1
|
Lin F, Zhou R, Ou Q, Tu K, Fang Y, Zhang C. Oxidative Balance Score Calculated Using Different Methods and Its Associations with Colorectal Cancer Risk. Nutrients 2025; 17:679. [PMID: 40005007 DOI: 10.3390/nu17040679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The oxidative balance score (OBS) measures oxidative stress from diet and lifestyle, but research linking it to colorectal cancer (CRC) risk is scarce and varies in calculation methods. METHODS We conducted a case-control study in Guangzhou, China, involving 2799 CRC cases and an equal number of sex- and age-matched controls. We adopted and compared four different methods for calculating the OBSs. The odds ratio (OR) and 95% confidence interval (95%CI) for the relationship between OBS and CRC risk were determined using an unconditional logistic regression model. Restricted cubic splines were used to explore potential non-linear relationships. Additionally, stratified analyses were performed by sex, and subgroup analyses were performed based on the tumor site. RESULTS Among the four OBSs assessed, OBS-1 demonstrated superior performance. Higher adherence to four OBSs was associated with a lower risk of CRC. The adjusted ORs (95%CIs) for the highest quartile compared to the lowest quartile were as follows: 0.42 (0.35, 0.50) for OBS-1, 0.43 (0.36, 0.51) for OBS-2, 0.50 (0.42, 0.59) for OBS-3, and 0.43 (0.36, 0.51) for OBS-4. Linear relationships were observed between four OBSs and CRC risk (all p-Nonlinear > 0.05). Stratified analysis by sex revealed that all four OBSs were negatively associated with CRC risk in both male and female patients. Subgroup analysis by cancer site indicated that four OBSs were negatively associated with the risk of both colon and rectal cancer. CONCLUSIONS All four OBSs were negatively associated with CRC risk, with OBS-1 showing the strongest association in our analysis.
Collapse
Affiliation(s)
- Fangting Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruolin Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kexin Tu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Caixia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Wu S, Chen Y, Chen Z, Wei F, Zhou Q, Li P, Gu Q. Reactive oxygen species and gastric carcinogenesis: The complex interaction between Helicobacter pylori and host. Helicobacter 2023; 28:e13024. [PMID: 37798959 DOI: 10.1111/hel.13024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Helicobacter pylori (H. pylori) is a highly successful human pathogen that colonizes stomach in around 50% of the global population. The colonization of bacterium induces an inflammatory response and a substantial rise in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), mostly derived from host neutrophils and gastric epithelial cells, which play a crucial role in combating bacterial infections. However, H. pylori has developed various strategies to quench the deleterious effects of ROS, including the production of antioxidant enzymes, antioxidant proteins as well as blocking the generation of oxidants. The host's inability to eliminate H. pylori infection results in persistent ROS production. Notably, excessive ROS can disrupt the intracellular signal transduction and biological processes of the host, incurring chronic inflammation and cellular damage, such as DNA damage, lipid peroxidation, and protein oxidation. Markedly, the sustained inflammatory response and oxidative stress during H. pylori infection are major risk factor for gastric carcinogenesis. In this context, we summarize the literature on H. pylori infection-induced ROS production, the strategies used by H. pylori to counteract the host response, and subsequent host damage and gastric carcinogenesis.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
3
|
Miladinov M, Rosic J, Eric K, Guzonjic A, Jelenkovic J, Bogavac-Stanojevic N, Dimitrijevic I, Kotur-Stevuljevic J, Barisic G. Analysis of the Prognostic Potential of Schlafen 11, Programmed Death Ligand 1, and Redox Status in Colorectal Cancer Patients. Int J Mol Sci 2023; 24:15083. [PMID: 37894765 PMCID: PMC10606719 DOI: 10.3390/ijms242015083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The Schlafen 11 (SLFN11) protein has recently emerged as pivotal in DNA damage conditions, with predictive potential for tumor response to cytotoxic chemotherapies. Recent discoveries also showed that the programmed death ligand 1 (PD-L1) protein can be found on malignant cells, providing an immune evasion mechanism exploited by different tumors. Additionally, excessive generation of free radicals, redox imbalance, and consequential DNA damage can affect intestinal cell homeostasis and lead to neoplastic transformation. Therefore, our study aimed to investigate the significance of SLFN11 and PD-L1 proteins and redox status parameters as prognostic biomarkers in CRC patients. This study included a total of 155 CRC patients. SLFN11 and PD-L1 serum levels were measured with ELISA and evaluated based on redox status parameters, sociodemographic and clinical characteristics, and survival. The following redox status parameters were investigated: spectrophotometrically measured superoxide dismutase (SOD), sulfhydryl (SH) groups, advanced oxidation protein products (AOPP), malondialdehyde (MDA), pro-oxidant-antioxidant balance (PAB), and superoxide anion (O2•-). The prooxidative score, antioxidative score, and OXY-SCORE were also calculated. The results showed significantly shorter survival in patients with higher OXY-SCOREs and higher levels of serum SLFN11, while only histopathology-analysis-related factors showed significant prognostic value. OXY-SCORE and SLFN11 levels may harbor prognostic potential in CRC patients.
