1
|
Akarsu SA, Gür C, Küçükler S, Akaras N, İleritürk M, Kandemir FM. Protective Effects of Syringic Acid Against Oxidative Damage, Apoptosis, Autophagy, Inflammation, Testicular Histopathologic Disorders, and Impaired Sperm Quality in the Testicular Tissue of Rats Induced by Mercuric Chloride. ENVIRONMENTAL TOXICOLOGY 2024; 39:4803-4814. [PMID: 39096083 DOI: 10.1002/tox.24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Mercury (Hg) is one of the most toxic heavy metals that damage testicular tissue. Mercury chloride (HgCl2) is one of the most toxic forms of mercury that can easily cross biological membranes. Syringic acid (SA) is a natural flavonoid found in many vegetables and fruits. In this study, the effects of SA against HgCl2-induced testicular damage in rats were determined by biochemical, histopathological, and spermatological analyses. For this study, a total of 35 Spraque Dawley rats were used. Rats were divided into five groups as control, HgCl2, SA 50, HgCl2 + SA 25, and HgCl2 + SA 50. HgCl2 was administered intraperitoneal (IP) at a dose of 1.23 mg/kg/bw, while SA was administered by oral gavage at doses of 25 and 50 mg/kg/bw. The rats were then sacrificed, and testicular tissues were removed. HgCl2 caused an increase in MDA level and a decrease in SOD, CAT, and GPx activity and GSH level in the testicular tissue of rats. HgCl2 is involved in the increase of eIF2-α, PERK, ATF-4, ATF-6, CHOP, NF-κB, TNF-α, IL-1β, Apaf-1, Bax, and Caspase-3 mRNA expression. HgCl2 caused a decrease in sperm motility, an increase in the rate of abnormal sperm and sperm DNA fragmentation in rats. However, SA oral administration dose-dependently inhibited endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis and preserved epididymal sperm quality and testicular histoarchitectures. In conclusion, SA had protective effects against HgCl2-induced testicular oxidative damage, inflammation, endoplasmic reticulum stress, and apoptosis.
Collapse
Affiliation(s)
- Serkan Ali Akarsu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mustafa İleritürk
- Department of Laboratory and Veterinary Health, Horasan Vocational School, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
2
|
Liu X, An Y, Gao H. Engineering cascade biocatalysis in whole cells for syringic acid bioproduction. Microb Cell Fact 2024; 23:162. [PMID: 38824548 PMCID: PMC11143566 DOI: 10.1186/s12934-024-02441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Syringic acid (SA) is a high-value natural compound with diverse biological activities and wide applications, commonly found in fruits, vegetables, and herbs. SA is primarily produced through chemical synthesis, nonetheless, these chemical methods have many drawbacks, such as considerable equipment requirements, harsh reaction conditions, expensive catalysts, and numerous by-products. Therefore, in this study, a novel biotransformation route for SA production was designed and developed by using engineered whole cells. RESULTS An O-methyltransferase from Desulfuromonas acetoxidans (DesAOMT), which preferentially catalyzes a methyl transfer reaction on the meta-hydroxyl group of catechol analogues, was identified. The whole cells expressing DesAOMT can transform gallic acid (GA) into SA when S-adenosyl methionine (SAM) is used as a methyl donor. We constructed a multi-enzyme cascade reaction in Escherichia coli, containing an endogenous shikimate kinase (AroL) and a chorismate lyase (UbiC), along with a p-hydroxybenzoate hydroxylase mutant (PobA**) from Pseudomonas fluorescens, and DesAOMT; SA was biosynthesized from shikimic acid (SHA) by using whole cells catalysis. The metabolic system of chassis cells also affected the efficiency of SA biosynthesis, blocking the chorismate metabolism pathway improved SA production. When the supply of the cofactor NADPH was optimized, the titer of SA reached 133 μM (26.2 mg/L). CONCLUSION Overall, we designed a multi-enzyme cascade in E. coli for SA biosynthesis by using resting or growing whole cells. This work identified an O-methyltransferase (DesAOMT), which can catalyze the methylation of GA to produce SA. The multi-enzyme cascade containing four enzymes expressed in an engineered E. coli for synthesizing of SA from SHA. The metabolic system of the strain and biotransformation conditions influenced catalytic efficiency. This study provides a new green route for SA biosynthesis.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yi An
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, No 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Ferah Okkay I, Okkay U, Cicek B, Karatas O, Yilmaz A, Yesilyurt F, Hacimuftuoglu A. Syringic acid guards against indomethacin-induced gastric ulcer by alleviating inflammation, oxidative stress and apoptosis. Biotech Histochem 2024; 99:147-156. [PMID: 38644776 DOI: 10.1080/10520295.2024.2344477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024] Open
Abstract
The purpose of this study was to evaluate the effects of syringic acid, an anti-oxidant, on indomethacin induced gastric ulcers in rats. Experimental groups were control, ulcer, ulcer treated with 20 mg/kg esomeprazole (a proton pump inhibitor that reduces acid secretion), and ulcer treated with 100 mg/kg syringic acid. Rats were pretreated with esomeprazole or syringic acid two weeks before ulcer induction. Our histopathological observations showed that either syringic acid or esomeprazole attenuated the severity of gastric mucosal damage. Moreover, syringic acid and esomeprazole pretreatments alleviated indomethacin-induced damage by regulating oxidative stress, inflammatory response, the level of transforming growth factor-β (TGF-β), expressions of COX and prostaglandin E2, cell proliferation, apoptosis and regulation of the NF-κB signaling pathway. We conclude that either esomeprazole or syringic acid administration protected the gastric mucosa from harmful effects of indomethacin. Syringic acid might, therefore be a potential therapeutic agent for preventing and treating indomethacin-induced gastric damage.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ozhan Karatas
- Department of Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Aysegul Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
4
|
Wang X, Li J, Zhou D, Qin J, Xu Y, Lu Q, Tian X. Effects of Rosa roxburghii Tratt seed on the growth performance, meat quality, and sensory evaluation characteristics in growing rabbits. Meat Sci 2024; 208:109394. [PMID: 37980816 DOI: 10.1016/j.meatsci.2023.109394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The objective of this study was to observe the effects of Rosa roxburghii Tratt seed (RRTS) on growth performance, meat quality, and sensory characteristic parameters in rabbits. Ninety-six New Zealand White rabbits were allotted to four dietary treatments containing 0 (CON), 120 (LR), 240 (MR), and 360 mg/kg (HR) RRTS. The experimental period lasted for 11 weeks. Thirty-two fattened rabbits were slaughtered, and the Longissimus thoracis et lumborum (LTL) muscle was used for analyses. The feeding of RRTS was significantly (P < 0.05) decreased the feed conversion ratio (FCR). pH45min, pH24h, lightness, redness, drip loss, and percentage of water loss were unaffected (P > 0.05) by dietary treatments, whereas MR and HR treatments resulted in lower (P < 0.05) levels of yellowness and higher (P < 0.05) levels of shear force. LR showed significantly higher (P < 0.05) meat polyphenol compounds and vitamin E relative to the CON. Moreover, compared to the CON, HR treatment showed significantly higher (P < 0.05) vitamin C and glutathione peroxidase, and LR and MR displayed lower (P < 0.05) superoxide anion radicals, and all treatments had higher levels catalase (CAT). C18:2n-6 t, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C22:5n-3, and C22:6n-3 in LTL meat were higher (P < 0.05) in MR than CON rabbits. Moreover, the LTL muscle sensory evaluation parameters of appearance and fibrousness were improved (P < 0.05). Overall, dietary supplementation with RRTS is a valid strategy for decreasing FCR, and improving meat CAT concentration, C20:5n-3 and C22:5n-3 profiles, and sensory characteristics parameters of rabbits.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiaxuan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Di Zhou
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China
| | - Jixiao Qin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yiqing Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Qi Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China.
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Bartel I, Mandryk I, Horbańczuk JO, Wierzbicka A, Koszarska M. Nutraceutical Properties of Syringic Acid in Civilization Diseases-Review. Nutrients 2023; 16:10. [PMID: 38201840 PMCID: PMC10780450 DOI: 10.3390/nu16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Civilization diseases account for a worldwide health issue. They result from daily behavioral, environmental, and genetic factors. One of the most significant opportunities to prevent and alleviate the occurrence of these diseases is a diet rich in antioxidants like polyphenols. This review paper is concentrated on syringic acid (SA), one of the representative compounds of phenolic acids subgroups. There are many in vitro and in vivo studies on SA that assess its pivotal effects on oxidative stress and inflammation parameters. It is effective on metabolic risk factors as well, including hyperglycemia, high blood pressure, and hyperlipidemia. SA is one of the prominent polyphenolic compounds that may help address health issues related to civilization diseases.
