1
|
Regidor PA, Mueller A, Mayr M. Pharmacological and metabolic effects of drospirenone as a progestin-only pill compared to combined formulations with estrogen. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057221147388. [PMID: 36744531 PMCID: PMC9905034 DOI: 10.1177/17455057221147388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spironolactone derivative drospirenone is combined with ethinylestradiol or estetrol in combined oral contraceptives. Formulations with 17-β-estradiol are used to treat climacteric symptoms. A drospirenone-only formulation has been introduced for contraception. Here, the pharmacological properties of drospirenone, the impact of the different formulations on metabolic and laboratory parameters, and the resulting clinical implications are reviewed. Ethinylestradiol, an inhibitor of CYP metabolic enzymes, changes the pharmacokinetics of drospirenone, leading to a higher drospirenone exposure with ethinylestradiol/drospirenone compared to the drospirenone-only preparation. In addition, several metabolic alterations have been described. The impact of estetrol is less pronounced, and for 17-β-estradiol/drospirenone and drospirenone-only, decreased triglyceride and cholesterol levels were observed. Ethinylestradiol induces various pro-coagulatory factors, leading to hypercoagulability. The effect is significantly reduced with estetrol, and no influence was observed with the drospirenone-only preparation. The anti-mineralocorticoid activity of drospirenone seems to positively counteract the renin-angiotensin-aldosterone-system-activating action of ethinylestradiol. There is no influence on blood pressure with ethinylestradiol/drospirenone and estetrol/drospirenone formulations, while in clinical trials, a reduction has been observed with 17-β-estradiol/drospirenone and drospirenone-only. Anti-aldosterone activity via non-renal mineralocorticoid receptors is associated with cardiovascular health, while interactions with parathyroid hormone signaling impact bone structure and vascular calcification. Though the clinical relevance is unclear for drospirenone, data in this context are reviewed. To sum up, the advantages of drospirenone in hormonal contraception and treatment of menopausal symptoms have been demonstrated for all the formulations described here. Combination with estrogen confers benefits and risks, which must be considered.
Collapse
Affiliation(s)
- Pedro-Antonio Regidor
- Pedro-Antonio Regidor, Exeltis Germany GmbH, Adalperostraße 84, 85737 Ismaning, Germany.
| | | | | |
Collapse
|
2
|
Munkhjargal U, Fukuda D, Ganbaatar B, Suto K, Matsuura T, Ise T, Kusunose K, Yamaguchi K, Yagi S, Yamada H, Soeki T, Wakatsuki T, Sata M. A Selective Mineralocorticoid Receptor Blocker, Esaxerenone, Attenuates Vascular Dysfunction in Diabetic C57BL/6 Mice. J Atheroscler Thromb 2022; 30:326-334. [PMID: 35732424 PMCID: PMC10067342 DOI: 10.5551/jat.63382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIMS Pharmacological blockade of mineralocorticoid receptors (MRs) is a potential therapeutic approach to reduce cardiovascular complications since MRs play a crucial role in cardiovascular regulation. Recent studies suggest that MR antagonists affect several extrarenal tissues, including vessel function. We investigated the effect of a novel nonsteroidal selective MR blocker, esaxerenone, on diabetes-induced vascular dysfunction. METHODS Diabetes was induced by a single dose of streptozotocin in 8-week-old male C57BL/6 mice. Esaxerenone (3 mg/kg/day) or a vehicle was administered by gavage to diabetic mice for 3 weeks. Metabolic parameters, plasma aldosterone levels, and parameters related to renal function were measured. Endothelium-dependent or -independent vascular responses of the aortic segments were analyzed with acetylcholine or sodium nitroprusside, respectively. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro study. RESULTS Induction of diabetes elevated plasma aldosterone level (P<0.05) and impaired endothelium-dependent vascular relaxation (P<0.05). The administration of esaxerenone ameliorated the endothelial dysfunction (P<0.01) without the alteration of metabolic parameters, blood pressure, and renal function. Esaxerenone improved the eNOSSer1177 phosphorylation in the aorta obtained from diabetic mice (P<0.05) compared with that in the vehicle-treated group. Furthermore, a major MR agonist, aldosterone, decreased eNOSSer1177 phosphorylation and increased eNOSThr495 phosphorylation in HUVECs, which recovered with esaxerenone. Esaxerenone ameliorated the endothelium-dependent vascular relaxation caused by aldosterone in the aortic segments obtained from C57BL/6 mice (P<0.001). CONCLUSION Esaxerenone attenuates the development of diabetes-induced endothelial dysfunction in mice. These results suggest that esaxerenone has potential vascular protective effects in individuals with diabetes.
