a hallmark of atherosclerosis and vascular restenosis. The intermediate conductance Ca(2+)-activated K(+) (SK4) channel is required for pathological VSMC proliferation. In T lymphocytes, nucleoside diphosphate kinase B (NDPKB) has been implicated in SK4 channel activation. We thus investigated the role of NDPKB in the regulation of SK4 currents (ISK4) in proliferating VSMC and neointima formation. APPROACH AND RESULTS Function and expression of SK4 channels in VSMC from injured mouse carotid arteries were assessed by patch-clamping and real-time polymerase chain reaction. ISK4 was detectable in VSMC from injured but not from uninjured arteries correlating with the occurrence of the proliferative phenotype. Direct application of NDPKB to the membrane of inside-out patches increased ISK4, whereas NDPKB did not alter currents in VSMC obtained from injured vessels of SK4-deficient mice. The NDPKB-induced increase in ISK4 was prevented by protein histidine phosphatase 1, but not an inactive protein histidine phosphatase 1 mutant indicating that ISK4 is regulated via histidine phosphorylation in proliferating VSMC; moreover, genetic NDPKB ablation reduced ISK4 by 50% suggesting a constitutive activation of ISK4 in proliferating VSMC. In line, neointima formation after wire injury of the carotid artery was substantially reduced in mice deficient in SK4 channels or NDPKB. CONCLUSIONS NDPKB to SK4 signaling is required for neointima formation. Constitutive activation of SK4 by NDPKB in proliferating VSMC suggests that targeting this interaction via, for example, activation of protein histidine phosphatase 1 may provide clinically meaningful effects in vasculoproliferative diseases such as atherosclerosis and post angioplasty restenosis.
Collapse
Affiliation(s)
- Xiao-Bo Zhou
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Yu-Xi Feng
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Qiang Sun
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Robert Lukowski
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Yi Qiu
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Katharina Spiger
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Zhai Li
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Peter Ruth
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Michael Korth
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Edward Y Skolnik
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Martin Borggrefe
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Dobromir Dobrev
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.)
| | - Thomas Wieland
- From the 1st Medical Clinic (X.B.-Z., M.B.), Institute of Experimental and Clinical Pharmacology and Toxicology (Y.-X.F., Y.Q., K.S., T.W.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Pharmacology, West German Heart and Vessel Centre, University Duisburg-Essen, Essen, Germany (Q.S., D.D.); Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany (R.L., P.R.); Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (M.K.); Department of Medicine (Z.L., E.Y.S.) and Department of Pharmacology (Z.L., E.Y.S.), Langone Medical Center, New York University; and DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Germany (M.B., T.W.).
| |
Collapse
|
26
|
Takács-Vellai K, Vellai T, Farkas Z, Mehta A. Nucleoside diphosphate kinases (NDPKs) in animal development. Cell Mol Life Sci 2015; 72:1447-62. [PMID: 25537302 PMCID: PMC11113130 DOI: 10.1007/s00018-014-1803-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022]
Abstract
In textbooks of biochemistry, nucleoside diphosphate conversion to a triphosphate by nucleoside diphosphate 'kinases' (NDPKs, also named NME or NM23 proteins) merits a few lines of text. Yet this essential metabolic function, mediated by a multimeric phosphotransferase protein, has effects that lie beyond a simple housekeeping role. NDPKs attracted more attention when NM23-H1 was identified as the first metastasis suppressor gene. In this review, we examine these NDPK enzymes from a developmental perspective because of the tractable phenotypes found in simple animal models that point to common themes. The data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. NDPKs regulate different forms of membrane enclosure that engulf dying cells during development. We suggest that NDPK enzymes have been essential for the regulated uptake of objects such as bacteria or micronutrients, and this evolutionarily conserved endocytic function contributes to their activity towards the regulation of metastasis.