Collapse
Affiliation(s)
- Marko Miladinov
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Jovana Rosic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Katarina Eric
- Department of Pathology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Azra Guzonjic
- Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelenko Jelenkovic
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | | | - Ivan Dimitrijevic
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Goran Barisic
- Clinic for Digestive Surgery-First Surgical Clinic, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Wei JD, Xu X. Oxidative stress in Wernicke's encephalopathy. Front Aging Neurosci 2023; 15:1150878. [PMID: 37261263 PMCID: PMC10229051 DOI: 10.3389/fnagi.2023.1150878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Wernicke's encephalopathy (WE) is a severe life-threatening disease that occurs due to vitamin B1 (thiamine) deficiency (TD). It is characterized by acute mental disorder, ataxia, and ophthalmoplegia. TD occurs because of the following reasons: insufficient intake, increased demand, and long-term drinking due to corresponding organ damage or failure. Recent studies showed that oxidative stress (OS) can damage organs and cause TD in the brain, which further leads to neurodegenerative diseases, such as WE. In this review, we discuss the effects of TD caused by OS on multiple organ systems, including the liver, intestines, and brain in WE. We believe that strengthening the human antioxidant system and reducing TD can effectively treat WE.
Collapse
Affiliation(s)
- Jun-Dong Wei
- Department of Basic Medical Science, Medical College, Taizhou University, Taizhou, China
| | - Xueming Xu
- Department of Psychiatry, Taizhou Second People's Hospital, Taizhou, China
| |
Collapse
|
5
|
Biomarkers of oxidative stress and reproductive complications. Adv Clin Chem 2023; 113:157-233. [PMID: 36858646 DOI: 10.1016/bs.acc.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Oxidative stress is the result of an imbalance between the formation of reactive oxygen species (ROS) and the levels of enzymatic and non-enzymatic antioxidants. The assessment of biological redox status is performed by the use of oxidative stress biomarkers. An oxidative stress biomarker is defined as any physical structure or process or chemical compound that can be assessed in a living being (in vivo) or in solid or fluid parts thereof (in vitro), the determination of which is a reproducible and reliable indicator of oxidative stress. The use of oxidative stress biomarkers allows early identification of the risk of developing diseases associated with this process and also opens up possibilities for new treatments. At the end of the last century, interest in oxidative stress biomarkers began to grow, due to evidence of the association between the generation of free radicals and various pathologies. Up to now, a significant number of studies have been carried out to identify and apply different oxidative stress biomarkers in clinical practice. Among the most important oxidative stress biomarkers, it can be mentioned the products of oxidative modifications of lipids, proteins, nucleic acids, and uric acid as well as the measurement of the total antioxidant capacity of fluids in the human body. In this review, we aim to present recent advances and current knowledge on the main biomarkers of oxidative stress, including the discovery of new biomarkers, with emphasis on the various reproductive complications associated with variations in oxidative stress levels.
Collapse
|
6
|
Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
|
7
|
Janion K, Strzelczyk JK, Walkiewicz KW, Biernacki K, Copija A, Szczepańska E, Nowakowska-Zajdel E. Evaluation of Malondialdehyde Level, Total Oxidant/Antioxidant Status and Oxidative Stress Index in Colorectal Cancer Patients. Metabolites 2022; 12:1118. [PMID: 36422258 PMCID: PMC9695970 DOI: 10.3390/metabo12111118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2022] [Revised: 10/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress may play an important role in colorectal cancer (CRC). The present study included 94 adult patients with CRC (52 men and 42 women) and 26 hospitalized patients (12 men and 14 women) in whom CRC was excluded (control group). During hospitalization, blood serum samples were collected from both groups. Apart from that, anthropometric measurements were taken and other clinical data were analyzed. Serum malondialdehyde (MDA) level, total oxidant status (TOS), total antioxidant status (TAS) and oxidative stress index (OSI) were assayed. Subsequently, the relationship between the analyzed oxidative stress markers and selected clinical characteristics was investigated in both groups. The evaluation of oxidative stress marker values demonstrated that MDA and TAS levels were significantly higher in the control group than the CRC group (p < 0.001 and p = 0.019, respectively), while TOS levels were significantly higher in the CRC group than the control group (p = 0.005). Significantly lower OSI levels were found in the control group than in the CRC group (p < 0.001). Similar results can be observed when performing ROC analysis (receiver operating characteristic curve). Preliminary statistical analysis demonstrated that MDA levels in the study group depend on the location of the primary tumour (p = 0.035). Based on the post hoc Tukey test, a relationship was demonstrated between the MDA level and the left and right side of the colon (p = 0.040). The results may be evidence for a higher level of oxidative stress, including a compromised antioxidative defence system, in patients with CRC.