Collapse
Affiliation(s)
- Iga Bartel
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| | - Izabela Mandryk
- Faculty of Medicine and Health Sciences, University of Applied Sciences in Nowy Sacz, 33-300 Nowy Sacz, Poland;
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| | - Magdalena Koszarska
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (I.B.); (J.O.H.); (A.W.)
| |
Collapse
|
6
|
Maneesai P, Potue P, Khamseekaew J, Sangartit W, Rattanakanokchai S, Poasakate A, Pakdeechote P. Kaempferol protects against cardiovascular abnormalities induced by nitric oxide deficiency in rats by suppressing the TNF-α pathway. Eur J Pharmacol 2023; 960:176112. [PMID: 37879426 DOI: 10.1016/j.ejphar.2023.176112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023]
Abstract
Kaempferol is a natural flavonoid compound that exhibits various pharmacological actions. However, there are few reports regarding the role of kaempferol in cardiovascular abnormalities. This study aimed to assess whether kaempferol could prevent cardiovascular malfunction and hypertrophy provoked by chronic inhibition of nitric oxide (NO) formation in rats. Rats (180-200 g) were treated daily with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) (40 mg/kg, in drinking water) for five weeks concomitant with kaempferol (oral administration) at a dose of 20 mg/kg or 40 mg/kg or lisinopril (5 mg/kg). Kaempferol partially prevented the progression of hypertension provoked by NO inhibition (p < 0.05). Left ventricular malfunction and hypertrophy present in hypertensive rats were alleviated by concurrent administration of kaempferol (p < 0.05). Furthermore, L-NAME rats had increased sympathetic nerve-mediated vasoconstriction and decreased acetylcholine-induced vasorelaxation and aortic wall thickening, which were resolved by kaempferol treatment (p < 0.05). Kaempferol restored tissue superoxide formation, malondialdehyde, catalase activity, plasma nitric oxide metabolites, tumor necrosis factor-alpha (TNF-α) and interleukin-6 in L-NAME rats (p < 0.05). Overexpression of tumor necrosis factor receptor 2 (TNFR2), phosphatidylinositol 3-kinases (PI3K), AKT serine/threonine kinase 1 (Akt1) and smad2/3 in heart tissue and upregulation of tumor necrosis factor receptor 1 (TNFR1), phosphorylated nuclear factor-kappaB (p-NF-κB) and transforming growth factor beta 1 (TGF-β1) in vascular tissue were suppressed by kaempferol (p < 0.05). In conclusion, kaempferol exerts antihypertensive, cardioprotective, antioxidant, and anti-inflammatory effects in NO-dependent hypertensive rats. The underlying mechanisms of kaempferol in preventing cardiovascular changes induced by L-NAME were due to the suppression of the TNF-α pathway.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Weerapon Sangartit
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | - Anuson Poasakate
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Somade OT, Oyinloye BE, Ajiboye BO, Osukoya OA. Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling pathways in methyl cellosolve-induced hepato-testicular inflammation in rats. Biochem Biophys Rep 2023; 34:101484. [PMID: 37197735 PMCID: PMC10184048 DOI: 10.1016/j.bbrep.2023.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Syringic acid (SACI) is an emerging nutraceutical and antioxidant used in modern Chinese medicine. It has potential neuroprotective, anti-hyperglycemic, and anti-angiogenic properties. Methyl cellosolve (MCEL) has been reported to induce tissue inflammation in the testis, kidney, liver, and lung. This study aimed to investigate the effect and probable mechanism of action of SACI on MCEL-induced hepatic and testicular inflammation in male rats. Compared to the control group, administration of MCEL to rats significantly increased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB in the liver and testis. Additionally, the total mRNA expressions of JAK1 (in the liver only), STAT1, and SOCS1 were significantly increased in both the liver and testis, while testicular JAK1 total mRNA levels were significantly decreased. The expression of PIAS1 protein was significantly higher in the liver and testis. Treatments with SACI at 25 (except liver iNOS), 50, and 75 mg/kg significantly decreased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB compared to the control group. Furthermore, the total mRNA expressions of JAK1 and SOCS1 in the liver were significantly reduced by all doses of SACI investigated, while the total mRNA levels of liver and testis STAT1 were significantly reduced by 25 and 50 mg/kg of SACI only. In the testis, the mRNA level of SOCS1 was significantly reduced by all doses of SACI compared to MCEL only. Additionally, SACI (at 75 mg/kg) significantly reduced PIAS1 protein expression in the liver, while in the testis, SACI at all investigated doses significantly reduced the expression of PIAS1. In conclusion, SACI demonstrated a hepatic and testicular anti-inflammatory effect by inhibiting the MCEL-induced activation of the NF-κB and JAK-STAT signaling pathways in rats.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Basiru O. Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Olukemi A. Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| |
Collapse
|
8
|
Razzaq MA, Younis W, Malik MNH, Alsahli TG, Jahan S, Ehsan R, Gasparotto Junior A, Bashir A. Pulegone Prevents Hypertension through Activation of Muscarinic Receptors and Cyclooxygenase Pathway in L-NAME-Induced Hypertensive Rats. Cardiovasc Ther 2023; 2023:8166840. [PMID: 37214130 PMCID: PMC10195173 DOI: 10.1155/2023/8166840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 05/24/2023] Open
Abstract
The current study was designed to determine pulegone's antihypertensive and vasoprotective activity in L-NAME-induced hypertensive rats. Firstly, the hypotensive dose-response relationship of pulegone was evaluated in normotensive anesthetized rats using the invasive method. Secondly, the mechanism involved in hypotensive activity was determined in the presence of pharmacological drugs such as atropine/muscarinic receptor blocker (1 mg/kg), L-NAME/NOS inhibitor (20 mg/kg), and indomethacin/COX inhibitor (5 mg/kg) in anesthetized rats. Furthermore, studies were carried out to assess the preventive effect of pulegone in L-NAME-induced hypertensive rats. Hypertension was induced in rats by administering L-NAME (40 mg/kg) orally for 28 days. Rats were divided into six groups which were treated orally with tween 80 (placebo), captopril (10 mg/kg), and different doses of pulegone (20 mg/kg, 40 mg/kg, and 80 mg/kg). Blood pressure, urine volume, sodium, and body weight were monitored weekly. After 28 days, the effect of pulegone on lipid profile, hepatic markers, antioxidant enzymes, and nitric oxide was estimated from the serum of treated rats. Moreover, plasma mRNA expression of eNOS, ACE, ICAM1, and EDN1 was measured using real-time PCR. Results show that pulegone dose-dependently decreased blood pressure and heart rate in normotensive rats, with the highest effect at 30 mg/kg/i.v. The hypotensive effect of pulegone was reduced in the presence of atropine and indomethacin, whereas L-NAME did not change its hypotensive effect. Concurrent treatment with pulegone for four weeks in L-NAME-treated rats caused a reduction in both systolic blood pressure and heart rate, reversed the reduced levels of serum nitric oxide (NO), and ameliorated lipid profile and oxidative stress markers. Treatment with pulegone also improved the vascular response to acetylcholine. Plasma mRNA expression of eNOS was reduced, whereas ACE, ICAM1, and EDN1 levels were high in the L-NAME group, which was facilitated by pulegone treatment. To conclude, pulegone prevented L-NAME-induced hypertension by demonstrating a hypotensive effect through muscarinic receptors and cyclooxygenase pathway, indicating its use as a potential candidate in managing hypertension.
Collapse
Affiliation(s)
- Muryam Abdul Razzaq
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Waqas Younis
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ 07103, USA
| | | | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Roma Ehsan
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Asifa Bashir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
9
|
Adeyi OE, Somade OT, Ajayi BO, James AS, Adeyi AO, Olayemi ZM, Tella NB. Syringic acid demonstrates better anti-apoptotic, anti-inflammatory and antioxidative effects than ascorbic acid via maintenance of the endogenous antioxidants and downregulation of pro-inflammatory and apoptotic markers in DMN-induced hepatotoxicity in rats. Biochem Biophys Rep 2023; 33:101428. [PMID: 36691435 PMCID: PMC9860106 DOI: 10.1016/j.bbrep.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Dimethyl nitrosamine (DMN) is a known hepatotoxin, carcinogen, and mutagen. This study is therefore carried out to investigate the therapeutic effects of syringic acid (SYRA) and ascorbic acid (ASCA) in DMN-induced hepatic injury in rats. Following DMN administrations, malondialdehyde (MDA), nitric oxide (NO) and reduced glutathione (GSH) as well as activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) were significantly increased. Also significantly increased were levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Following treatment with SYRA and ASCA, the activities of ALT, AST, GPx, CAT and SOD, as well as MDA, GSH, TNF-α, IL-1β, and NFkB levels were significantly reduced. Overall, both treatments were effective, but SYRA had a better therapeutic effect than ASCA. Therefore, this promising potential of SYRA can be taken advantage of in the treatment of DMN-induced hepatic injury.
Collapse
Affiliation(s)
- Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
- Corresponding author. Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Adewale S. James
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Akindele O. Adeyi
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Zainab M. Olayemi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Nafisat B. Tella
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
10
|
Niranjan PK, Bahadur S. Recent Developments in Drug Targets and Combination Therapy for the Clinical Management of Hypertension. Cardiovasc Hematol Disord Drug Targets 2023; 23:226-245. [PMID: 38038000 DOI: 10.2174/011871529x278907231120053559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Raised blood pressure is the most common complication worldwide that may lead to atherosclerosis and ischemic heart disease. Unhealthy lifestyles, smoking, alcohol consumption, junk food, and genetic disorders are some of the causes of hypertension. To treat this condition, numerous antihypertensive medications are available, either alone or in combination, that work via various mechanisms of action. Combinational therapy provides a certain advantage over monotherapy in the sense that it acts in multi mechanism mode and minimal drug amount is required to elicit the desired therapeutic effect. Such therapy is given to patients with systolic blood pressure greater than 20 mmHg and/or diastolic blood pressure exceeding 10 mmHg beyond the normal range, as well as those suffering from severe cardiovascular disease. The selection of antihypertensive medications, such as calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and low-dose diuretics, hinges on their ability to manage blood pressure effectively and reduce cardiovascular disease risks. This review provides insights into the diverse monotherapy and combination therapy approaches used for elevated blood pressure management. In addition, it offers an analysis of combination therapy versus monotherapy and discusses the current status of these therapies, from researchbased findings to clinical trials.