Collapse
Affiliation(s)
- Uugantsetseg Munkhjargal
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences.,Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kumiko Suto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Tomomi Matsuura
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences
| | - Takeshi Soeki
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| |
Collapse
|
3
|
Thromboxane A2 synthase inhibition ameliorates endothelial dysfunction, memory deficits, oxidative stress and neuroinflammation in rat model of streptozotocin diabetes induced dementia. Physiol Behav 2021; 241:113592. [PMID: 34534530 DOI: 10.1016/j.physbeh.2021.113592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022]
Abstract
RATIONALE Vascular dementia (VaD) is the second leading cause of dementia worldwide. It is very important to find the possible pharmacological agents which may be useful in management and therapy of VaD. OBJECTIVES The present study investigates the effect of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, in a rat model of VaD. METHODS Single intraperitoneal injection of streptozotocin [STZ, (50 mg/kg)] was administered to Wistar rats to induced diabetes-associated vascular endothelial dysfunction and memory impairment. Morris water maze (MWM) test was employed to assess learning and memory. Endothelial dysfunction was assessed in the isolated aorta by observing endothelial-dependent vasorelaxation and levels of serum nitrite. Various biochemical and histopathological estimations were also performed. RESULTS STZ treatment produced endothelial dysfunction, impairment of learning and memory, reduction in body weight and serum nitrite/nitrate, and increase in serum glucose, brain oxidative stress (increased brain thiobarbituric acid reactive species and decreased reduced glutathione levels), brain acetylcholinesterase activity and brain myeloperoxidase activity. Further a significant rise in brain tumor necrosis factor-α & interleukin-6 levels and brain neutrophil infiltration were also observed. Treatment of ozagrel (10 & 20 mg/kg, p. o.)/donepezil (0. 5 mg/kg, i.p., serving as standard) ameliorated STZ induced endothelial dysfunction; memory deficits; biochemical and histopathological changes. CONCLUSIONS It may be concluded that ozagrel markedly improved endothelial dysfunction; learning and memory; biochemical and histopathological alteration associated with STZ induced dementia and that TXA2 can be considered as an important therapeutic target for the management of VaD.
Collapse
|
4
|
Tran V, De Silva TM, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front Pharmacol 2020; 11:148. [PMID: 32194403 PMCID: PMC7064630 DOI: 10.3389/fphar.2020.00148] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Adeyanju OA, Falodun TO, Michael OS, Soetan OA, Oyewole AL, Agbana RD. Spironolactone reversed hepato-ovarian triglyceride accumulation caused by letrozole-induced polycystic ovarian syndrome: tissue uric acid-a familiar foe. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1055-1066. [PMID: 31925474 DOI: 10.1007/s00210-020-01809-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex endocrine disease among women of reproductive age and is one of the main causes of infertility. Non-alcoholic fatty liver disease (NAFLD), the most prominent chronic liver disease in adults, is characterized by excess hepatic triglyceride (TG) accumulation. PCOS women have increased risk of NAFLD and uric acid has been documented to have a positive correlation with subclinical tissue damage and might be the link in the cystic. Spironolactone (SPL) is a mineralocorticoid receptor (MR) blocker that has been in wide clinical use for some decades. In this research, we investigated the effects of SPL on ovarian and hepatic tissue damage in experimental PCOS rats induced by letrozole (LET). A total of eighteen adult female Wistar rats were used for this study and the animals divided into 3 groups are treated with vehicle, LET (1 mg/kg), and LET+SPL (SPL; 0.25 mg/kg), p.o. once daily respectively for 21 uninterrupted days. Results showed that LET treatment induced features of PCOS characterized by increased plasma testosterone (T) and luteinizing hormone (LH) together with increased body weight. Abnormal ovarian and hepatic histomorphological changes were also observed with elevated uric acid (UA) and TG accumulation in both tissues respectively. Treatment with SPL however attenuated the elevated testosterone in the LET-induced PCOS model accompanied with a reversal in the observed ovarian and hepatic UA, TG accumulation, and altered histomorphological changes. Taken together, spironolactone reversed the PCOS-induced ovarian and hepatic tissue damage by suppressing tissue UA and TG accumulation.