Collapse
Affiliation(s)
- Karolina Janion
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | | | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Angelika Copija
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital in Bytom, 41-902 Bytom, Poland
| | - Elżbieta Szczepańska
- Department of Human Nutrition, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital in Bytom, 41-902 Bytom, Poland
| |
Collapse
|
8
|
Borkowska A, Olszewska A, Skarzynska W, Marciniak M, Skrzeszewski M, Kieda C, Was H. High Hemin Concentration Induces Escape from Senescence of Normoxic and Hypoxic Colon Cancer Cells. Cancers (Basel) 2022; 14:cancers14194793. [PMID: 36230727 PMCID: PMC9564005 DOI: 10.3390/cancers14194793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary High red-meat consumption as well as bleeding or bruising can promote oxidative stress and, in consequence, cancer development. However, the mechanism of that phenomenon is not understood. The induction of therapy-induced senescence (TIS) might also be induced by oxidative stress. Recently, TIS cells, despite their inhibited proliferation potential, have been identified as one of the sources of tumor re-growth. Here, with the use of molecular analyses, we found that oxidative stress, promoted by high doses of hemin or H2O2, can trigger TIS escape and cell re-population. It is closely related to the activity of antioxidative enzymes, especially heme oxygenase-1. Hypoxia might accelerate these effects. Therefore, we propose that the prevention of excessive oxidative stress could be a potential target in senolytic therapies. Abstract Hemoglobin from either red meat or bowel bleeding may promote oxidative stress and increase the risk of colorectal cancer (CRC). Additionally, solid cancers or their metastases may be present with localized bruising. Escape from therapy-induced senescence (TIS) might be one of the mechanisms of tumor re-growth. Therefore, we sought to study whether hemin can cause escape from TIS in CRC. To induce senescence, human colon cancer cells were exposed to a chemotherapeutic agent irinotecan (IRINO). Cells treated with IRINO exhibited common hallmarks of TIS. To mimic bleeding, colon cancer cells were additionally treated with hemin. High hemin concentration activated heme oxygenase-1 (HO-1), induced escape from TIS and epithelial-to-mesenchymal transition, and augmented progeny production. The effect was even stronger in hypoxic conditions. Similar results were obtained when TIS cells were treated with another prooxidant agent, H2O2. Silencing of antioxidative enzymes such as catalase (CAT) or glutathione peroxidase-1 (GPx-1) maintained colon cancer cells in a senescent state. Our study demonstrates that a high hemin concentration combined with an increased activity of antioxidative enzymes, especially HO-1, leads to escape from the senescence of colon cancer cells. Therefore, our observations could be used in targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091 Warsaw, Poland
| | - Aleksandra Olszewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091 Warsaw, Poland
| | - Weronika Skarzynska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
| | - Marta Marciniak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
| | - Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Centre for Molecular Biophysics, UPR CNRS 4301, CEDEX 2, 45071 Orléans, France
| | - Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Szaserow 128 Street, 04-141 Warsaw, Poland
- Correspondence:
| |
Collapse
|
9
|
β-carotene improves fecal dysbiosis and intestinal dysfunctions in a mouse model of vitamin A deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159122. [PMID: 35158041 PMCID: PMC9940628 DOI: 10.1016/j.bbalip.2022.159122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 02/03/2023]
Abstract
Vitamin A deficiency (VAD) results in intestinal inflammation, increased redox stress and reactive oxygen species (ROS) levels, imbalanced inflammatory and immunomodulatory cytokines, compromised barrier function, and perturbations of the gut microbiome. To combat VAD dietary interventions with β-carotene, the most abundant precursor of vitamin A, are recommended. However, the impact of β-carotene on intestinal health during VAD has not been fully clarified, especially regarding the VAD-associated intestinal dysbiosis. Here we addressed this question by using Lrat-/-Rbp-/- (vitamin A deficient) mice deprived of dietary preformed vitamin A and supplemented with β-carotene as the sole source of the vitamin, alongside with WT (vitamin A sufficient) mice. We found that dietary β-carotene impacted intestinal vitamin A status, barrier integrity and inflammation in both WT and Lrat-/-Rbp-/- (vitamin A deficient) mice on the vitamin A-free diet. However, it did so to a greater extent under overt VAD. Dietary β-carotene also modified the taxonomic profile of the fecal microbiome, but only under VAD. Given the similarity of the VAD-associated intestinal phenotypes with those of several other disorders of the gut, collectively known as Inflammatory Bowel Disease (IBD) Syndrome, these findings are broadly relevant to the effort of developing diet-based intervention strategies to ameliorate intestinal pathological conditions.