Collapse
Affiliation(s)
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
11
|
Parboiled Germinated Brown Rice Improves Cardiac Structure and Gene Expression in Hypertensive Rats. Foods 2022; 12:foods12010009. [PMID: 36613225 PMCID: PMC9818593 DOI: 10.3390/foods12010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hypertension leads to oxidative stress, inflammation, and fibrosis. The suppression of these indicators may be one treatment approach. Parboiled germinated brown rice (PGBR), obtained by steaming germinated Jasmine rice, reduces oxidative stress and inflammation in vivo. PGBR contains more bioactive compounds than brown rice (BR) and white rice (WR). Anti-hypertensive benefits of PGBR have been predicted, but research is lacking. The anti-hypertensive effects of PGBR were investigated in the downstream gene network of hypertension pathogenesis, including the renin-angiotensin system, fibrosis, oxidative stress production, and antioxidant enzymes in N-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. To strengthen our findings, the cardiac structure was also studied. PGBR-exposed rats showed significant reductions in systolic blood pressure (SBP) compared to the hypertensive group. WR did not reduce SBP because of the loss of bioactive compounds during intensive milling. PGBR also reduced the expression of the angiotensin type 1 receptor (AT1R), transforming growth factor-β (TGF-β), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX4), which contribute to the renin-angiotensin system, fibrosis, and oxidative stress production, respectively. Losartan (Los, an anti-hypertensive drug)-treated rats also exhibited similar gene expression, implying that PGBR may reduce hypertension using the same downstream target as Los. Our data also indicated that PGBR reduced cardiac lesions, such as the cardiomyopathy induced by L-NAME. This is the first report on the anti-hypertensive effects of PGBR in vivo by the suppression of the renin response, fibrosis, and improved cardiac structure.
Collapse
|
12
|
da Silva MC, dos Santos VM, da Silva MVB, Prazeres TCMM, Cartágenes MDSS, Calzerra NTM, de Queiroz TM. Involvement of shedding induced by ADAM17 on the nitric oxide pathway in hypertension. Front Mol Biosci 2022; 9:1032177. [PMID: 36310604 PMCID: PMC9614329 DOI: 10.3389/fmolb.2022.1032177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17), also called tumor necrosis factor-ɑ (TNF-ɑ) convertase (TACE), is a well-known protease involved in the sheddase of growth factors, chemokines and cytokines. ADAM17 is also enrolled in hypertension, especially by shedding of angiotensin converting enzyme type 2 (ACE2) leading to impairment of angiotensin 1–7 [Ang-(1–7)] production and injury in vasodilation, induction of renal damage and cardiac hypertrophy. Activation of Mas receptor (MasR) by binding of Ang-(1–7) induces an increase in the nitric oxide (NO) gaseous molecule, which is an essential factor of vascular homeostasis and blood pressure control. On the other hand, TNF-ɑ has demonstrated to stimulate a decrease in nitric oxide bioavailability, triggering a disrupt in endothelium-dependent vasorelaxation. In spite of the previous studies, little knowledge is available about the involvement of the metalloprotease 17 and the NO pathways. Here we will provide an overview of the role of ADAM17 and Its mechanisms implicated with the NO formation.
Collapse
Affiliation(s)
- Mirelly Cunha da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Vanessa Maria dos Santos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Matheus Vinícius B. da Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | | | | | | | - Thyago Moreira de Queiroz
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
- *Correspondence: Thyago Moreira de Queiroz,
| |
Collapse
|
13
|
Syringic Acid Ameliorates Cardiac, Hepatic, Renal and Neuronal Damage Induced by Chronic Hyperglycaemia in Wistar Rats: A Behavioural, Biochemical and Histological Analysis. Molecules 2022; 27:molecules27196722. [PMID: 36235257 PMCID: PMC9573038 DOI: 10.3390/molecules27196722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of syringic acid (SA) on renal, cardiac, hepatic, and neuronal diabetic complications in streptozotocin-induced neonatal (nSTZ) diabetic rats. STZ (110 mg/kg i.p) was injected into Wistar rat neonates as a split dose (second and third postnatal day). Diabetes mellitus was diagnosed in adults by measuring fasting blood glucose levels, urine volume, and food and water intake. The treatment of SA (25 mg/kg, 50 mg/kg p.o) was given from the 8th to 18th postnatal week. To assess the development of diabetic complications and the effect of therapy, biochemical indicators in serum and behavioural parameters were recorded at specific intervals during the study period. SA (25 mg/kg, 50 mg/kg p.o) treatment reduced hyperglycaemia, polydipsia, polyphagia, polyuria, relative organ weight, cardiac hypertrophic indices, inflammatory markers, cell injury markers, glycated haemoglobin, histopathological score, and oxidative stress, and increased Na/K ATPase activity. These findings suggest that SA might significantly alleviate diabetic complications and/or renal, neuronal, cardiac, and hepatic damage in nSTZ diabetic rats.
Collapse
|
14
|
Somade OT, Oyinloye BE, Ajiboye BO, Osukoya OA, Adeyi OE. Effect of syringic acid on steroid and gonadotropic hormones, hematological indices, sperm characteristics and morphologies, and markers of tissue damage in methyl cellosolve-administered rats. Biochem Biophys Rep 2022; 32:101360. [PMID: 36237443 PMCID: PMC9550613 DOI: 10.1016/j.bbrep.2022.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Methyl cellosolve (MTC) is an established gonadotoxic and hematotoxic compound that is commonly and universally utilized in herbicide, liquid soap, stain, dye, paint, and brake fluid manufacturing industries as a solvent. Due to its wide range usage, this study therefore investigated the effect of syringic acid (SYAC) on hematological indices, sperm characteristics and morphologies, and markers of tissue damage in MTC administered male Wistar rats. Thirty (30) rats divided into six groups were used. Rats in group 1 served as control, those in group 2 were administered MTC for 30 consecutive days, those in groups 3, 4, and 5 were treated with 25, 50, and 75 mg/kg body weight of SYAC respectively also for 30 consecutive days immediately after each day MTC administrations, while rats in group 6 received 75 mg/kg body weight of SYAC only throughout. Compared with control, administrations of MTC resulted in a significant decrease in spermatozoa count, number of normal and live spermatozoa, Hb count, MCH, MCHC, serum TC, and LH, while number of abnormal spermatozoa, RBC and WBC counts, activities of serum AST, ALT, GGT, LDH, and ADH were significantly increased. Treatments with 25 mg/kg of SYAC significantly reduced the RBC and WBC counts, serum activities of AST, ALT, GGT, and increased TC concentration. Treatments with 50 mg/kg SYAC significantly lowered the number of abnormal spermatozoa, RBC count, activities of serum ALT, AST, LDH, ADH, and increased the number of normal spermatozoa, MCV, MCH, and MCHC, while 75 mg/kg of SYAC significantly decreased the serum activities of AST, ALT, GGT, LDH, ADH, and increased serum TC concentration. Findings from this study have revealed the hepatoprotective effect of SYAC at all doses investigated but did not confer spermatoprotection and hematoprotection against MTC-induced toxicities, and looking at the 3 doses investigated, 50 mg/kg of SYAC yielded the best effect. MTC significantly decreased live sperm, sperm count, MCH, MCHC, and Hb counts. MTC significantly increased number of abnormal sperm, RBC and WBC counts. MTC significantly increased serum activities of AST, ALT, GGT, LDH, and ADH. SYAC significantly decreased RBC and WBC counts, AST, ALT, GGT, LDH, and ADH. SYAC significantly increased number of normal sperm, MCV, MCH, and MCHC counts.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria,Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria,Corresponding author. Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria,Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria,Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Bashiru O. Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria,Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Olukemi A. Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
15
|
A M A, C M SS, Nair KR, V S A, Arumugam T, P UD, Sk K. Large Cardamom Extract Enhances Ramipril's Vasoprotective Action in the Aorta by Modulating Endothelial Redox Biology. An Evaluation based on In-silico and In-vitro Research. Curr Comput Aided Drug Des 2022; 18:CAD-EPUB-125708. [PMID: 35996271 DOI: 10.2174/1573409918666220820160834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mechanisms that cause a patient's blood pressure to rise are diverse. Controlling blood pressure with monotherapy acting through a single pathway may be unachievable. Combining a clinically used medication with herbal medicine can result in an antihypertensive effect that is two to five times greater than monotherapy. METHOD This study examined the effects of aqueous extracts of large cardamom and ramipril on the redox biology of nitric oxide and vascular reactivity in the isolated aorta incubated with a nitro-L-arginine methyl ester. Molecular docking study was performed to predict the affinity of constituents of large cardamom extracts with the NOX 2 gene. RESULTS Nitric oxide (NO) levels, disordered antioxidant enzymes (glutathione and catalase), NADPH oxidase and lipid peroxidation were recovered when aqueous extract of large cardamom and ramipril were combined. A gradual increase in the percentage relaxation of acetylcholine in phenylephrine pre-contracted aorta indicates that the combination therapy prevents endothelial damage. The molecular docking study reveals the important phytoconstituents present in the large cardamom that can effectively bind with the NADPH oxidase for its antioxidant activity. Consculsion: According to our findings, it was evidenced that the large cardamom extract's vasoprotective action was mostly related to its ability to restore endothelial redox biology by suppressing NADPH oxidase activity. Our findings suggest that ramipril's direct impact on the eNOS/NO system, along with the antioxidant properties of AELC, could have a synergetic benefit in the treatment of hypertension, as well as lessen ramipril's existing side effects.
