1
|
Calotropis procera latex protein reduces inflammation and bone loss in ligature-induced period ontitis in male rats. Arch Oral Biol 2023; 147:105613. [PMID: 36739838 DOI: 10.1016/j.archoralbio.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Calotropis procera latex protein (CpLP) is a popular anti-inflammatory and therefore we aimed to study its effects on inflammatory bone loss. DESIGN Male Wistar rats were subjected to a ligature of molars. Groups of rats received intraperitoneally CpLP (0.3 mg/kg, 1 mg/kg, or 3 mg/kg) or saline (0.9% NaCl) one hour before ligature and then daily up to 11 days, compared to naïve. Gingiva was evaluated by myeloperoxidase activity and interleukin-1 beta (IL-1β) expression by ELISA. Bone resorption was evaluated in the region between the cement-enamel junction and the alveolar bone crest. The histology considered alveolar bone resorption and cementum integrity, leukocyte infiltration, and attachment level, followed by immunohistochemistry bone markers between 1st and 2nd molars. Systemically, the weight of the body and organs, and a leukogram were performed. RESULTS The periodontitis significantly increased myeloperoxidase activity and the IL-1β level. The increased bone resorption was histologically corroborated by periodontal destruction, leukocyte influx, and attachment loss, as well as the increasing receptor activator of the nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio, and Tartrate-resistant acid phosphatase (TRAP)+ cells when compared to naïve. CpLP significantly reduced myeloperoxidase activity, level of IL-1β, alveolar bone resorption, periodontal destruction, leukocyte influx, and attachment loss. The CpLp also reduced the RANKL/OPG ratio and TRAP+ cells, when compared with the saline group, and did not affect the systemic parameters. CONCLUSIONS CpLP exhibited a periodontal protective effect by reducing inflammation and restricting osteoclastic alveolar bone resorption in this rat model.
Collapse
|
2
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
3
|
Luetragoon T, Sranujit RP, Noysang C, Thongsri Y, Potup P, Somboonjun J, Maichandi N, Suphrom N, Sangouam S, Usuwanthim K. Evaluation of Anti-Inflammatory Effect of Moringa oleifera Lam. and Cyanthillium cinereum (Less) H. Rob. Lozenges in Volunteer Smokers. PLANTS 2021; 10:plants10071336. [PMID: 34208842 PMCID: PMC8309071 DOI: 10.3390/plants10071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Smokers have high plaque accumulation that initiates gingival inflammation and progresses to periodontitis. Thus, oral hygiene to control microbial plaque formation is an effective method of preventing gingivitis. Medicinal plants such as Moringa oleifera Lam. (MO) and Cyanthillium cinereum (Less.) H. Rob. (CC) have an anti-inflammatory effect that might improve oral health in smokers. This study evaluated the effect of MO leaf and CC extracts using MO lozenges and a combination of MO + CC lozenges on oral inflammation and gingivitis in volunteer smokers. Lozenges consisting of MO and CC extracts were developed and studied in vivo. The results showed that lozenges significantly reduced oral inflammation and gingivitis in volunteers. The gingival index (GI) of group III (MO + CC lozenges) significantly decreased, while the percentage decrease of oral inflammation in group II (MO lozenges) was significantly higher than the other groups. The percentage decrease of GI values in group II (MO lozenges) and group III (MO + CC lozenges) were significantly higher than the placebo group I. Our findings indicated that MO and MO + CC lozenges reduced oral inflammation and gingivitis and showed potential to improve oral health in smokers.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | | | | | - Nungruthai Suphrom
- Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Supaporn Sangouam
- Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
4
|