Collapse
|
10
|
Burwaiss A, Ammar M, Alghazeer R, Eljamil A, Alarbie D, Elghmasi S, Al-Griw M, Alansari WS, Shamlan G, Eskandrani AA. Tissue levels of oxidative stress markers and antioxidants in colorectal cancer patients. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The role of reactive oxygen species in the development of cancer has become well recognized in recent years; however, evidence for a link between oxidative stress and cancer risk has not been fully explored. One of the major cancers whose number of cases has increased significantly in recent years is colon and rectal cancer, which has the second highest mortality rate in Libya. Forty subjects were divided into three groups (20 tumors from colorectal cancer patients, adjacent surrounding tumor tissues, and 20 adjacent normal tissues). Evaluation of oxidative stress indices in the samples was performed by analyzing enzymatic and non-enzymatic parameters including the activity of glutathione peroxidase and catalase as antioxidant enzymes, reduced glutathione as an antioxidant, malondialdehyde MDA levels as an oxidative damage product, nitritc oxide content NO as an inflammatory marker, and total thiols as a measure of redox status. MDA and NO levels were significantly higher in tumor tissues than in adjacent healthy tissue. Also, the surrounding tumor tissue exhibited higher MDA and NO levels compared with control tissues. The oxidant and antioxidant levels in the tumor was significantly lower than those in the surrounding tumor tissue and control healthy tissue. The results suggest that oxidant and antioxidant parameters can be used as indicators of an imbalance in humans, and as this imbalance increases, the human body may be vulnerable to developing cancer.
Collapse
Affiliation(s)
- Abdullah Burwaiss
- Gastroenterology and Hepatology Department at Tripoli University Hospital (TUH), Tripoli, Libya
- Medicine Department, Faculty of Human Medicine, University of Tripoli, Tripoli, Libya
| | - Manal Ammar
- Chemistry Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Rabia Alghazeer
- Chemistry Department, Faculty of Science, University of Tripoli, Tripoli, Libya
| | - Ashour Eljamil
- Biochemistry Department, Faculty of Human Medicine, University of Tripoli, Tripoli, Libya
| | - Dalal Alarbie
- Gastroenterology and Hepatology Department at Tripoli University Hospital (TUH), Tripoli, Libya
| | - Sana Elghmasi
- Biochemistry Department, Faculty of Human Medicine, University of Tripoli, Tripoli, Libya
| | - Mohamed Al-Griw
- Histology & Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
11
|
Wang T, Wang P, Ge W, Shi C, Xiao G, Wang X, Lü X. Protective effect of a multi-strain probiotics mixture on azoxymethane/dextran sulfate sodium-induced colon carcinogenesis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
12
|
The dysbiosis signature of Fusobacterium nucleatum in colorectal cancer-cause or consequences? A systematic review. Cancer Cell Int 2021; 21:194. [PMID: 33823861 PMCID: PMC8025348 DOI: 10.1186/s12935-021-01886-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer globally and the fourth attributable cause of mortality and morbidity due to cancer. An emerging factor contributing to CRC is the gut microbiota and the cellular changes associated with it. Further insights on this may help in the prevention, diagnosis and new therapeutic approaches to colorectal cancer. In most cases of CRC, genetic factors appear to contribute less to its aetiology than environmental and epigenetic factors; therefore, it may be important to investigate these environmental factors, their effects, and the mechanisms that may contribute to this cancer. The gut microbiota has recently been highlighted as a potential risk factor that may affect the structural components of the tumor microenvironment, as well as free radical and enzymatic metabolites directly, or indirectly. Many studies have reported changes in the gut microbiota of patients with colorectal cancer. What is controversial is whether the cancer is the cause or consequence of the change in the microbiota. There is strong evidence supporting both possibilities. The presence of Fusobacterium nucleatum in human colorectal specimens has been demonstrated by RNA-sequencing. F. nucleatum has been shown to express high levels of virulence factors such as FadA, Fap2 and MORN2 proteins. Our review of the published data suggest that F. nucleatum may be a prognostic biomarker of CRC risk, and hence raises the potential of antibiotic treatment of F. nucleatum for the prevention of CRC.