Collapse
Affiliation(s)
- Amritha A M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Shakhi Shylesh C M
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Kavyanjana R Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, , India-682041
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, , India-682041
| | - Arya V S
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| | - Kanthlal Sk
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala, India-682041
| |
Collapse
|
16
|
Han X, Bai L, Kee HJ, Jeong MH. Syringic acid mitigates isoproterenol-induced cardiac hypertrophy and fibrosis by downregulating Ereg. J Cell Mol Med 2022; 26:4076-4086. [PMID: 35719043 PMCID: PMC9279583 DOI: 10.1111/jcmm.17449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Gallic acid has been reported to mitigate cardiac hypertrophy, fibrosis and arterial hypertension. The effects of syringic acid, a derivative of gallic acid, on cardiac hypertrophy and fibrosis have not been previously investigated. This study aimed to examine the effects of syringic acid on isoproterenol‐treated mice and cells. Syringic acid mitigated the isoproterenol‐induced upregulation of heart weight to bodyweight ratio, pathological cardiac remodelling and fibrosis in mice. Picrosirius red staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) and Western blotting analyses revealed that syringic acid markedly downregulated collagen accumulation and fibrosis‐related factors, including Fn1. The results of RNA sequencing analysis of Ereg expression were verified using qRT‐PCR. Syringic acid or transfection with si‐Ereg mitigated the isoproterenol‐induced upregulation of Ereg, Myc and Ngfr. Ereg knockdown mitigated the isoproterenol‐induced upregulation of Nppb and Fn1 and enhancement of cell size. Mechanistically, syringic acid alleviated cardiac hypertrophy and fibrosis by downregulating Ereg. These results suggest that syringic acid is a potential therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Xiongyi Han
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Liyan Bai
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea
| | - Myung Ho Jeong
- Heart Research Center of Chonnam National University Hospital, Gwangju, Korea.,Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, Korea.,Department of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
17
|
Somade OT, Adeyi OE, Ajayi BO, Asunde OO, Iloh PD, Adesanya AA, Babalola OI, Folorunsho OT, Olakunle DA, Lawal OF. Syringic and ascorbic acids prevent NDMA-induced pulmonary fibrogenesis, inflammation, apoptosis, and oxidative stress through the regulation of PI3K-Akt/PKB-mTOR-PTEN signaling pathway. Metabol Open 2022; 14:100179. [PMID: 35340717 PMCID: PMC8943260 DOI: 10.1016/j.metop.2022.100179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
Idiopathic lung fibrosis (ILF) is a severe and life threatening lung disorder that is characterized by scarring of lung tissue, leading to thickening and stiffening of affected areas. This study looked at the role played by PI3K-Akt/PKB-mToR signaling pathway in the pathogenesis of N-Nitrosodimethylamine (NDMA)-induced lung fibrotic injury, and the effects of syringic acid (SYR) and ascorbic acid (ASC) treatments in male Wistar rats. Pulmonary fibrosis was induced by intraperitoneal injection of 10 mg/kg NDMA once daily, thrice (consecutively) a week for four weeks, and this condition was treated daily with SYR (50 mg/kg) and ASC (100 mg/kg) acids orally for four weeks. Fibrogenesis, following NDMA administration was marked by a significant increase in collagen-1 and α-SMA levels, while oxidative stress was marked by a significant decrease in GSH level, GST, GPx, CAT, and SOD activities. Also, NDMA significantly increased lung Bax, p53, caspase-3, TNF-α, IL-1β, NFkB, and decreased Bcl-2, mdm2, cyclin D1 and Nrf-2 levels. Looking at the PI3K-Akt-mTOR signaling pathway, NDMA administration significantly activated lung PI3K, Akt, and mTOR, and deactivated PTEN, FoxO1 and TSC2. Treatments with SYR and ASC significantly reduced oxidative stress by restoring the antioxidant systems via Nrf2 activation, decreased the levels of inflammatory markers through inhibition of NFkB, downregulated p53, Bax, and caspase-3 via up-regulation of mdm2 and cyclin D1. SYR and ASC also regulated the PI3K-Akt-mTOR signaling pathway via the deactivation of PI3K, Akt, and mTOR, and up-regulation of PTEN, FoxO1 and TSC2. Overall, SYR and ASC modulate the PI3K-Akt-mTOR signaling pathway via inhibition of oxidative stress, inflammation and apoptosis in NDMA-induced lung fibrosis.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olubisi E. Adeyi
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Babajide O. Ajayi
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Osiro O. Asunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Precious D. Iloh
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adedayo A. Adesanya
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olanrewaju I. Babalola
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Oluwaseyi T. Folorunsho
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Deborah A. Olakunle
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Opeyemi F. Lawal
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
18
|
Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880. [PMID: 35334041 DOI: 10.1007/s11011-022-00960-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
Abstract
Hundreds of millions of people are influenced by neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), traumatic disorders of the nervous system, dementia, and various neurological disorders. Syringic acid (SA) is a natural phenolic compound that is found in medicinal herbs and dietary plants. The therapeutic potential of SA is due to its anti-oxidative, chemoprotective, anti-angiogenic, anti-glycating, anti-proliferative, anti-hyperglycaemic, anti-endotoxic, anti-microbial, anti-inflammatory, anti-diabetic and anti-depressant properties. However, in recent studies, its neuroprotective effect has drawn attention. The current review focuses on the neuroprotective bioactivities of SA and putative mechanisms of action. An electronic data search was performed using different search engines, and the relevant articles (with or without meta-analysis) with any language were selected. In the central and peripheral nervous system, SA has been shown a significant role in excitatory neurotransmitters and alleviate behavioral dysfunctions. The consensus of the literature search was that SA treatment may help neurological dysfunction or behavioral impairments management with antioxidant, anti-inflammatory properties. Furthermore, administration and proper dose of SA could be crucial factors for the effective treatment of neurological diseases.
Collapse
Affiliation(s)
- Eren Ogut
- Department of Anatomy, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Kutay Armagan
- Medical Faculty Student, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Zülfiye Gül
- Department of Pharmacology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
19
|
Ogut E, Armagan K, Gül Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations. Metab Brain Dis 2022; 37:859-880. [DOI: https:/doi.org/10.1007/s11011-022-00960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/10/2022] [Indexed: 07/22/2023]
|
20
|
Phoenix dactilyfera L. Pits Extract Restored Bone Homeostasis in Glucocorticoid-Induced Osteoporotic Animal Model through the Antioxidant Effect and Wnt5a Non-Canonical Signaling. Antioxidants (Basel) 2022; 11:antiox11030508. [PMID: 35326158 PMCID: PMC8944842 DOI: 10.3390/antiox11030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress associated with long-term glucocorticoids administration is a route through which secondary osteoporosis can be developed. The therapeutic potential of Phoenix dactilyfera L. pits is offered by their balanced, valuable and diverse phytochemical composition providing protective potential against oxidative reactions, making it a good candidate to treat glucocorticoid-induced osteoporosis (GIO). This study evaluates the possible anti-osteoporotic effect of date pit extract (DPE) against dexamethasone (DEXA)-induced osteoporosis. Male rats were allocated into three control groups, which received saline, low and high doses of DPE (150 and 300 mg/kg/day), respectively. Osteoporosis-induced groups that received DEXA (1 mg/kg/day) were divided into DEXA only, DPE (2 doses) + DEXA, and ipriflavone + DEXA. Femoral bone minerals density and bone mineral content, bone oxidative stress markers, Wnt signaling, osteoblast and osteoclast differentiation markers, and femur histopathology were evaluated. DPE defeated the oxidative stress, resulting in ameliorative changes in Wnt signaling. DPE significantly reduced the adipogenicity and abolished the osteoclastogenic markers (RANKL/OPG ratio, ACP, TRAP) while enhancing the osteogenic differentiation markers (Runx2, Osx, COL1A1, OCN). In Conclusion DPE restored the balanced proliferation and differentiation of osteoclasts and osteoblasts precursors. DPE can be considered a promising remedy for GIO, especially at a low dose that had more potency.
Collapse
|
21
|
Boarescu PM, Boarescu I, Pop RM, Roşian ŞH, Bocșan IC, Rus V, Mada RO, Popa ID, Neagu N, Bulboacă AE, Buzoianu AD, Bolboacă SD. Evaluation of Oxidative Stress Biomarkers, Pro-Inflammatory Cytokines, and Histological Changes in Experimental Hypertension, Dyslipidemia, and Type 1 Diabetes Mellitus. Int J Mol Sci 2022; 23:1438. [PMID: 35163364 PMCID: PMC8835716 DOI: 10.3390/ijms23031438] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aims to compare the oxidative stress biomarkers, pro-inflammatory cytokines, and histological changes induced by three cardiovascular risk factors, namely, hypertension, dyslipidemia, and type 1 diabetes mellitus. Hypertension was induced with 40 mg/kg body weight (b.w.) of N omega-nitro-L-arginine-methyl (L-NAME) administered orally. Dyslipidemia was induced by the administration of a diet with a high cholesterol (2%) content. Diabetes mellitus was induced by intraperitoneal administration of a single dose of streptozocin (65 mg/kg). Malondialdehyde (MDA) and total oxidative status (TOS) are increased by all three cardiovascular risk factors (up to 207%). The indirect assessment of NO synthesis (NOx) is observed to be reduced after L-NAME administration (43%), and dyslipidemia induction (16%), while type 1 diabetes mellitus is associated with the highest levels of NOx (increased 112%). Hypertension, dyslipidemia, and type 1 diabetes reduced the total antioxidative capacity (TAC) and total thiol (SH) levels (up to 57%). The values of evaluated pro-inflammatory cytokines, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β), assessed from the ascending aorta were elevated by all three cardiovascular risk factors, with the highest levels induced by type 1 diabetes mellitus (up to 259%). The histopathological examination of the ascending and descending aorta revealed reversible pro-atherogenic changes consisting of the accumulation of lipid droplets in the subendothelial connective tissue on rats with hypertension and dyslipidemia. Irreversible pro-atherogenic changes consisting of a reduction of the specific elasticity of the arteries were observed in rats with type 1 diabetes mellitus. Type 1 diabetes mellitus demonstrates an alteration of the oxidative stress parameters, the elevation of tissue levels of the pro-inflammatory cytokines and causing irreversible pro-atherogenic changes on the aortic wall.
Collapse
Affiliation(s)
- Paul-Mihai Boarescu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Gheorghe Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (P.-M.B.); (R.M.P.); (I.C.B.); (A.D.B.)
| | - Ioana Boarescu
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania; (I.B.); (S.D.B.)
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Gheorghe Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (P.-M.B.); (R.M.P.); (I.C.B.); (A.D.B.)
| | - Ştefan Horia Roşian
- Department of Cardiology—Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, Calea Moților Street, No. 19–21, 400001 Cluj-Napoca, Romania
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, Calea Moților Street, No. 19–21, 400001 Cluj-Napoca, Romania; (R.O.M.); (I.D.P.)
| | - Ioana Corina Bocșan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Gheorghe Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (P.-M.B.); (R.M.P.); (I.C.B.); (A.D.B.)