Collapse
Affiliation(s)
- Oluwaseun A Adeyanju
- Cardiometabolic Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria. .,HOPE Cardiometabolic Research Team & Department of Physiology, University of Ilorin, Ilorin, Nigeria. .,Bioscience Research Hub, Ilorin, Kwara State, Nigeria.
| | - Timothy O Falodun
- Cardiometabolic Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, P.M.B. 5454, Ado-Ekiti, 360101, Nigeria
| | - Olugbenga S Michael
- HOPE Cardiometabolic Research Team & Department of Physiology, University of Ilorin, Ilorin, Nigeria.,Bioscience Research Hub, Ilorin, Kwara State, Nigeria.,Cardiometabolic Research Unit, Department of Physiology, College of Health sciences, Bowen University, Iwo, Nigeria
| | - Olaniyi A Soetan
- HOPE Cardiometabolic Research Team & Department of Physiology, University of Ilorin, Ilorin, Nigeria.,Bioscience Research Hub, Ilorin, Kwara State, Nigeria
| | - Aboyeji L Oyewole
- Bioscience Research Hub, Ilorin, Kwara State, Nigeria.,Department of Physiology, College of Medicine and Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Richard D Agbana
- Department of Community Medicine, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
6
|
Wang CC, Lee AS, Liu SH, Chang KC, Shen MY, Chang CT. Spironolactone ameliorates endothelial dysfunction through inhibition of the AGE/RAGE axis in a chronic renal failure rat model. BMC Nephrol 2019; 20:351. [PMID: 31492107 PMCID: PMC6729054 DOI: 10.1186/s12882-019-1534-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spironolactone can improve endothelial dysfunction in the setting of heart failure and diabetes models. However, its beneficial effect in the cardiovascular system is not clear in the setting of non-diabetic renal failure. We conducted this study to investigate whether spironolactone can ameliorate endothelial dysfunction in a 5/6 nephrectomy model, and to determine the underlying mechanism. METHODS Twenty-four Sprague-Dawley rats were divided into four groups. A renal failure model was created using the 5/6 nephrectomy method. The four groups included: Sham-operation group (Group1), chronic kidney disease (CKD; Group2), CKD + ALT-711 (advanced glycation end products [AGEs] breaker; Group 3), and CKD + spironolactone group (Group4). Acetylcholine (Ach)-mediated vasodilatation responses were compared between the four groups. To investigate the underlying mechanism, we cultured human aortic endothelial cells (HAECs) for in-vitro assays. Differences between two groups were determined with the paired student's t test. Differences between three or more groups were determined through one-way analysis of variance (ANOVA) with post-hoc analysis with LSD method. RESULTS Compared with Group 1, Group 2 has a significantly impaired Ach-mediated vasodilatation response. Group 3 and 4 exhibited improved vasoreactivity responses. To determine the underlying mechanism, we performed an in-vitro study using cultured HAECs. We noted significant sirtuin-3 (SIRT3) protein downregulation, reduced phosphorylation of endothelial nitric oxide synthase at serine 1177 (p-eNOS), and increased intracellular oxidative stress in cultured HAECs treated with AGEs (200 μg/mL). These effects were counter-regulated when cultured HAECs were pretreated with spironolactone (10 μM). Furthermore, the increased p-eNOS production by spironolactone was abrogated when the HAECs were pretreated with tenolvin (1 μM), a SIRT3 inhibitor. CONCLUSIONS Spironolactone could ameliorate endothelial dysfunction in a 5/6 nephrectomy renal failure model through AGEs/Receptor for AGEs (RAGEs) axis inhibition, SIRT3 upregulation, and nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX-2) and its associated intracellular oxidative stress attenuation.
Collapse
Affiliation(s)
- Chun-Cheng Wang
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung, 40447, Taiwan.,Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - An-Sheng Lee
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Shu-Hui Liu
- Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung, 40447, Taiwan.,Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Cardiovascular Research Laboratory, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, No 2, Yude Road, North District, Taichung City, 40447, Taiwan
| | - Chiz-Tzung Chang
- School of Medicine, College of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan. .,Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, No 2, Yude Road, North District, Taichung City, 40447, Taiwan.