Collapse
|
13
|
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104248] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
|
14
|
Simultaneous LC-MS/MS-Based Quantification of Free 3-Nitro-l-tyrosine, 3-Chloro-l-tyrosine, and 3-Bromo-l-tyrosine in Plasma of Colorectal Cancer Patients during Early Postoperative Period. Molecules 2020; 25:molecules25215158. [PMID: 33167555 PMCID: PMC7663926 DOI: 10.3390/molecules25215158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Quantification with satisfactory specificity and sensitivity of free 3-Nitro-l-tyrosine (3-NT), 3-Chloro-l-tyrosine (3-CT), and 3-Bromo-l-tyrosine (3-BT) in biological samples as potential inflammation, oxidative stress, and cancer biomarkers is analytically challenging. We aimed at developing a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for their simultaneous analysis without an extract purification step by solid-phase extraction. Validation of the developed method yielded the following limits of detection (LOD) and quantification (LOQ) for 3-NT, 3-BT, and 3-CT: 0.030, 0.026, 0.030 ng/mL (LODs) and 0.100, 0.096, 0.098 ng/mL (LOQs). Coefficients of variation for all metabolites and tested concentrations were <10% and accuracy was within 95-105%. Method applicability was tested on colorectal cancer patients during the perioperative period. All metabolites were significantly higher in cancer patients than healthy controls. The 3-NT was significantly lower in advanced cancer and 3-BT showed a similar tendency. Dynamics of 3-BT in the early postoperative period were affected by type of surgery and presence of surgical site infections. In conclusion, a sensitive and specific LC-MS/MS method for simultaneous quantification of free 3-NT, 3-BT, and 3-CT in human plasma has been developed.
Collapse
|
15
|
Rytsyk O, Soroka Y, Shepet I, Vivchar Z, Andriichuk I, Lykhatskyi P, Fira L, Nebesna Z, Kramar S, Lisnychuk N. Experimental Evaluation of the Effectiveness of Resveratrol as an Antioxidant in Colon Cancer Prevention. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20932742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023] Open
Abstract
According to the WHO, cancer is the second leading cause of death globally and the third most common cancer is colorectal. A significant etiological factor for carcinogenesis might be oxidative stress. Chemoprevention by consuming natural antioxidants has great perspectives in the struggle to control cancer because it is available and affordable for the wide population. Studies by diverse research groups discovered that grapes, as well as grape-based products, are exceptional sources of the polyphenolic compound resveratrol, which has powerful antioxidant properties. Despite the great number of publications on the anticancer effectiveness of resveratrol, they were all aimed at studying its action once the condition was established. This experiment was the first to study the dynamics of the anticancer activity of resveratrol in the development of chemically induced colorectal cancer. Administrating resveratrol along with 1,2-dimethylhydrazine (DMH) during 30 weeks led to the inhibition of oxidative stress manifestations, in particular, lipid peroxidation. Our research showed that the level of thiobarbituric acid reactive substances in blood serum was 85.1%, 214.6%, and 276.9% lower on the third, fifth, and seventh months of the experiment in the group of rats that obtained resveratrol, compared with the animals affected only by DMH. In the fifth month of the experiment, we noticed that the GPx activity in blood serum was 1.54 times higher than the DMH-control level. During the next 8 weeks, this indicator decreased. The activity of glutathione reductase increased by 2 times in the seventh month, compared with the DMH-control. Histologically resveratrol decelerated the development of the tumor. After 30 weeks of experiment, rats that were receiving only DMH had developed colon adenocarcinoma in situ. In contrast to them, morphological changes in the colon tissue of the animals that obtained resveratrol + DMH could be characterized as signs of mucous colitis.