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur Street, No. 3–5, 400372 Cluj-Napoca, Romania;
| | - Răzvan Olimpiu Mada
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, Calea Moților Street, No. 19–21, 400001 Cluj-Napoca, Romania; (R.O.M.); (I.D.P.)
| | - Iulia Diana Popa
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, Calea Moților Street, No. 19–21, 400001 Cluj-Napoca, Romania; (R.O.M.); (I.D.P.)
| | - Nicholas Neagu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Luis Pasteur Street, No. 4, 400349 Cluj-Napoca, Romania;
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, No. 2–4, 400012 Cluj-Napoca, Romania;
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Gheorghe Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (P.-M.B.); (R.M.P.); (I.C.B.); (A.D.B.)
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania; (I.B.); (S.D.B.)
| |
Collapse
|
22
|
Justo AFO, Suemoto CK. The modulation of neuroinflammation by inducible nitric oxide synthase. J Cell Commun Signal 2022; 16:155-158. [PMID: 35031946 DOI: 10.1007/s12079-021-00663-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022] Open
Abstract
The accumulation and propagation of misfolded proteins in the brain is a pathological hallmark shared by many neurodegenerative diseases, such as the depositions of β-amyloid and hyperphosphorylated tau proteins in Alzheimer's disease. Initial evidence shows the role of nitric oxide synthases in the development of neurodegenerative diseases. A recent, in an exciting paper (Bourgognon et al. in Proc Natl Acad Sci USA 118, 1-11, 2021. 10.1073/pnas.2009579118) it was shown that the inducible nitric oxide synthase plays an important role in promoting oxidative and nitrergic stress leading to neuroinflammation and consequently neuronal function impairments and decline in synaptic strength in mouse prion disease. In this context, we reviewed the possible mechanisms of nitric oxide synthase in the generation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Fernando Oliveira Justo
- Physiopathology in Aging Laboratory, Department of Internal Medicine, University of São Paulo Medical School, Avenida Doutor Arnaldo, 455, Pacaembu, São Paulo, Brazil.
| | - Claudia Kimie Suemoto
- Physiopathology in Aging Laboratory, Department of Internal Medicine, University of São Paulo Medical School, Avenida Doutor Arnaldo, 455, Pacaembu, São Paulo, Brazil.,Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
23
|
Ferah Okkay I, Okkay U, Gundogdu OL, Bayram C, Mendil AS, Ertugrul MS, Hacimuftuoglu A. Syringic acid protects against thioacetamide-induced hepatic encephalopathy: Behavioral, biochemical, and molecular evidence. Neurosci Lett 2021; 769:136385. [PMID: 34871743 DOI: 10.1016/j.neulet.2021.136385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
The objective of this study was to elucidate the effects of syringic acid on thioacetamide-induced hepatic encephalopathy which is a complex serious syndrome with neuropsychiatric abnormalities related to acute liver dysfunctions like cirrhosis. Rats were treated with syringic acid (50 and 100 mg/kg, p.o.) for 14 days in treatment groups. Hepatic encephalopathy was induced by three doses of (200 mg/kg i.p.) thioacetamide injection. Syringic acid effectively alleviated thioacetamide-induced hepatic injury via reduction in ammonia, AST, ALT, ALP, LDH and decrease in oxidative stress (decreased MDA, ROS and increased SOD and GSH). Syringic acid also attenuated inflammatory injury by suppressing TNF-α, IL-1β, and NF-κB and increasing IL-10. The caspase-3 expression was also down-regulated in both liver and brain tissues. Immunohistochemical results confirmed the recovery with syringic acid by downregulation of iNOS, 8-OHdG and GFAP expression. Syringic acid decreased the deteriorating effects of thioacetamide as seen by reduced ammonia concentration and also preserved astrocyte and hepatocyte structure. The behavioral test results from elevated plus maze test, similar to the open-field locomotor test results, confirmed that syringic acid can reverse behavioral impairments. In conclusion, syringic acid exerted hepatoprotective and neuroprotective effects against hepatic encephalopathy by mitigating hepatotoxicity biomarkers, exerting antioxidant, anti-inflammatory effects in addition to suppressing hyperammonemia.
Collapse
Affiliation(s)
- Irmak Ferah Okkay
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Turkey
| | - Omer Lutfi Gundogdu
- Department of Neurology, Faculty of Medicine, Recep Tayyip Erdogan University, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | | | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Turkey
| |
Collapse
|
24
|
Atucha NM, Romecín P, Vargas F, García-Estañ J. Effects of flavonoids in experimental models of arterial hypertension. Curr Top Med Chem 2021; 22:735-745. [PMID: 34749613 DOI: 10.2174/1568026621666211105100800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids are a class of substances of a vegetal origin with many interesting actions from the point of view of human disease. Interest in flavonoids in the diet has increased in recent years due to the publication of basic, clinical and epidemiological studies that have shown a whole array of salutory effects related to intake of flavonols and flavones as well as a lower morbility and mortality of cardiovascular diseases. Since arterial hypertension is the most common modifiable risk factor for cardiovascular diseases, this review will focus mainly on the effects of flavonoids on the cardiovascular system with relation to the elevation of blood pressure. Its antihypertensive effects as well as the many investigations performed in experimental models of arterial hypertension are reviewed in this mini-review.
Collapse
Affiliation(s)
- Noemi M Atucha
- Departmento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, and Granada. Spain
| | - Paola Romecín
- Departmento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, and Granada. Spain
| | - Felix Vargas
- Departmento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, and Granada. Spain
| | - Joaquin García-Estañ
- Departmento de Fisiología, Facultad de Medicina, Instituto Murciano de Investigación Biomédica, Universidad de Murcia, Murcia, and Granada. Spain
| |
Collapse
|
25
|
Li Q, Lan T, He S, Chen W, Li X, Zhang W, Liu Y, Zhang Q, Chen X, Han Y, Su Z, Zhu D, Guo H. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Chin Med 2021; 16:99. [PMID: 34627325 PMCID: PMC8501634 DOI: 10.1186/s13020-021-00507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. Methods The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). Results LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. Conclusions LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00507-1.
Collapse
Affiliation(s)
- Qiaofeng Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Taijin Lan
- School of preclinical medicine, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, 9 Qinghu Road, Nanning, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.,International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Medical University, Guangxi, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiquan Zhang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,College of Pharmacy, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China. .,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
26
|
Aldayel TS, Abdel-Rahman HG, Gad El-Hak HN, Abdelrazek HMA, Mohamed RM, El-Sayed RM. Assessment of modulatory activity of Uncaria tomentosa extract against fipronil immunotoxicity in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112674. [PMID: 34438272 DOI: 10.1016/j.ecoenv.2021.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
This study has investigated the effect of using the Uncaria tomentosa (UT) extract against immunotoxicity that induced by fipronil (FP) in male Wistar rats. Twenty-eight, male Wistar rats were assigned randomly into four groups (7 rats each). Control group received distilled water. FP group received FP 9.7 mg/kg b. wt orally via gastric tube. UT group received 120 mg/kg b. wt. of UT extract orally. FP-UT group received both FP and UT (9.7 and 120 mg/kg b.wt, respectively) for 30 days. Hematological parameters, malondialdehyde (MDA), total antioxidant capacity (TAC), estradiol, histamine and immunoglobulin E (IGE) were assayed. Histopathological and electron microscopical examinations were performed to the lymphoid organs. Hematological parameters, were decreased in the FP group than the control group. There was a rise in MDA of FP group followed by a decrease in TAC content with histological and ultrastructure degenerative changes. UT extract treatment ameliorated the FP-induced perturbations for the former parameters. The results showed that FP treatment exerted an immunotoxic effect through acting as an endocrine disruptor and allergic, pro-inflammatory that was confirmed by histopathological and ultrastructure study of the lymphoid organs. Uncaria tomentosa extract could successfully modulate FP-induced immunotoxicity by diminishing all the studied parameters.
Collapse
Affiliation(s)
- Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Heba N Gad El-Hak
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Rasha M Mohamed
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish 45513, Egypt
| |
Collapse
|
27
|
Ajeigbe OF, Oboh G, Ademosun AO, Oyagbemi AA. Ficus asperifolia Miq
‐enriched biscuit diet protects against
L
‐NAME induced hyperlipidemia and hypertension in rats. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Olufunke Florence Ajeigbe
- Functional Foods and Nutraceutical Unit Department of Biochemistry Federal University of Technology Akure Ondo P.M.B 704, 340001 Nigeria
- Department of Physical and Chemical Sciences Elizade University Ilara‐Mokin Ondo State P.M.B, 002, 340271 Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit Department of Biochemistry Federal University of Technology Akure Ondo P.M.B 704, 340001 Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods and Nutraceutical Unit Department of Biochemistry Federal University of Technology Akure Ondo P.M.B 704, 340001 Nigeria
| | | |
Collapse
|
28
|
Panda S, Kar A, Singh M, Singh RK, Ganeshpurkar A. Syringic acid, a novel thyroid hormone receptor-β agonist, ameliorates propylthiouracil-induced thyroid toxicity in rats. J Biochem Mol Toxicol 2021; 35:e22814. [PMID: 34047416 DOI: 10.1002/jbt.22814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate the potential of syringic acid (SA) against propylthiouracil (PTU)-induced hypothyroidism in rats. SA at a prestandardized dose, 50 mg/kg/day, was orally administered to PTU-induced hypothyroid rats for 30 days, and alterations in the levels of serum triiodothyronine (T3 ), thyroxine (T4 ), thyrotropin (TSH), alanine transaminase (ALT), and aspartate transaminase (AST); tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6); total cholesterol (CHOL) and triglycerides (TG); hepatic lipid peroxidation (LPO) and antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione content), as well as histological changes in liver and thyroid were examined. The molecular interactions of the ligand, SA, with thyroid-related protein targets, such as human thyroid hormone receptor β (hTRβ), and thyroid peroxidase (TPO) protein, were studied using molecular docking. Whereas in hypothyroid animals, T4 , T3 , and antioxidants were decreased, there was an increase in TSH, TNF-α, IL-6, ALT, AST, and hepatic LPO; administration of SA in PTU-induced animals reversed all these indices to near normal levels. SA also improved the histological features of liver and thyroid gland. Our study clearly demonstrates SA as a novel thyroid agonist for augmenting the thyroid functions in rats. Molecular docking analysis reveals that SA possesses good binding affinity toward both the targets, hTRβ and TPO. Through this approach, for the first time we provide the evidence for SA as a novel thyroid agonist and suggest a receptor-mediated mechanism for its thyroid stimulatory potential.