| |
Collapse
|
7
|
Shashar M, Hod T, Chernichovski T, Angel A, Kazan S, Grupper A, Naveh S, Kliuk-Ben Bassat O, Weinstein T, Schwartz IF. Mineralocorticoid receptor blockade improves arginine transport and nitric oxide generation through modulation of cationic amino acid transporter-1 in endothelial cells. Nitric Oxide 2018; 80:24-31. [PMID: 30056252 DOI: 10.1016/j.niox.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 11/27/2022]
Abstract
Blockade of the mineralocorticoid receptor (MCR) has been shown to improve endothelial function far beyond blood pressure control. In the current studies we have looked at the effect of MCR antagonists on cationic amino acid transporter-1 (CAT-1), a major modulator of endothelial nitric oxide (NO) generation. Using radio-labeled arginine, {[3H] l-arginine} uptake was determined in human umbilical vein endothelial cells (HUVEC) following incubation with either spironolactone or eplerenone with or without silencing of MCR. Western blotting for CAT-1, PKCα and their phosphorylated forms were performed. NO generation was measured by using Griess reaction assay. Both Spironolactone and eplerenone significantly increased endothelial arginine transport, an effect which was further augmented by co-incubation with aldosterone, and blunted by either silencing of MCR or co-administration of amiloride. Following MCR blockade, we identified two bands for CAT-1. The addition of tunicamycin (an inhibitor of protein glycosylation) or MCR silencing resulted in disappearance of the extra band and prevented the increase in arginine transport. Only spironolactone decreased CAT-1 phosphorylation through inhibition of PKCα (CAT-1 inhibitor). Subsequently, incubation with either MCR antagonists significantly augmented NO2/NO3 levels (stable NO metabolites) and this was attenuated by silencing of MCR or tunicamycin. GO 6076 (PKCα inhibitor) intensified the increase of NO metabolites only in eplerenone treated cells. In conclusion spironolactone and eplerenone augment arginine transport and NO generation through modulation of CAT-1 in endothelial cells. Both MCR antagonists activate CAT-1 by inducing its glycosylation while only spironolactone inhibits PKCα.
Collapse
Affiliation(s)
- Moshe Shashar
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel; Nephrology Section, Sanz Medical Center, Laniado Hospital, Netanya, Israel
| | - Tamar Hod
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Tamara Chernichovski
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Avital Angel
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Shaul Kazan
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Ayelet Grupper
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Sivan Naveh
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Orit Kliuk-Ben Bassat
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Talia Weinstein
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Idit F Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel.
| |
Collapse
|
8
|
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid Receptor and Cardiovascular Disease. Am J Hypertens 2018; 31:1165-1174. [PMID: 30192914 DOI: 10.1093/ajh/hpy120] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) in the distal nephron by its ligand, aldosterone, plays an important role in sodium reabsorption and blood pressure regulation. However, expression of the MR goes beyond the kidney. It is expressed in a variety of other tissues in which its activation could lead to tissue injury. Indeed, MR activation in the cardiovascular (CV) system has been shown to promote hypertension, fibrosis, and inflammation. Pharmacological blockade of the MR has protective effects in several animal models of CV disease. Furthermore, the use of MR antagonists is beneficial for heart failure patients, preventing mortality and morbidity. A better understanding of the implications of the MR in the setting of CV diseases is critical for refining treatments and improving patient care. The mechanisms involved in the deleterious effects of MR activation are complex and include oxidative stress, inflammation, and fibrosis. This review will discuss the pathological role of the MR in the CV system and the major mechanisms underlying it.
Collapse
Affiliation(s)
- Mathieu Buonafine
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Benjamin Bonnard
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Frédéric Jaisser
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
- INSERM, Clinical Investigation Centre, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, RHU Fight-HF, Nancy, France
| |
Collapse
|
9
|
Abdel-latif RG, Heeba GH, Taye A, Khalifa MMA. Lixisenatide, a novel GLP-1 analog, protects against cerebral ischemia/reperfusion injury in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:705-717. [DOI: 10.1007/s00210-018-1497-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 01/26/2023]
|
10
|
Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:929-938. [DOI: 10.1007/s00210-017-1396-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
|
11
|
Hofni A, Shehata Messiha BA, Mangoura SA. Fasudil ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats: a possible role of Rho kinase. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:801-811. [PMID: 28493050 DOI: 10.1007/s00210-017-1379-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
Abstract
Endothelial dysfunction is a major contributor to the pathogenesis of vascular disease in diabetes mellitus and RhoA/Rho-kinase (ROCK) system appears to play a crucial role in this setting. The present study was conducted to investigate the effect of the selective ROCK inhibitor, fasudil, on diabetes-related endothelial dysfunction and elucidated its underlying mechanism(s). Diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg), and fasudil (5 mg/kg per day) was orally administered for 8 weeks. Our results showed that fasudil administration attenuated the increased activity/expression of ROCK (627.5 ± 27 vs. 247.8 ± 19.1) and the NADPH oxidase subunits, NOX2 and p47phox, in diabetic rat aorta. Fasudil could reduce the elevated tumor necrosis factor (TNF)-α (70.2 ± 14.1 vs. 25.3 ± 5.2) and transforming growth factor (TGF-β) levels and restored the deficit in antioxidant level of the diabetic aorta. Additionally, fasudil markedly improved the endothelial dysfunction in the diabetic aorta (73.8 ± 8.1 vs. 47.42 ± 8.69) and corrected the dysregulated endothelial nitric oxide (eNOS) expression. In conclusion, the present study demonstrates that fasudil effectively ameliorates the endothelial dysfunction in STZ-induced diabetic rats through inhibition of the Rho/ROCK pathway and thereby reducing the TNF-α-mediated NADPH oxidase activation.