Fakhri S, Tomas M, Capanoglu E, Hussain Y, Abbaszadeh F, Lu B, Hu X, Wu J, Zou L, Smeriglio A, Simal-Gandara J, Cao H, Xiao J, Khan H. Antioxidant and anticancer potentials of edible flowers: where do we stand? Crit Rev Food Sci Nutr 2021; 62:8589-8645. [PMID: 34096420 DOI: 10.1080/10408398.2021.1931022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Edible flowers are attracting special therapeutic attention and their administration is on the rise. Edible flowers play pivotal modulatory roles on oxidative stress and related interconnected apoptotic/inflammatory pathways toward the treatment of cancer. In this review, we highlighted the phytochemical content and therapeutic applications of edible flowers, as well as their modulatory potential on the oxidative stress pathways and apoptotic/inflammatory mediators, resulting in anticancer effects. Edible flowers are promising sources of phytochemicals (e.g., phenolic compounds, carotenoids, terpenoids) with several therapeutic effects. They possess anti-inflammatory, anti-diabetic, anti-microbial, anti-depressant, anxiolytic, anti-obesity, cardioprotective, and neuroprotective effects. Edible flowers potentially modulate oxidative stress by targeting erythroid nuclear transcription factor-2/extracellular signal-regulated kinase/mitogen-activated protein kinase (Nrf2/ERK/MAPK), reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA) and antioxidant response elements (AREs). As the interconnected pathways to oxidative stress, inflammatory mediators, including tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukins (ILs) as well as apoptotic pathways such as Bcl-2-associated X protein (Bax), Bcl-2, caspase and cytochrome C are critical targets of edible flowers in combating cancer. In this regard, edible flowers could play promising anticancer effects by targeting oxidative stress and downstream dysregulated pathways.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Yaseen Hussain
- Control release drug delivery system, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xiaolan Hu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo -Ourense Campus, Ourense, Spain.,Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
5
|
Lee J, Jeong MI, Kim HR, Park H, Moon WK, Kim B. Plant Extracts as Possible Agents for Sequela of Cancer Therapies and Cachexia. Antioxidants (Basel) 2020; 9:E836. [PMID: 32906727 PMCID: PMC7555300 DOI: 10.3390/antiox9090836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading cause of the death worldwide. Since the National Cancer Act in 1971, various cancer treatments were developed including chemotherapy, surgery, radiation therapy and so forth. However, sequela of such cancer therapies and cachexia are problem to the patients. The primary mechanism of cancer sequela and cachexia is closely related to reactive oxygen species (ROS) and inflammation. As antioxidant properties of numerous plant extracts have been widely reported, plant-derived drugs may have efficacy on managing the sequela and cachexia. In this study, recent seventy-four studies regarding plant extracts showing ability to manage the sequela and cachexia were reviewed. Some plant-derived antioxidants inhibited cancer proliferation and inflammation after surgery and others prevented chemotherapy-induced normal cell apoptosis. Also, there are plant extracts that suppressed radiation-induced oxidative stress and cell damage by elevation of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and regulation of B-cell lymphoma 2 (BcL-2) and Bcl-2-associated X protein (Bax). Cachexia was also alleviated by inhibition of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) by plant extracts. This review focuses on the potential of plant extracts as great therapeutic agents by controlling oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jinjoo Lee
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Myung In Jeong
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Hyo-Rim Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Hyejin Park
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Won-Kyoung Moon
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea; (J.L.); (M.I.J.); (H.-R.K.); (H.P.); (W.-K.M.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegi-dong Dongdaemun-gu, Seoul 05253, Korea
| |
Collapse
|
6
|
Liu H, Chen T, Dong C, Pan X. Biomedical Applications of Hemicellulose-Based Hydrogels. Curr Med Chem 2020; 27:4647-4659. [DOI: 10.2174/0929867327666200408115817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/03/2019] [Accepted: 12/08/2019] [Indexed: 01/10/2023]
Abstract
Background:
Hydrogel has a three-dimensional network structure that is able to absorb
a large amount of water/liquid and maintain its original structure. Hemicellulose (HC) is the second
most abundant polysaccharide after cellulose in plants and a heterogeneous polysaccharide
consisting of various saccharide units. The unique physical and chemical properties of hemicellulose
make it a promising material for hydrogels.