Collapse
Affiliation(s)
- Sunanda Panda
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Devi Ahilya University, Indore, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | | | - Ankit Ganeshpurkar
- Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Engineering and Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
29
|
Freitas T, Rodrigues G, Fakhouri F, Silva C, Cardoso C, Velasco J, Filgueiras C, Garcia V. Application of the Box–Behnken experimental design for the extraction of phenolic compounds from araçá‐roxo (
Psidium myrtoides
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thainá Freitas
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Giovana Rodrigues
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Farayde Fakhouri
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC BarcelonaTech)Poly2 Group Terrassa Spain
| | - Camila Silva
- Department of Technology State University of Maringá Umuarama Brazil
| | - Claudia Cardoso
- Department of Chemistry State University of Mato Grosso do Sul Dourados Brazil
| | - José Velasco
- Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC BarcelonaTech)Poly2 Group Terrassa Spain
| | - Cristina Filgueiras
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Vitor Garcia
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| |
Collapse
|
30
|
Kadir NAAA, Azlan A, Abas F, Ismail IS. Hepatoprotective Effect of Supercritical Carbon Dioxide Extracted Dabai Pulp Oil and Its Defatted Pulp. Molecules 2021; 26:molecules26030671. [PMID: 33525363 PMCID: PMC7865250 DOI: 10.3390/molecules26030671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/01/2023] Open
Abstract
All food scientists must utilize plants for their application as functional foods to reduce hypercholesterolemia incidence through diet. Canarium odontophyllum (dabai) is a novel source for new healthy oil and functional foods. In this work, we evaluate the hepatoprotective effects of supercritical carbon dioxide (SC-CO2) extracted dabai pulp oil (DPO) and defatted dabai pulp (DDP) against hypercholesterolemia elicited by a high-cholesterol diet in rats. Our results show that DPO and DDP supplementation exerted beneficial hypocholesterolemic effects against the high-cholesterol diet-fed rat. Nevertheless, supplementation with DDP revealed superior total cholesterol, low-density lipoprotein, and HMG-CoA reductase lowering efficacy (p < 0.05). Supplementation of either DPO or DDP did not significantly affect AST and ALT levels than normal rats (p > 0.05). Therefore, DDP and DPO are considered as having no toxicological significance. The histological section of rats treated with DPO and DDP showed improved steatosis in hepatocytes. HPLC analysis revealed that DPO and DDP contained syringic acid, which plays an important role in the beneficial effect. In conclusion, our results support the hypocholesterolemic and hepatoprotective effects of DPO and DDP in the hypercholesterolemic rats model.
Collapse
Affiliation(s)
- Noor Atiqah Aizan Abdul Kadir
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Research Centre for Excellence for Nutrition and Non-Communicable Disease, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-97692466
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Intan Safinar Ismail
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
31
|
Neuroprotective Effect of Syringic Acid by Modulation of Oxidative Stress and Mitochondrial Mass in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8297984. [PMID: 33457416 PMCID: PMC7787734 DOI: 10.1155/2020/8297984] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Diabetes is a metabolic complaint associated with oxidative stress and dysfunction of mitochondria. One of the most common complications of diabetes mellitus is neuropathy. This study evaluated the possible neuroprotective effects of syringic acid (SYR), a natural polyphenolic derivative of benzoic acid, on oxidative damage and mitochondria in the brain, spinal cord, and sciatic nerve of streptozotocin-induced diabetic rats. Different groups of rats including normal control, diabetics (induced by streptozotocin), diabetic groups treated with 25, 50, and 100 mg/kg of SYR, and non-diabetic group treated with only 100 mg/kg of SYR were treated for 6 weeks. Learning and memory function, physical coordination, and acetylcholinesterase (AChE) and antioxidant indexes, as well as mRNA expression of mitochondrial biogenesis, were measured in the brain, spinal cord, and sciatic nerves. Diabetic rats treated with 100 mg/kg SYR exhibited significantly improved learning, memory, and movement deficiency (p < 0.05). SYR 100 mg/kg also significantly upregulated the brain mRNA expression of PGC-1α and NRF-1, the key regulators of energy metabolism, oxidative phosphorylation, and mitochondrial biogenesis. In addition, SYR 100 mg/kg and SYR 50 mg/kg increased the mtDNA/nDNA ratio in the brain and the spinal cord of diabetic rats, respectively (p < 0.05). SYR attenuated the lipid peroxidation in all the tissues, but not significant effects were observed on GSH, AChE, catalase, and superoxide dismutase activity. In all the tests, nonsignificant differences were observed between the control and SYR 100 mg/kg groups. Moreover, SYR reduced inflammation and demyelination in sciatic nerves. This is the first study to reveal the regulation of mitochondrial biogenesis and energy metabolism by SYR, beyond its antioxidant role in the diabetic rats' brain and spinal tissues.
Collapse
|
32
|
Periyannan V, Annamalai V, Veerasamy V. Syringic acid modulates molecular marker-involved cell proliferation, survival, apoptosis, inflammation, and angiogenesis in DMBA-induced oral squamous cell carcinoma in Syrian hamsters. J Biochem Mol Toxicol 2020; 34:e22574. [PMID: 32640096 DOI: 10.1002/jbt.22574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Despite, different medicinal phyto compounds giving an inexhaustible variety of anticancer drugs, potent signalling mechanism of leads the key successes of anticancer agent, anti-inflammatory, induction of apoptosis, and antiangiogenic. The current study was conducted to estimate the effect of syringic acid (SA) on tumor necrosis factor-α (TNF-α)-mediated nuclear factor-κB (NF-κB) signaling pathways, inducing apoptosis and angiogenic signaling pathways in a hamster model by preneoplastic stages, histological, immunohistochemistry and immunoblots analysis. Hamsters were given oral cancer by painting 0.5% 7,12-dimethylbenz[a]anthracene (DMBA) for 10 weeks. The DMBA-painted hamsters were treated with an effective dose (50 mg/kg body weight) of SA for 14 weeks. The results revealed that oral preadministration of SA to DMBA-treated hamster oral tumorigenesis significantly increased Bcl-2-associated X protein, caspases-3 and -9, and reduced B-cell lymphoma protein 2 and inflammatory cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, and TNF-α expression through NF-κB, and angiogenic vascular endothelial growth factor markers. Taken together, the current study suggests that SA prevents the DMBA-induced hamster buccal pouch carcinogenesis by triggering intrinsic apoptotic pathway via abrogation of the downstream signaling molecules such as COX-2, NF-κB, and TNF-α. This type of preventive strategy based on animal study will offer a means to design chemoprevention trials for humans.
Collapse
Affiliation(s)
- Velu Periyannan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Vijayalakshmi Annamalai
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
33
|
In vitro Antioxidant, Anti-inflammatory, Anti-metabolic Syndrome, Antimicrobial, and Anticancer Effect of Phenolic Acids Isolated from Fresh Lovage Leaves [ Levisticum officinale Koch] Elicited with Jasmonic Acid and Yeast Extract. Antioxidants (Basel) 2020; 9:antiox9060554. [PMID: 32630448 PMCID: PMC7346211 DOI: 10.3390/antiox9060554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Lovage seedlings were elicited with jasmonic acid (JA) and yeast extract (YE) to induce the synthesis of biologically active compounds. A simulated digestion process was carried out to determine the potential bioavailability of phenolic acids. Buffer extracts were prepared for comparison. The ability to neutralize ABTS radicals was higher in all samples after the in vitro digestion, compared to that in the buffer extracts. However, the elicitation resulted in a significant increase only in the value of the reduction power of the potentially bioavailable fraction of phenolic acids. The effect of the elicitation on the activity of the potentially bioavailable fraction of phenolic acids towards the enzymes involved in the pathogenesis of the metabolic syndrome, i.e., ACE, lipase, amylase, and glucosidase, was analyzed as well. The in vitro digestion caused a significant increase in the ability to inhibit the activity of these enzymes; moreover, the inhibitory activity against alpha-amylase was revealed only after the digestion process. The potential anti-inflammatory effect of the analyzed extracts was defined as the ability to inhibit key pro-inflammatory enzymes, i.e., lipoxygenase and cyclooxygenase 2. The buffer extracts from the YE-elicited lovage inhibited the LOX and COX-2 activity more effectively than the extracts from the control plants. A significant increase in the anti-inflammatory and antimicrobial properties was noted after the simulated digestion.