Collapse
Affiliation(s)
- Olha Rytsyk
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Yurii Soroka
- Department of Anaesthesiology and Intensive-Care Medicine, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Iryna Shepet
- Central Research Lab, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Zoriana Vivchar
- University Clinic, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Iryna Andriichuk
- Central Research Lab, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Petro Lykhatskyi
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Liudmyla Fira
- Department of Pharmacy, Institute of Postgraduate Education, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Zoia Nebesna
- Department of Histology and Embryology, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Solomiia Kramar
- Department of Histology and Embryology, I. Horbachevsky Ternopil National Medical University, Ukraine
| | - Nataliya Lisnychuk
- Central Research Lab, I. Horbachevsky Ternopil National Medical University, Ukraine
| |
Collapse
|
16
|
Metaproteomics characterizes human gut microbiome function in colorectal cancer. NPJ Biofilms Microbiomes 2020; 6:14. [PMID: 32210237 PMCID: PMC7093434 DOI: 10.1038/s41522-020-0123-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2019] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Pathogenesis of colorectal cancer (CRC) is associated with alterations in gut microbiome. Previous studies have focused on the changes of taxonomic abundances by metagenomics. Variations of the function of intestinal bacteria in CRC patients compared to healthy crowds remain largely unknown. Here we collected fecal samples from CRC patients and healthy volunteers and characterized their microbiome using quantitative metaproteomic method. We have identified and quantified 91,902 peptides, 30,062 gut microbial protein groups, and 195 genera of microbes. Among the proteins, 341 were found significantly different in abundance between the CRC patients and the healthy volunteers. Microbial proteins related to iron intake/transport; oxidative stress; and DNA replication, recombination, and repair were significantly alternated in abundance as a result of high local concentration of iron and high oxidative stress in the large intestine of CRC patients. Our study shows that metaproteomics can provide functional information on intestinal microflora that is of great value for pathogenesis research, and can help guide clinical diagnosis in the future.
Collapse
|
17
|
Zhang Z, Cao H, Song N, Zhang L, Cao Y, Tai J. Long-term hexavalent chromium exposure facilitates colorectal cancer in mice associated with changes in gut microbiota composition. Food Chem Toxicol 2020; 138:111237. [PMID: 32145354 DOI: 10.1016/j.fct.2020.111237] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide. Hexavalent chromium [Cr(VI)] is often present in groundwater. Chronic Cr(VI) exposure is suggested to be one of the main factors inducing cancer. However, the correlation between Cr(VI) and CRC remains unclear. In this study, we investigated the role of Cr(VI) in CRC by establishing a mouse CRC model induced by 1, 2-dimethylhydrazine (DMH). The results showed that Cr(VI) increased weight loss in DMH-induced mice and promoted the formation of tumors. Cr(VI) also increased DMH-induced proliferating cell nuclear antigen (PCNA) levels. Investigation of the underlying mechanisms found that Cr(VI) significantly decreased DMH-induced SOD, GSH and CAT levels, while, the MDA level increased. Metagenomic analyses found that the abundance of Firmicutes and Bacteroidetes in the DMH + Cr group was down-regulated. Interestingly, the combination of Cr(VI) and DMH significantly increased the abundance of Verrucomicrobia. At the family and genus levels, families Akkermansiaceae and Saccharimonadaceae and genus Akkermansia were more abundant in the DMH + Cr group, whereas the abundance of short-chain fatty acid (SCFA)-producing bacteria (family Muribaculaceae, family Lachnosipiraceae, genus Lachnospiraceae_NK4A136_group, and genus Roseburia) decreased. These results indicate that Cr(VI) might aggravate CRC by altering the composition of the gut microflora.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Hongyang Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Ning Song
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Lixiao Zhang
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, People's Republic of China.
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
18
|
Wang ST, Cui WQ, Pan D, Jiang M, Chang B, Sang LX. Tea polyphenols and their chemopreventive and therapeutic effects on colorectal cancer. World J Gastroenterol 2020; 26:562-597. [PMID: 32103869 PMCID: PMC7029350 DOI: 10.3748/wjg.v26.i6.562] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), a multifactorial disease, is usually induced and developed through complex mechanisms, including impact of diet and lifestyle, genomic abnormalities, change of signaling pathways, inflammatory response, oxidation stress, dysbiosis, and so on. As natural polyphenolic phytochemicals that exist primarily in tea, tea polyphenols (TPs) have been shown to have many clinical applications, especially as anticancer agents. Most animal studies and epidemiological studies have demonstrated that TPs can prevent and treat CRC. TPs can inhibit the growth and metastasis of CRC by exerting the anti-inflammatory, anti-oxidative or pro-oxidative, and pro-apoptotic effects, which are achieved by modulations at multiple levels. Many experiments have demonstrated that TPs can modulate several signaling pathways in cancer cells, including the mitogen-activated protein kinase pathway, phosphatidylinositol-3 kinase/Akt pathway, Wnt/β-catenin pathway, and 67 kDa laminin receptor pathway, to inhibit proliferation and promote cell apoptosis. In addition, novel studies have also suggested that TPs can prevent the growth and metastasis of CRC by modulating the composition of gut microbiota to improve immune system and decrease inflammatory responses. Molecular pathological epidemiology, a novel multidisciplinary investigation, has made great progress on CRC, and the further molecular pathological epidemiology research should be developed in the field of TPs and CRC. This review summarizes the existing in vitro and in vivo animal and human studies and potential mechanisms to examine the effects of tea polyphenols on CRC.