Methods:
This review first summarizes the three research hotspots on the hemicellulose-based
hydrogels: intelligence, biodegradability and biocompatibility. It also overviews the progress in
the fabrication and applications of hemicellulose hydrogels in the drug delivery system and tissue
engineering (articular cartilage, cell immobilization, and wound dressing).
Results:
Hemicellulose-based hydrogels have many unique properties, such as stimuliresponsibility,
biodegradability and biocompatibility. Interpenetrating networking can endow appropriate
mechanical properties to hydrogels. These properties make the hemicellulose-based hydrogels
promising materials in biomedical applications such as drug delivery systems and tissue
engineering (articular cartilage, cell immobilization, and wound dressing).
Conclusion:
Hydrogels have been widely used in biomedicine and tissue engineering areas, such
as tissue fillers, drug release agents, enzyme encapsulation, protein electrophoresis, contact lenses,
artificial plasma, artificial skin, and tissue engineering scaffold materials. This article reviews the
recent progress in the fabrication and applications of hemicellulose-based hydrogels in the biomedical
field.
Collapse
Affiliation(s)
- Haitang Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Chen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Cuihua Dong
- Key Laboratory of Pulp and Paper Science and Technology of Chinese Ministry of Education and Shandong Province, Qilu University of Technology, Jinan 250353, China
| | - Xuejun Pan
- Biological Systems Engineering, University of Wisconsin-Madison, Madison WI 53706, United States
| |
Collapse
|
7
|
Ramos MV, Freitas APF, Leitão RFC, Costa DVS, Cerqueira GS, Martins DS, Martins CS, Alencar NMN, Freitas LBN, Brito GAC. Anti-inflammatory latex proteins of the medicinal plant Calotropis procera: a promising alternative for oral mucositis treatment. Inflamm Res 2020; 69:951-966. [PMID: 32488316 DOI: 10.1007/s00011-020-01365-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE AND DESIGN Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS Male Golden Sirius hamsters were used in all treatments. TREATMENT The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.
Collapse
Affiliation(s)
- Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Ana Paula F Freitas
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção, Ceará, Brazil
| | - Renata F C Leitão
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Deiziane V S Costa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gilberto S Cerqueira
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Dainesy S Martins
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Conceição S Martins
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Nylane M N Alencar
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Larissa Barbosa N Freitas
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gerly Anne C Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
de Oliveira KA, Moreira Gomes MD, Vasconcelos RP, de Abreu ES, Fortunato RS, Carneiro Loureiro AC, Coelho-de-Souza AN, de Oliveira RSB, de Freitas CDT, Ramos MV, de Oliveira AC. Phytomodulatory proteins promote inhibition of hepatic glucose production and favor glycemic control via the AMPK pathway. Biomed Pharmacother 2019; 109:2342-2347. [DOI: 10.1016/j.biopha.2018.11.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
|
9
|
Licá ICL, Soares AMDS, de Mesquita LSS, Malik S. Biological properties and pharmacological potential of plant exudates. Food Res Int 2018; 105:1039-1053. [DOI: 10.1016/j.foodres.2017.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/27/2023]
|
10
|
Vasconcelos MS, Souza TF, Figueiredo IS, Sousa ET, Sousa FD, Moreira RA, Alencar NM, Lima-Filho JV, Ramos MV. A phytomodulatory hydrogel with enhanced healing effects. Phytother Res 2018; 32:688-697. [DOI: 10.1002/ptr.6018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/01/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Mirele S. Vasconcelos
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Ceará; Campus do Pici, Cx. Postal 6033, CEP Fortaleza CE 60451-970 Brazil
| | - Tamiris F.G. Souza
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina; Universidade Federal do Ceará; Fortaleza Ceará Brazil
| | | | - Emília T. Sousa
- Departamento de Patologia, Faculdade de Medicina; Universidade Federal do Ceará; Fortaleza Ceará Brazil
| | - Felipe D. Sousa