Collapse
|
34
|
S M, Shaik AH, E MP, Al Omar SY, Mohammad A, Kodidhela LD. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Sci Rep 2020; 10:3426. [PMID: 32099011 PMCID: PMC7042357 DOI: 10.1038/s41598-020-59925-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The study was conducted to evaluate the cardio-protective activity of combination (COMB) of syringic acid (SA) and resveratrol (RV) against isoproterenol (ISO) induced cardio-toxicity in rats. Rats were pre-treated orally with SA (50 mg/kg), RV (50 mg/kg) and combination of SA (25 mg/kg) and RV (25 mg/kg) along with positive control gallic acid (50 mg/kg) for 30 days. The effects of ISO on cardiac markers, lipid profile and lipid peroxidation marker, anti-oxidant enzymes and m-RNA expression of nuclear factor-kappa B (NF-kB) and tumor necrosis factor-α (TNF-α) were observed along with histopathological observations of simple and transmission electron microscopes (TEM). Serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and alkaline phosphatase were significantly increased while cardiac tissue CK-MB, LDH, superoxide dismutase and catalase were significantly decreased in ISO administered rats, which also exhibited a significant increase in total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol and thiobarbutyric acid reactive substances and significant decrease in high density lipoprotein cholesterol in serum and heart. The m-RNA levels of inflammatory markers NF-kB and TNF-α were significantly increased in ISO treated rats. COMB Pre-treatment significantly reversed the ISO actions. Histopathological studies of simple and TEM were also co-related with the above biochemical parameters. Docking studies with NF-kB were also performed. Evidence has shown for the first time in this approach that COMB pre-treatment ameliorated ISO induced cardio-toxicity in rats and revealed cardio-protection.
Collapse
Affiliation(s)
- Manjunatha S
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Althaf Hussain Shaik
- Central Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Maruthi Prasad E
- Shenzhen key of Laboratory of Translational medicine of Tumor, A7, 451, Department of Cell Biology and Genetics, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Suliman Yousef Al Omar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Mohammad
- Central Laboratory, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
35
|
Micucci M, Bolchi C, Budriesi R, Cevenini M, Maroni L, Capozza S, Chiarini A, Pallavicini M, Angeletti A. Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. PHYTOCHEMISTRY 2020; 170:112222. [PMID: 31810054 DOI: 10.1016/j.phytochem.2019.112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hypertension has become the leading risk factor for worldwide cardiovascular diseases. Conventional pharmacological treatment, after both dietary and lifestyle changes, is generally proposed. In this review, we present the antihypertensive properties of phytocomplexes from thirteen plants, long ago widely employed in ethnomedicines and, in recent years, increasingly evaluated for their activity in vitro and in vivo, also in humans, in comparison with synthetic drugs acting on the same systems. Here, we focus on the demonstrated or proposed mechanisms of action of such phytocomplexes and of their constituents proven to exert cardiovascular effects. Almost seventy phytochemicals are described and scientifically sound pertinent literature, published up to now, is summarized. The review emphasizes the therapeutic potential of these natural substances in the treatment of the 'high normal blood pressure' or 'stage 1 hypertension', so-named according to the most recent European and U.S. guidelines, and as a supplementation in more advanced stages of hypertension, however needing further validation by clinical trial intensification.
Collapse
Affiliation(s)
- M Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - C Bolchi
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - R Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Cevenini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - L Maroni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - S Capozza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - A Chiarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Pallavicini
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - A Angeletti
- Unit of Nephrology, Dialysis and Transplantation, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, S.Orsola Malpighi Hospital, Bologna Italy
| |
Collapse
|
36
|
Wunpathe C, Maneesai P, Rattanakanokchai S, Bunbupha S, Kukongviriyapan U, Tong-un T, Pakdeechote P. Tangeretin mitigates l-NAME-induced ventricular dysfunction and remodeling through the AT1R/pERK1/2/pJNK signaling pathway in rats. Food Funct 2020; 11:1322-1333. [DOI: 10.1039/c9fo02365h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tangeretin alleviates ventricular alterations in l-NAME hypertensive rats.
Collapse
Affiliation(s)
- Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Putcharawipa Maneesai
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Siwayu Rattanakanokchai
- Veterinary Teaching Hospital
- Faculty of Veterinary Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Sarawoot Bunbupha
- Faculty of Medicine
- Mahasarakham University
- Mahasarakham 44150
- Thailand
| | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Terdthai Tong-un
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen 40002
- Thailand
| |
Collapse
|
37
|
Effect of syringic acid and syringaldehyde on oxidative stress and inflammatory status in peripheral blood mononuclear cells from patients of myocardial infarction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:691-704. [PMID: 31822939 DOI: 10.1007/s00210-019-01768-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Oxidative stress and inflammation are considered as therapeutic targets in myocardial injury. The aim of the present study was to investigate the protective effect of syringic acid (SA) and syringaldehyde (SYD) on peripheral blood mononuclear cells (PBMCs) of myocardial infarction (MI) patients. PBMCs from MI patients were cultured in the presence and absence of SA and SYD. The level of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) was estimated. Reactive oxygen species (ROS) formation, oxidation of lipids, proteins, and activity of antioxidant enzymes were also quantified. To further determine biomolecular changes in treated PBMCs, Fourier transform infrared (FTIR) spectroscopic analysis was done. Molecular docking study was also conducted to evaluate the binding interaction of SA and SYD with various target proteins. SA and SYD treated PBMCs of MI patients showed decreased secretion of TNF-α, IL-6, and NO. Moreover, the content of ROS, level of lipid, and protein oxidation showed diminution by treatment with both the compounds. Enhanced antioxidant defense was also observed in treated PBMCs. The FTIR spectra of treated cells revealed safeguarding effect of SA and SYD on biomolecular structure. The molecular docking analysis displayed significant binding affinity of the two compounds towards TNF-α, IL-6, and antioxidant enzymes. Our findings demonstrated potent antioxidant and anti-inflammatory effects of SA and SYD on PBMCs of MI patients. Thus, SA and SYD supplementation might be beneficial in attenuating oxidative stress and inflammation in MI.
Collapse
|
38
|
Ogut E, Sekerci R, Akcay G, Yildirim FB, Derin N, Aslan M, Sati L. Protective effects of syringic acid on neurobehavioral deficits and hippocampal tissue damages induced by sub-chronic deltamethrin exposure. Neurotoxicol Teratol 2019; 76:106839. [DOI: https:/doi.org/10.1016/j.ntt.2019.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
|
39
|
Effects of dietary levels of brown seaweeds and plant polyphenols on growth and meat quality parameters in growing rabbit. Meat Sci 2019; 161:107987. [PMID: 31683222 DOI: 10.1016/j.meatsci.2019.107987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 01/20/2023]
Abstract
Growth performances, carcass characteristics and meat quality parameters from growing rabbit fed with two levels of dietary brown seaweed (Laminaria spp) and plant polyphenols were investigated. One hundred and forty-four New Zealand White rabbits were allotted into three dietary treatments containing 0 (C), 0.3% (T1), and 0.6% (T2) of brown seaweed and plant polyphenols mixture for 42 days. Growth performances and carcass weight were improved in T1 group. Vitamin A and E content in Longissimus thoracis and lumborum (LTL) and Semimembranosus (SM) muscle were enhanced in the treated groups. In the SM muscle, the oxidative stability was improved in rabbit fed with both dosages of dietary supplement, and the cholesterol content tended to be lower in T1 than in T2 and C groups. The LTL and SM muscle sensory characteristics were improved. In conclusion, dietary integration with a low dosage of brown seaweed and plant polyphenols is a valid strategy for enhance growth performance and produce healthier rabbit meat.
Collapse
|
40
|
Ogut E, Sekerci R, Akcay G, Yildirim FB, Derin N, Aslan M, Sati L. Protective effects of syringic acid on neurobehavioral deficits and hippocampal tissue damages induced by sub-chronic deltamethrin exposure. Neurotoxicol Teratol 2019; 76:106839. [PMID: 31644947 DOI: 10.1016/j.ntt.2019.106839] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/10/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022]
Abstract
Recent developments in the field of insecticide exposure have led to a renewed interest in alternative antioxidant therapy. The present study was to investigate the neuroprotective role of syringic acid (SA, 25 mg/kg/day) on the neurotoxicity and oxidative damage induced by deltamethrin (DTM, 1.28 mg/kg/day during two months) in CA1/3 pyramidal neurons. Animals were divided into 4 groups (n = 16/group) (250-270 g) for control, DTM, SA and DTM + SA. DTM and SA were administered by oral gavage daily. Rats that were given sub-chronic DTM had revealed a significant increase in caspase-3 levels, impaired recognition memory, reduced antioxidant activity and enhanced free radicals in the hippocampus. The results showed that SA ameliorated neurobehavioral alterations, reduced reactive oxygen/nitrogen species, pyknosis in the CA1/3 and increased antioxidant enzyme activity. In conclusion, SA (25 mg/kg/day) had potential neuroprotective and therapeutic impacts against sub-chronic DTM exposure via its antioxidant and antiapoptotic efficacy. Therefore, it can be used as a neuroprotective natural plant-derived agent against DTM-induced neurotoxicity.
Collapse
Affiliation(s)
- Eren Ogut
- Department of Anatomy, School of Medicine, Bahçeşehir University, İstanbul 34734, Turkey.
| | - Rahime Sekerci
- Department of Anatomy, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Guven Akcay
- Department of Biophysics, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Fatos Belgin Yildirim
- Department of Anatomy, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Narin Derin
- Department of Biophysics, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Mutay Aslan
- Department of Biochemistry, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
41
|
John CM, Arockiasamy S. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) inhibits adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. Nat Prod Res 2019; 34:3432-3436. [DOI: 10.1080/14786419.2019.1573820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Cordelia Mano John
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| |
Collapse
|
42
|
Potue P, Wunpathe C, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct 2019; 10:1880-1892. [DOI: 10.1039/c8fo02408a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nobiletin alleviates l-NAME-induced vascular dysfunction and remodeling and superoxide production in rats.