Collapse
Affiliation(s)
- Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117, Budapest, Hungary,
| | | | | | | |
Collapse
|
27
|
Abstract
In the cell, homo- and hetero-associations of polypeptide chains evolve and take place within subcellular compartments that are crowded with many other cellular macromolecules. In vivo chemical cross-linking of proteins is a powerful method to examine changes in protein oligomerization and protein-protein interactions upon cellular events such as signal transduction. This chapter is intended to provide a guide for the selection of cell membrane permeable cross-linkers, the optimization of in vivo cross-linking conditions, and the identification of specific cross-links in a cellular context where the frequency of random collisions is high. By combining the chemoselectivity of the homo-bifunctional cross-linker and the length of its spacer arm with knowledge on the protein structure, we show that selective cross-links can be introduced specifically on either the dimer or the hexamer form of the same polypeptide in vitro as well as in vivo, using the human type B nucleoside diphosphate kinase as a protein model.
Collapse
Affiliation(s)
- Fabrice Agou
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité de Signalisation et Pathogenèse, 25 rue du Docteur Roux, F-75015, Paris, France,
| | | |
Collapse
|
28
|
Kar A, Chowdhury S. Inhibition of telomerase activity by NME2: impact on metastasis suppression? Naunyn Schmiedebergs Arch Pharmacol 2014; 388:235-41. [PMID: 25547372 PMCID: PMC4469096 DOI: 10.1007/s00210-014-1077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Abstract
Though anti-metastatic function of non-metastatic 2 (NME2) has been implicated in multiple cancers, mechanisms of metastases control by NME2 are not clearly understood. Recent observations indicating the involvement of telomerase, the ribonucleoprotein required for telomere synthesis, in metastatic outcome are interesting. Notably, though the role of telomerase dysfunction in tumorigenesis is relatively well studied, involvement in metastasis progression is poorly understood. Recent findings demonstrate NME2 presence at telomere ends, association with telomerase, and NME2’s role in inhibition of telomerase activity in cancer cells. These present a novel opportunity to investigate mechanisms underlying NME2-mediated metastasis suppression.
Collapse
Affiliation(s)
- Anirban Kar
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, 110025, DELHI, India
| | | |
Collapse
|
29
|
RONG ZHUOXIAN, LI DAN, LIU XIAOWEN, LIU ZHIYONG, WU DAOBING, LIU XUANMING. Screening for miRNAs and their potential targets in response to TGF-β1 based on miRNA microarray and comparative proteomics analyses in a mouse GC-1 spg germ cell line. Int J Mol Med 2014; 35:821-8. [DOI: 10.3892/ijmm.2014.2053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/11/2014] [Indexed: 11/06/2022] Open
|
30
|
Schlattner U, Tokarska-Schlattner M, Epand RM, Boissan M, Lacombe ML, Klein-Seetharaman J, Kagan VE. Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:271-8. [PMID: 25231795 DOI: 10.1007/s00210-014-1047-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
A novel paradigm for the function of the mitochondrial nucleoside diphosphate kinase NM23-H4/NDPK-D is proposed: acting as a bifunctional nanoswitch in bioenergetics and cardiolipin (CL) trafficking and signaling. Similar to some other mitochondrial proteins like cytochrome c or AIF, NM23-H4 seems to have dual functions in bioenergetics and apoptotic signaling. In its bioenergetic phosphotransfer mode, the kinase reversibly phosphorylates NDPs into NTPs, driven by mitochondrially generated ATP. Among others, this reaction can locally supply GTP to mitochondrial GTPases as shown for the dynamin-like GTPase OPA1, found in a complex together with NM23-H4. Further, NM23-H4 is functionally coupled to adenylate translocase (ANT) of the mitochondrial inner membrane (MIM), so generated ADP can stimulate respiration to rapidly regenerate ATP. The lipid transfer mode of NM23-H4 can support, dependent on the presence of CL, the transfer of anionic lipids between membranes in vitro and the sorting of CL from its mitochondrial sites of synthesis (MIM) to the mitochondrial outer membrane (MOM) in vivo. Such (partial) collapse of MIM/MOM CL asymmetry results in CL externalization on the mitochondrial surface, where CL can serve as pro-apoptotic or pro-mitophagic "eat me"-signal. The functional state of NM23-H4 depends on its degree of CL-membrane interaction. In vitro assays have shown that only NM23-H4 that fully cross-links two membranes is lipid transfer competent, but at the same time phosphotransfer (kinase) inactive. Thus, the two functions of NM23-H4 seem to be mutually exclusive. This novel mitochondrial regulatory circuit has potential for the development of interventions in various human pathologies.