Collapse
Affiliation(s)
- Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
19
|
Chemopreventive Effect of the Germinated Oat and its Phenolic-AVA Extract in Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) Model of Colon Carcinogenesis in Mice. Foods 2020; 9:foods9020169. [PMID: 32050698 PMCID: PMC7074527 DOI: 10.3390/foods9020169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The consumption of fruits, vegetables, nuts, legumes, and whole grains has been associated with a lower risk of colorectal cancer (CRC) due to the content of natural compounds with antioxidant and anticancer activities. The oat (Avena sativa L.) is a unique source of avenanthramides (AVAs), among other compounds, with chemopreventive effects. In addition, oat germination has shown enhanced nutraceutical and phytochemical properties. Therefore, our objective was to evaluate the chemopreventive effect of the sprouted oat (SO) and its phenolic-AVA extract (AVA) in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC mouse model. Turquesa oat seeds were germinated (five days at 25 °C and 60% relative humidity) and, after 16 weeks of administration, animals in the SO- and AVA-treated groups had a significantly lower inflammation grade and tumor (38–50%) and adenocarcinoma (38–63%) incidence compared to those of the AOM+DSS group (80%). Although both treatments normalized colonic GST and NQO1 activities as well as erythrocyte GSH levels, and significantly reduced cecal and colonic β-GA, thus indicating an improvement in the intestinal parameters, the inflammatory states, and the redox states of the animals, SO exerted a superior chemopreventive effect, probably due to the synergistic effects of multiple compounds. Our results indicate that oats retain their biological properties even after the germination process.
Collapse
|
20
|
Sadek K, Abouzed T, Nasr S, Shoukry M. Licochalcone B Ameliorates Liver Cancer via Targeting of Apoptotic Genes, DNA Repair Systems, and Cell Cycle Control. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:372-386. [PMID: 33841550 PMCID: PMC8019863 DOI: 10.22037/ijpr.2020.1101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a ubiquitous multifunctional protein required in the DNA base excision repair pathway and a noteworthy reducing-oxidizing factor that regulates the activity of various transcription factors. Cyclin-dependent kinases (CDKs) assume a key role in directing the progression of the cell- cycle. The present study evaluated the synergistic efficacy of using licochalcone B (LCB) and fullerene C60 (FnC60) nanoparticles against diethylnitrosamine (DEN)-induced hepatocarcinoma in rats and relevant signaling pathways, with APE1/Ref-1 and CDK-4, as novel anti-cancer- targeting. LCB alone and in combination with FnC60 significantly decreased DNA fragmentation, oxidative DNA damage (8-hydroxy-2'-deoxyguanosine levels), APE1/Ref-1, CDK-4, retinoblastoma, B- cell lymphoma-2 (Bcl-2), B-cell lymphoma-xL (Bcl-xL), and β-arrestin-2 mRNA expression, and APE1/Ref-1 and CDK-4 protein expression. In contrast, these treatments significantly increased the expression of protein 53 (p53), Bcl-2-associated X protein (Bax), and caspase-3. These data suggest that LCB either alone or in combination with FnC60 elicited significant protective effects against DEN-induced hepatocarcinogenesis, which may have occurred because of the regulation of enzymes involved in DNA repair and cell-cycle control at S phase progression as well as the induction of apoptosis at the gene and protein expression levels. Furthermore, FnC60 potentiated the effect of LCB at the molecular level, possibly through targeting of cancerous cells.