- Núcleo de Biologia Experimental (NUBEX), Centro de Ciências da Saúde; Universidade de Fortaleza (UNIFOR); Fortaleza CE Brazil
| | - Renato A. Moreira
- Núcleo de Biologia Experimental (NUBEX), Centro de Ciências da Saúde; Universidade de Fortaleza (UNIFOR); Fortaleza CE Brazil
| | - Nylane M.N. Alencar
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina; Universidade Federal do Ceará; Fortaleza Ceará Brazil
| | | | - Márcio V. Ramos
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal do Ceará; Campus do Pici, Cx. Postal 6033, CEP Fortaleza CE 60451-970 Brazil
| |
Collapse
|
11
|
Latex proteins from Calotropis procera: Toxicity and immunological tolerance revisited. Chem Biol Interact 2017; 274:138-149. [DOI: 10.1016/j.cbi.2017.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/20/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023]
|
12
|
Al-Asmari AK, Khan AQ, Al-Asmari SA, Al-Rawi A, Al-Omani S. Alleviation of 5-fluorouracil-induced intestinal mucositis in rats by vitamin E via targeting oxidative stress and inflammatory markers. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2017; 13:377-385. [PMID: 27682716 DOI: 10.1515/jcim-2016-0043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 11/15/2022]
Abstract
BackgroundIntestinal mucositis is a major concern related with cancer therapy. It is well established that overproduction of reactive oxygen species and inflammatory mediators plays vital role in the pathogenesis of mucositis. The aim of the study was to investigate the modulatory effect of vitamin E (vit. E) on 5-fluorouracil (5-FU)-induced intestinal mucositis by targeting oxidative stress and inflammatory markers in rats. MethodsRats were randomly divided into four groups of six animals each. All four-group animals received normal standard diet and water throughout the experimental period which last up to 10 days. Rats were gavaged with vit. E (300 mg/kg b. wt.) daily for 10 days (day 1-10) and were given intraperitoneal injection of 5-FU (150 mg/kg b. wt.) or saline (control) on day 8 to induce mucositis. Results We found that vit. E supplementation ameliorated 5-FU-induced lipid peroxidation, myeloperoxidase activity, activation of nuclear factor κB, expression of cyclooxygenase-2, inducible nitric oxide synthase and mucin depletion. Vit. E administration also attenuated 5-FU-induced histological anomalies such as neutrophil infiltration, loss of cellular integrity, villus and crypt deformities. ConclusionsFindings of the study suggest that vit. E inhibits 5-FU-induced mucositis via modulation of oxidative stress, activation of redox sensitive transcription factor and its downstream targets.
Collapse
|
13
|
de Alencar NMN, da Silveira Bitencourt F, de Figueiredo IST, Luz PB, Lima-Júnior RCP, Aragão KS, Magalhães PJC, de Castro Brito GA, Ribeiro RA, de Freitas APF, Ramos MV. Side-Effects of Irinotecan (CPT-11), the Clinically Used Drug for Colon Cancer Therapy, Are Eliminated in Experimental Animals Treated with Latex Proteins fromCalotropis procera(Apocynaceae). Phytother Res 2016; 31:312-320. [DOI: 10.1002/ptr.5752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Patrícia Bastos Luz
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Roberto César P. Lima-Júnior
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Karoline Sabóia Aragão
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Pedro Jorge Caldas Magalhães
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | | | - Ronaldo Albuquerque Ribeiro
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Ana Paula Fragoso de Freitas
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Marcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular/UFC; Campus do Pici, Caixa Postal 6033 60451-970 Ceará Brazil
| |
Collapse
|
14
|
Chaudhary P, Ramos MV, Vasconcelos MDS, Kumar VL. Protective Effect of High Molecular Weight Protein Sub-fraction of Calotropis procera Latex in Monoarthritic Rats. Pharmacogn Mag 2016; 12:S147-51. [PMID: 27279699 PMCID: PMC4883071 DOI: 10.4103/0973-1296.182151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Proteins present in the latex of Calotropis procera have been shown to produce anti-inflammatory effect and to afford protection in various disease models. Objectives: To determine the efficacy of high molecular weight protein sub-fraction (LPPI) of latex of C. procera in ameliorating joint inflammation and hyperalgesia in a preclinical model of arthritis. Materials and Methods: Monoarthritis was induced in rats by intra-articular injection of Freund's complete