Collapse
Affiliation(s)
- Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France,
| | | | | | | | | | | | | |
Collapse
|
31
|
Cai X, Srivastava S, Surindran S, Li Z, Skolnik EY. Regulation of the epithelial Ca²⁺ channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell 2014; 25:1244-50. [PMID: 24523290 PMCID: PMC3982990 DOI: 10.1091/mbc.e13-04-0180] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The kidney, together with bone and intestine, plays a crucial role in maintaining whole-body calcium (Ca(2+)) homoeostasis, which is primarily mediated by altering the reabsorption of Ca(2+) filtered by the glomerulus. The transient receptor potential-vanilloid-5 (TRPV5) channel protein forms a six- transmembrane Ca(2+)-permeable channel that regulates urinary Ca(2+) excretion by mediating active Ca(2+) reabsorption in the distal convoluted tubule of the kidney. Here we show that the histidine kinase, nucleoside diphosphate kinase B (NDPK-B), activates TRPV5 channel activity and Ca(2+) flux, and this activation requires histidine 711 in the carboxy-terminal tail of TRPV5. In addition, the histidine phosphatase, protein histidine phosphatase 1, inhibits NDPK-B-activated TRPV5 in inside/out patch experiments. This is physiologically relevant to Ca(2+) reabsorption in vivo, as short hairpin RNA knockdown of NDPK-B leads to decreased TRPV5 channel activity, and urinary Ca(2+) excretion is increased in NDPK-B(-/-) mice fed a high-Ca(2+) diet. Thus these findings identify a novel mechanism by which TRPV5 and Ca(2+) reabsorption is regulated by the kidney and support the idea that histidine phosphorylation plays other, yet-uncovered roles in mammalian biology.
Collapse
Affiliation(s)
- Xinjiang Cai
- Division of Nephrology, New York University Langone Medical Center, New York, NY 10016 Department of Molecular Pathogenesis, New York University Langone Medical Center, New York, NY 10016 The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016 Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016
| | | | | | | | | |
Collapse
|
32
|
Atanasova KR, Yilmaz O. Looking in the Porphyromonas gingivalis cabinet of curiosities: the microbium, the host and cancer association. Mol Oral Microbiol 2014; 29:55-66. [PMID: 24506890 DOI: 10.1111/omi.12047] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
The past decades of biomedical research have yielded massive evidence for the contribution of the microbiome in the development of a variety of chronic human diseases. There is emerging evidence that Porphyromonas gingivalis, a well-adapted opportunistic pathogen of the oral mucosa and prominent constituent of oral biofilms, best known for its involvement in periodontitis, may be an important mediator in the development of a number of multifactorial and seemingly unrelated chronic diseases, such as rheumatoid arthritis and orodigestive cancers. Orodigestive cancers represent a large proportion of the total malignancies worldwide, and include cancers of the oral cavity, gastrointestinal tract and pancreas. For prevention and/or enhanced prognosis of these diseases, a good understanding of the pathophysiological mechanisms and the interaction between P. gingivalis and host is much needed. With this review, we introduce the currently accumulated knowledge on P. gingivalis's plausible association with cancer as a risk modifier, and present the putative cancer-promoting cellular and molecular mechanisms that this organism may influence in the oral mucosa.