Collapse
Affiliation(s)
- Prapassorn Potue
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | - Chutamas Wunpathe
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | | | - Upa Kukongviriyapan
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | - Parichat Prachaney
- Department of Anatomy
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| | - Poungrat Pakdeechote
- Department of Physiology
- Faculty of Medicine
- Khon Kaen University
- Khon Kaen
- Thailand
| |
Collapse
|
43
|
Periyannan V, Veerasamy V. Syringic acid may attenuate the oral mucosal carcinogenesis via improving cell surface glycoconjugation and modifying cytokeratin expression. Toxicol Rep 2018; 5:1098-1106. [PMID: 30425931 PMCID: PMC6222029 DOI: 10.1016/j.toxrep.2018.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
Syringic acid (SRA) is an excellent anti-oxidant and anti-cancer property in various in vitro and in vivo studies. In the present study was modifying effect of SRA on 7,12-dimethylbenz(a)anthracene (DMBA) induced cell surface glycoconjugates (GCs) abnormalities in the plasma and buccal mucosa of golden Syrian hamster buccal pouch carcinogenesis (HBPCs). Topical application of DMBA three times a week for 10 weeks on the buccal pouches of the hamsters resulted in well developed squamous cell carcinoma. GCs status was assessed biochemically, histological and immunoexpression pattern of cytokeratin (CK) in the buccal mucosa of the DMBA treated hamsters. Elevated levels of GCs and CK expression were observed in DMBA alone treated hamsters. Oral pre-administration of SRA (50 mg/kg bw) positively modulates the GCs levels and CK expressions to near normal. The present findings suggested that SRA can protect cell surface GCs and CK expression during DMBA induced HBPCs.
Collapse
Affiliation(s)
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar 608002, Tamilnadu, India
| |
Collapse
|
44
|
Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C. Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother 2018; 108:547-557. [PMID: 30243088 DOI: 10.1016/j.biopha.2018.09.069] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023] Open
Abstract
The use of phytochemicals in control of human diseases have been considerable public and scientific interest in current days. Syringic acid (SA), a phenolic compound often found in fruits and vegetables and which is synthesized via shikimic acid pathway in plants. It shows a wide range of therapeutic applications in prevention of diabetes, CVDs, cancer, cerebral ischemia; as well as it possess anti-oxidant, antimicrobial, anti-inflammatory, antiendotoxic, neuro and hepatoprotective activities. It has an effective free radical scavenger and alleviates the oxidative stress markers. The therapeutic property of SA is attributed by the presence of methoxy groups onto the aromatic ring at positions 3 and 5. The strong antioxidant activity of SA may confer its beneficial effects for human health. SA has the potential to modulate enzyme activity, protein dynamics and diverse transcription factors involved in diabetes, inflammation, cancer and angiogenesis. In vivo experimental data and histopathological studies on SA activity has delineated its possible therapeutic mechanisms. Besides usage in biomedical field, SA has greater industrial applications in bioremediation, photocatalytic ozonation, and laccase based catalysis. The present review deals about SA natural sources, biosynthesis, bioavailability, biomedical applications (in vivo and in vito. The review addresses basic information about molecular mechanisms, therapeutic and industrial potential of SA.
Collapse
Affiliation(s)
| | - Mopuri Ramgopal
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| | - Golla Ramanjaneyulu
- Biochemistry division, CSIR-CIMAP Research Centre, GKVK post, Bangalore-65, K.A., India
| | - C M Anuradha
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| | - Chitta Suresh Kumar
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| |
Collapse
|
45
|
Kinetics of complex formation of Fe(III) with syringic acid: Experimental and theoretical study. Food Chem 2018; 265:96-100. [PMID: 29884401 DOI: 10.1016/j.foodchem.2018.05.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022]
Abstract
Kinetic study on the complexation of syringic acid with Fe(III) was described in aqueous solution at pH 9.0 together with a reappraisal of spectral evidence for chelate formation. The complexation reaction was found to be a first-order with rate constants for k1 (formation) 3.67 × 10-2 min-1. Additionally, the effect of concentration and temperature on the complexation reaction was investigated. The gustatory properties of the isolated complex were investigated and complex showed no metallic taste. The isolated complex was stable at pH 9.0. The apparent activation energy of the complexation reaction was evaluated to be 168 kcal/mol. The total iron content was determined in the isolated complex by AAS technique and was found 0.0073/100 ml. The specific rotation of the complex was found at -85°.
Collapse
|
46
|
Haneef J, Chadha R. Antioxidant-Based Eutectics of Irbesartan: Viable Multicomponent Forms for the Management of Hypertension. AAPS PharmSciTech 2018; 19:1191-1204. [PMID: 29247285 DOI: 10.1208/s12249-017-0930-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
The present research work highlights the development of multicomponent solid form of the antihypertensive drug irbesartan (IRB) to improve its biopharmaceutical attributes. Mechanochemical synthesis of a new solid form of IRB with coformers having antioxidant properties (syringic acid, nicotinic acid, and ascorbic acid) resulted into three eutectic mixtures (EMs). Formation of eutectic was ascertained by differential scanning calorimetry whereas exact stoichiometry (50/50% w/w) was established by phase diagram and Tamman's triangle. The strong homomeric interaction between individual components and steric hindrances is responsible for the eutectic formation. EMs exhibited superior apparent solubility (five- to nine fold) and significant enhancement in intrinsic dissolution rate (two- to three fold) as compared to the plain drug. In vivo pharmacokinetic and in vivo pharmacodynamic studies revealed a significant improvement in the biopharmaceutical performance of EMs. Marked protection against oxidative stress was observed in EMs over plain drug by controlling the level/activity of plasma H2O2 and antioxidant enzymes (superoxide dismutase and catalase) in the kidney matrix of dexamethasone (Dexa)-induced hypertensive rats. Thus, these solid forms of IRB can serve as viable multicomponent forms to be translated into product development for better therapeutic efficacy in the management of hypertension.
Collapse
|
47
|
Velu P, Vinothkumar V, Babukumar S, Ramachandhiran D. Chemopreventive effect of syringic acid on 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Toxicol Mech Methods 2017; 27:631-640. [DOI: 10.1080/15376516.2017.1349227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Periyannan Velu
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Veerasamy Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Sukumar Babukumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Duraisamy Ramachandhiran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
48
|
The impact of oat (Avena sativa) consumption on biomarkers of renal function in patients with chronic kidney disease: A parallel randomized clinical trial. Clin Nutr 2016; 37:78-84. [PMID: 28003041 DOI: 10.1016/j.clnu.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND & OBJECTIVE Animal studies report that oat (Avena sativa L) intake has favorable effects on kidney function. However, the effects of oat consumption have not been assessed in humans. The aim of this study was to examine the impact of oat intake on biomarkers of renal function in patients with chronic kidney disease (CKD). METHODS Fifty-two patients with CKD were randomly assigned to a control group (recommended to reduce intake of dietary protein, phosphorus, sodium and potassium) or an oat consumption group (given nutritional recommendations for controls +50 g/day oats). Blood urea nitrogen (BUN), serum creatinine (SCr), urine creatinine, serum albumin, serum potassium, parathyroid hormone (PTH), serum klotho and urine protein concentration were measured at baseline and after an eight-week intervention. Creatinine clearance was calculated using urine creatinine concentration. RESULTS Within group analysis showed a significant increase in BUN (P = 0.02) and serum potassium (P = 0.01) and a marginally significant increment in SCr (P = 0.08) among controls. However, changes in the oat group were not significant. In a multivariate adjusted model, we observed a significant difference in change of serum potassium (-0.03 mEq/L for oat group and 0.13 mEq/L for control group; P = 0.01) and a marginally significant difference in change of serum albumin (0.01 g/dl for oat group and -0.08 for control group; P = 0.08) between the two groups. There was no change in PTH concentration. CONCLUSION Intake of oats may have a beneficial effect on serum albumin and serum potassium in patients with CKD. REGISTRATION CODE Present study registered under IRCT.ir identifier no. IRCT2015050414551N2.
Collapse
|
49
|
Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine-Induced Acute Pancreatitis: An Experimental Study on Rats. Int Surg 2016; 100:891-6. [PMID: 26011211 DOI: 10.9738/intsurg-d-14-00170.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine-induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg(-1)) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine-induced acute toxicity of pancreas in rats.
Collapse
|
50
|
Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int J Mol Med 2016; 38:567-73. [PMID: 27278454 DOI: 10.3892/ijmm.2016.2623] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/13/2016] [Indexed: 11/05/2022] Open
Abstract
Cerebral ischemic injury and treatment are important topics in neurological science. In the present study, an in vitro model of cerebral ischemia was established by subjecting primary cultures of hippocampal neuronal cells to oxygen-glucose deprivation followed by reperfusion (OGD/R), in order to evaluate the possible neuroprotective role of syringic acid (SA). The results of 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays showed that pre-treatment with SA (0.1, 1, 10, and 20 µM) attenuated OGD/R-induced neuronal injury in a dose-dependent manner, with evidence of increased cell viability and decreased LDH leakage. In addition, oxidative stress markers were evaluated using commercial kits, and the results demonstrated that OGD/R exposure induced distinct oxidative stress, accompanied by elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) production, and reduced activity of the antioxidant enzyme superoxide dismutase (SOD), which were dose-dependently restored by pre-treatment with SA. In addition, the concentration of intracellular free calcium [Ca2+]i and mitochondrial membrane potential (MMP or Δψm) were determined in order to evaluate the degree of neuronal damage by performing flow cytometric analysis and observing the cells under a fluorescence microscope, respectively. We demonstrated that pre-treatment with SA inhibited elevations in [Ca2+]i, whereas it increased the MMP dose-dependently following exposure to OGD/R. Western blot analysis revealed that OGD/R promoted cell apoptosis with concomitant increases in Bax and caspase-3 expression, and reduced Bcl-2 expression, which was reversed by pre‑treatment with SA in a dose-dependent manner. Moreover, these effects were mediated through the JNK and p38 pathways, as pre‑treatment with SA inhibited the OGD/R-induced increase in phosphorylated (p-)JNK and p-p38 expression. Taken together, these results suggested that SA exerted strong neuroprotective effects in hippocampal neuronal cells, which may be attributed to the attenuation of OGD/R-induced cell injury through the JNK and p38 signaling pathways.
Collapse
|