Collapse
Affiliation(s)
- Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Basim A Shehata Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Safwat A Mangoura
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| |
Collapse
|
12
|
Jaisser F, Farman N. Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev 2016; 68:49-75. [PMID: 26668301 DOI: 10.1124/pr.115.011106] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its ligand aldosterone are the principal modulators of hormone-regulated renal sodium reabsorption. In addition to the kidney, there are several other cells and organs expressing MR, in which its activation mediates pathologic changes, indicating potential therapeutic applications of pharmacological MR antagonism. Steroidal MR antagonists have been used for decades to fight hypertension and more recently heart failure. New therapeutic indications are now arising, and nonsteroidal MR antagonists are currently under development. This review is focused on nonclassic MR targets in cardiac, vascular, renal, metabolic, ocular, and cutaneous diseases. The MR, associated with other risk factors, is involved in organ fibrosis, inflammation, oxidative stress, and aging; for example, in the kidney and heart MR mediates hormonal tissue-specific ion channel regulation. Genetic and epigenetic modifications of MR expression/activity that have been documented in hypertension may also present significant risk factors in other diseases and be susceptible to MR antagonism. Excess mineralocorticoid signaling, mediated by aldosterone or glucocorticoids binding, now appears deleterious in the progression of pathologies that may lead to end-stage organ failure and could therefore benefit from the repositioning of pharmacological MR antagonists.
Collapse
Affiliation(s)
- F Jaisser
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| | - N Farman
- INSERM UMR 1138 Team 1, Cordeliers Research Center, Pierre et Marie Curie University, Paris, France (F.J., N.F); and University Paris-Est Creteil, Creteil, France (F.J.)
| |
Collapse
|
13
|
Gao J, Zhang K, Chen J, Wang MH, Wang J, Liu P, Huang H. Roles of aldosterone in vascular calcification: An update. Eur J Pharmacol 2016; 786:186-193. [PMID: 27238972 DOI: 10.1016/j.ejphar.2016.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Both clinical and experimental studies have demonstrated that vascular calcification (VC) is a common pathology shared in many chronic diseases such as chronic kidney disease (CKD) and diabetes. It's an independent risk factor for cardiovascular events. Since the pathogenesis of VC is complicated, current therapies have limited effects on the regression of VC. Therefore, it is urgent to investigate the potential mechanisms and find new targets for the treatment of VC. Aldosterone (Aldo), a mineralocorticoid hormone, is the metabolite of renin-angiotensin-aldosterone system (RAAS) activation, which can exert genomic and non-genomic effects on the cardiovascular system. Recent data suggests that Aldo can promote VC. Here, we summarized the roles of Aldo in the process of VC and a series of findings indicated that Aldo could act as a potentially therapeutic target for treating VC.
Collapse
Affiliation(s)
- Jingwei Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China; Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, China
| | - Mong-Heng Wang
- Department of Physiology, Georgia Regents University, Augusta, GA 30912, United States
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Pinming Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China
| | - Hui Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
14
|
|
15
|
Abstract
PURPOSE OF REVIEW It is well established that blocking the renin-angiotensin-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of the RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here, we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. RECENT FINDINGS TGFbeta1 suppresses the adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps, from 10 to 300% of normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10% hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. SUMMARY These results identify TGFbeta signalling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism, as well as assist in the development of novel therapeutic strategies for hypertension.