adjuvant (FCA) and the effect of two doses of LPPI (5 and 25 mg/kg) and diclofenac (5 mg/kg) was evaluated on joint swelling, stair climbing ability, motility, and dorsal flexion pain on day 3. The rats were sacrificed on day 3 to measure tissue levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). Evaluation of joint histology was also made. Results: Intra-articular injection of FCA produced joint swelling and difficulty in stair climbing ability, motility, and pain on flexion of the joint as revealed by scores obtained for these functional parameters. LPPI produced a dose-dependent decrease in joint swelling and improved joint functions. Arthritic rats also revealed altered oxidative homeostasis where joint tissue GSH levels were decreased and TBARS levels were increased as compared to normal rats. The levels of these oxidative stress markers were near normal in arthritic rats treated with LPPI. Moreover, treatment with LPPI also maintained the structural integrity of the joint. The protective effect of LPPI was comparable to the standard anti-inflammatory drug, diclofenac. Conclusion: The findings of the present study show that LPPI fraction comprising high molecular weight proteins could be used for the alleviation of arthritic symptoms. SUMMARY High molecular weight protein sub-fraction of latex of Calotropis procera (LPPI) reduced joint swelling and hyperalgesia in arthritic rats LPPI produced a significant improvement in stair climbing ability and motility in arthritic rats LPPI normalized the levels of oxidative stress markers in the arthritic joints Treatment with LPPI reduced neutrophil influx and edema in the arthritic joints
Abbreviations used: FCA: Freund's complete adjuvant, GSH: Glutathione, TBARS: Thiobarbituric acid reactive substances, TBA: Thiobarbituric acid, MDA: Malondialdehyde, LPPI: Latex protein fraction PI.
Collapse
Affiliation(s)
- Priyanka Chaudhary
- Department of Plant Molecular Biology, Delhi University South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India; Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Marcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60451-970 Fortaleza, CE, Brazil
| | | | - Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
15
|
Wound healing modulation by a latex protein-containing polyvinyl alcohol biomembrane. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:747-56. [DOI: 10.1007/s00210-016-1238-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
16
|
Patil SG, Patil MP, Patil RH. In vitro anti-hypercholesterolemic activity of Calotropis procera (Aiton) using human erythrocytes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Al-Asmari AK, Khan AQ, Al-Qasim AM, Al-Yousef Y. Ascorbic acid attenuates antineoplastic drug 5-fluorouracil induced gastrointestinal toxicity in rats by modulating the expression of inflammatory mediators. Toxicol Rep 2015; 2:908-916. [PMID: 28962429 PMCID: PMC5598240 DOI: 10.1016/j.toxrep.2015.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/06/2015] [Accepted: 06/07/2015] [Indexed: 12/22/2022] Open
Abstract
Damage to the mucous membrane is a serious issue associated with chemotherapy. Gastrointestinal (GI) toxicity is complex and multistep process and unregulated production of reactive oxygen species (ROS) and inflammatory mediators play vital role in the development of GI toxicity. In the present study we have investigated the attenuating potential of vitamin C (vit. C) on 5 fluorouracil (5-FU) induced GI toxicity by targeting oxidative stress and inflammatory markers in Sprague Dawley (SD) rats. Rats were gavaged with vit. C (500 mg/kg b. wt.) or vehicle daily (day 1-10) and were given intraperitoneal injection of 5-FU (150 mg/kg b. wt.) or saline (control) on day 8 to induce mucositis. We found that vit. C supplementation attenuated 5-FU induced lipid peroxidation, myeloperoxidase (MPO) activity, activation of NF-kB and expression of COX-2. Histological observations further supported the protective potential of vit. C against 5-FU induced intestinal anomalies such as neutrophil infiltration, loss of cellular integrity, villus and crypt deformities. Thus the biochemical, molecular and histological findings of the present study demonstrate that oxidative stress and inflammation play vital role in 5-FU induced GI toxicity and the inhibitory potential of vit. C is may be due to the modulation of oxidative stress, activation of redox sensitive transcription factor and also its downstream target molecules.