Collapse
Affiliation(s)
- K R Atanasova
- Department of Periodontology, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
33
|
Owlanj H, Jie Yang H, Wei Feng Z. Nucleoside diphosphate kinase Nm23-M1 involves in oligodendroglial versus neuronal cell fate decision in vitro. Differentiation 2012; 84:281-93. [PMID: 23023023 DOI: 10.1016/j.diff.2012.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/30/2022]
Abstract
The adult glial progenitor cells were recently shown to be able to produce neurons in central nervous system (CNS) and to become multipotent in vitro. Although the fate decision of glial progenitors was studied extensively, the signals and factors which regulate the timing of neuronal differentiation still remain unknown. To elucidate the mechanisms underlying the neuronal differentiation from glial progenitors, we modified the gene expression profile in NG2(+) glial progenitor cells using enhanced retroviral mutagen (ERM) technique followed by phenotype screening to identify possible gene(s) responsible for glial-neuronal cell fate determination. Among the identified molecules, we found the gene named non-metastatic cell 1 which encodes a nucleoside diphosphate kinase protein A (Nm23-M1 or NME1). So far, the Nm23 members have been shown to be involved in various molecular processes including tumor metastasis, cell proliferation, differentiation and cell fate determination. In the present study, we provide evidence suggesting the role of NME1 in glial-neuronal cell fate determination in vitro. We showed that NME1 is widely expressed in neuronal structures throughout adult mouse CNS. Our immunohistochemical results revealed that NME1 is strongly colocalized with NF200 through white matter of spinal cord and brain. Interestingly, NME1 overexpression in oligodendrocyte progenitor OLN-93 cells potently induced the acquisition of neuronal fate, while its silencing was shown to promote oligodendrocyte differentiation. Furthermore, we demonstrated that dual-functional role of NME1 is achieved through cAMP-dependent protein kinase (PKA). Our data therefore suggested that NME1 acts as a switcher or reprogramming factor which involves in oligodentrocyte versus neuron cell fate specification in vitro.
Collapse
Affiliation(s)
- Hamed Owlanj
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | | |
Collapse
|
34
|
Abstract
Metastasis suppressor genes - unlike tumor suppressor genes - are defined by their capacity to control metastatic dissemination in vivo without affecting growth of the primary tumor. The first of these metastasis suppressor genes, NM23, was identified in 1988. Since then, expression of NM23 has been studied widely in human tumor cohorts, often with contradictory results. Not only is NM23 overexpressed in most human solid tumors when compared to healthy tissues, but also low expression of NM23 correlates with metastasis and poor clinical prognosis in the advanced stages of a number of epithelial cancer types, including melanoma, breast, colon, and liver carcinoma. This does not hold true, however, for other cancer types such as neuroblastoma and hematological malignancies, in which high NM23 expression correlates with more aggressive disease. Genetic alterations in the NM23 gene - loss of heterozygosity, spontaneous mutations and polymorphisms - are rarely found in tumors; thus, the metastatic potential of tumor cells is probably affected by NM23 protein levels. Three lines of evidence demonstrate the anti-metastatic activity of NM23: first, overexpression of NM23 in metastatic cell lines reduces their metastatic potential in xenograft models; second, the incidence of lung metastases is elevated in NM23 knockout mice prone to develop hepatocellular carcinoma, and, third, silencing NM23 by RNA interference confers a "metastatic phenotype" on non-invasive human epithelial liver and colon cancer cell lines. It appears that NM23 is crucial for inhibiting invasive migration, so acting at early stages of metastatic dissemination. The mechanistic basis of the metastasis suppressor function of NM23 and its regulated expression still remains obscure, however. Reactivation of expression of the endogenous NM23 gene in tumor cells, or stimulation of the pathways it controls, constitutes a promising avenue for anti-metastatic therapy.
Collapse
|
35
|
Steeg PS, Zollo M, Wieland T. A critical evaluation of biochemical activities reported for the nucleoside diphosphate kinase/Nm23/Awd family proteins: opportunities and missteps in understanding their biological functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 384:331-9. [PMID: 21611737 PMCID: PMC10153102 DOI: 10.1007/s00210-011-0651-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|