Collapse
|
16
|
Vascular mineralocorticoid receptor and blood pressure regulation. Curr Opin Pharmacol 2015; 21:138-44. [DOI: 10.1016/j.coph.2015.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/16/2023]
|
17
|
Ferreira NS, Cau SBA, Silva MAB, Manzato CP, Mestriner FLAC, Matsumoto T, Carneiro FS, Tostes RC. Diabetes impairs the vascular effects of aldosterone mediated by G protein-coupled estrogen receptor activation. Front Pharmacol 2015; 6:34. [PMID: 25784875 PMCID: PMC4345803 DOI: 10.3389/fphar.2015.00034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/10/2015] [Indexed: 01/12/2023] Open
Abstract
Aldosterone promotes non-genomic effects in endothelial and vascular smooth muscle cells via activation of mineralocorticoid receptors (MR) and G protein-coupled estrogen receptors (GPER). GPER activation is associated with beneficial/protective effects in the vasculature. Considering that vascular dysfunction plays a major role in diabetes-associated complications, we hypothesized that the beneficial effects mediated by vascular GPER activation, in response to aldosterone, are decreased in diabetes. Mesenteric resistance arteries from female, 14-16 weeks-old, control and diabetic (db/db) mice were used. Phenylephrine (PhE)-induced contractions were greater in arteries from db/db vs. control mice. Aldosterone (10 nM) increased maximal contractile responses to PhE in arteries from control mice, an effect elicited via activation of GPER. Although aldosterone did not increase PhE responses in arteries from db/db mice, blockade of GPER, and MR decreased PhE-induced contractile responses in db/db mesenteric arteries. Aldosterone also reduced the potency of acetylcholine (ACh)-induced relaxation in arteries from both control and db/db mice via MR-dependent mechanisms. GPER antagonism further decreased ACh-induced relaxation in the control group, but did not affect ACh responses in the diabetic group. Aldosterone increased extracellular signal-regulated kinase 1/2 phosphorylation in arteries from control and db/db mice by a GPER-dependent mechanism. GPER, but not MR, gene, and protein expression, determined by RT-PCR and immunoblotting/immunofluorescence assays, respectively, were increased in arteries from db/db mice vs. control arteries. These findings indicate that aldosterone activates both vascular MR and GPER and that the beneficial effects of GPER activation are decreased in arteries from diabetic animals. Our results further elucidate the mechanisms by which aldosterone influences vascular function and contributes to vascular dysfunction in diabetes. Financial Support: FAPESP, CNPq, and CAPES, Brazil.
Collapse
Affiliation(s)
- Nathanne S Ferreira
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo São Paulo Brazil
| | - Stêfany B A Cau
- Department of Pharmacology, Biological Sciences Institute, Federal University of Minas Gerais Belo Horizonte, Brazil
| | - Marcondes A B Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo São Paulo Brazil
| | - Carla P Manzato
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo São Paulo Brazil
| | - Fabíola L A C Mestriner
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo São Paulo Brazil
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University Tokyo, Japan
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo São Paulo Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo São Paulo Brazil
| |
Collapse
|
18
|
Moss ME, Jaffe IZ. Mineralocorticoid Receptors in the Pathophysiology of Vascular Inflammation and Atherosclerosis. Front Endocrinol (Lausanne) 2015; 6:153. [PMID: 26441842 PMCID: PMC4585008 DOI: 10.3389/fendo.2015.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature that causes significant morbidity and mortality from myocardial infarction, stroke, and peripheral vascular disease. Landmark clinical trials revealed that mineralocorticoid receptor (MR) antagonists improve outcomes in cardiovascular patients. Conversely, enhanced MR activation by the hormone aldosterone is associated with increased risk of MI, stroke, and cardiovascular death. This review summarizes recent advances in our understanding of the role of aldosterone and the MR in the pathogenesis of vascular inflammation and atherosclerosis as it proceeds from risk factor-induced endothelial dysfunction and inflammation to plaque formation, progression, and ultimately rupture with thrombosis, the cause of acute ischemia. The role of the MR in converting cardiac risk factors into endothelial dysfunction, in enhancing leukocyte adhesion and infiltration into the vasculature, in promoting systemic inflammation and vascular oxidative stress, and in plaque destabilization and thrombosis are discussed. A greater understanding of the mechanisms by which the MR promotes atherosclerosis has substantial potential to identify novel treatment targets to improve cardiovascular health and decrease mortality.
Collapse
Affiliation(s)
- Mary E. Moss
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Iris Z. Jaffe
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- *Correspondence: Iris Z. Jaffe, Tufts Medical Center, Molecular Cardiology Research Institute, 800 Washington Street, Box 80, Boston, MA 02111, USA,
| |
Collapse
|