Collapse
|
18
|
Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015; 6:14. [PMID: 25674088 PMCID: PMC4309199 DOI: 10.3389/fimmu.2015.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| | - Sophie Paczesny
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| |
Collapse
|
19
|
Kumar VL, Sharma N, Souza ICDC, Ramos MV, Carvalho CPDS. Proteins derived from in vitro culture of the callus and roots of Calotropis procera ameliorate acute inflammation in the rat paw. Appl Biochem Biotechnol 2014; 175:1724-31. [PMID: 25424282 DOI: 10.1007/s12010-014-1361-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022]
Abstract
The callus and roots developed from the hypocotyl and cotyledon explants of the germinating seeds of Calotropis procera were grown in culture, and the proteins isolated from them (CP and RP) were evaluated for their efficacy in inhibiting edema formation induced by sub-plantar injection of carrageenan in the hind paw of rat. Intravenous administration of both CP and RP 30 min before inducing inflammation produced a dose-dependent inhibition of edema formation at 1 and 5 mg/kg doses. The extents of inhibition with these proteins ranged between 40 and 70 % at the doses included while the anti-inflammatory drug diclofenac produced 50 to 60 % inhibition at 5 mg/kg dose. The inhibitory effect with these proteins was accompanied by a dose-dependent reduction in the tissue levels of inflammatory mediators, tumor necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2), and oxidative stress markers namely glutathione and thiobarbituric acid-reactive substances and maintenance of tissue architecture. The present study shows that the proteins isolated from the differentiated and undifferentiated tissues derived from the germinating seeds have therapeutic application in the treatment of inflammatory conditions, and these tissues could be used as an alternative source to minimize variability of plant-derived formulations.
Collapse
Affiliation(s)
- Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India,
| | | | | | | | | |
Collapse
|
20
|
Oral complications in hematopoietic stem cell recipients: the role of inflammation. Mediators Inflamm 2014; 2014:378281. [PMID: 24817792 PMCID: PMC4003795 DOI: 10.1155/2014/378281] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/27/2014] [Indexed: 11/30/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is widely used as a potentially curative treatment for patients with various hematological malignancies, bone marrow failure syndromes, and congenital immune deficiencies. The prevalence of oral complications in both autologous and allogeneic HSCT recipients remains high, despite advances in transplant medicine and in supportive care. Frequently encountered oral complications include mucositis, infections, oral dryness, taste changes, and graft versus host disease in allogeneic HSCT. Oral complications are associated with substantial morbidity and in some cases with increased mortality and may significantly affect quality of life, even many years after HSCT. Inflammatory processes are key in the pathobiology of most oral complications in HSCT recipients. This review article will discuss frequently encountered oral complications associated with HSCT focusing on the inflammatory pathways and inflammatory mediators involved in their pathogenesis.
Collapse
|
21
|
Ramos M, Araújo E, Jucá T, Monteiro-Moreira A, Vasconcelos I, Moreira R, Viana C, Beltramini L, Pereira D, Moreno F. New insights into the complex mixture of latex cysteine peptidases in Calotropis procera. Int J Biol Macromol 2013; 58:211-9. [DOI: 10.1016/j.ijbiomac.2013.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 11/27/2022]
|
22
|
Current World Literature. Curr Opin Oncol 2013; 25:325-30. [DOI: 10.1097/cco.0b013e328360f591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|