Collapse
Affiliation(s)
- Kadry Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, Egypt.
| | - Tarek Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Egypt.
| | - Sherif Nasr
- Department of Molecular Biology and Genetic Engineering, Faculty of Veterinary Medicine, Damanhur University, Egypt.
| | - Moustafa Shoukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafr El-Sheikh University, Egypt.
| |
Collapse
|
21
|
Guo Y, Ayers JL, Carter KT, Wang T, Maden SK, Edmond D, Newcomb P P, Li C, Ulrich C, Yu M, Grady WM. Senescence-associated tissue microenvironment promotes colon cancer formation through the secretory factor GDF15. Aging Cell 2019; 18:e13013. [PMID: 31389184 PMCID: PMC6826139 DOI: 10.1111/acel.13013] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2018] [Revised: 06/04/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
The risk of colorectal cancer (CRC) varies between people, and the cellular mechanisms mediating the differences in risk are largely unknown. Senescence has been implicated as a causative cellular mechanism for many diseases, including cancer, and may affect the risk for CRC. Senescent fibroblasts that accumulate in tissues secondary to aging and oxidative stress have been shown to promote cancer formation via a senescence-associated secretory phenotype (SASP). In this study, we assessed the role of senescence and the SASP in CRC formation. Using primary human colon tissue, we found an accumulation of senescent fibroblasts in normal tissues from individuals with advanced adenomas or carcinomas in comparison with individuals with no polyps or CRC. In in vitro and ex vivo model systems, we induced senescence using oxidative stress in colon fibroblasts and demonstrated that the senescent fibroblasts secrete GDF15 as an essential SASP factor that promotes cell proliferation, migration, and invasion in colon adenoma and CRC cell lines as well as primary colon organoids via the MAPK and PI3K signaling pathways. In addition, we observed increased mRNA expression of GDF15 in primary normal colon tissue from people at increased risk for CRC in comparison with average risk individuals. These findings implicate the importance of a senescence-associated tissue microenvironment and the secretory factor GDF15 in promoting CRC formation.
Collapse
Affiliation(s)
- Yuna Guo
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Jessica L. Ayers
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Kelly T. Carter
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Ting Wang
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Sean K. Maden
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | | | - Polly Newcomb P
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Christopher Li
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - Cornelia Ulrich
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashington
- Department of Population Health SciencesHuntsman Cancer InstituteSalt Lake CityUtah
| | - Ming Yu
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
| | - William M. Grady
- Clinical Research DivisionFred Hutchinson Cancer Research CenterSeattleWashington
- Department of Internal MedicineUniversity of Washington School of MedicineSeattleWashington
| |
Collapse
|
22
|
Abstract
Cancer is the second leading cause of noncommunicable disease deaths in the world. In 2018, there were over 18 million new cancer cases and approximately 10 million people died from the disease globally. In 2019, almost two million new cases of cancer will be diagnosed in USA and over 600,000 people are expected to die from the disease. The incidence of cancer is expected to rise because of lifestyle changes and a rapidly aging population. Evidence suggests that early detection is critical to reducing cancer morbidity and mortality. In this paper, the development of an integrated smart wearable and biomarker detection system is proposed to help reduce cancer morbidity and mortality. The potential benefits and limitations of the system are discussed. Cancer is one of the leading causes of death in the world. Evidence suggests that its incidence will continue to rise in the future because of lifestyle changes and a rapidly aging population. There is currently no cure for the disease and the best way to reduce its incidence and morbidity is to detect it early. In this paper, an integrated smart wearable and biomarker detection system to help in the early detection, prognosis, diagnosis and treatment of cancer is proposed.
Collapse
|
23
|
Zińczuk J, Maciejczyk M, Zaręba K, Romaniuk W, Markowski A, Kędra B, Zalewska A, Pryczynicz A, Matowicka-Karna J, Guzińska-Ustymowicz K. Antioxidant Barrier, Redox Status, and Oxidative Damage to Biomolecules in Patients with Colorectal Cancer. Can Malondialdehyde and Catalase Be Markers of Colorectal Cancer Advancement? Biomolecules 2019; 9:biom9100637. [PMID: 31652642 PMCID: PMC6843197 DOI: 10.3390/biom9100637] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
This study is the first to assess the diagnostic utility of redox biomarkers in patients with colorectal cancer (CRC). Antioxidant barrier (Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), uric acid (UA), reduced glutathione (GSH)), redox status (total antioxidant (TAC)/oxidant status (TOS), ferric reducing ability (FRAP)), and oxidative damage products (advanced glycation end products (AGE), advanced oxidation protein products (AOPP), malondialdehyde (MDA)) were measured in serum/plasma samples of 50 CRC patients. The activity of SOD was significantly higher whereas the activity of CAT, GPx and GR was considerably lower in CRC patients compared to the control group (p < 0.0001). Levels of UA, TOS, and OSI and concentrations of AGE, AOPP, and MDA were significantly higher, and the levels of GSH, TAC, and FRAP were considerably lower in CRC patients compared to the healthy controls (p < 0.0001). AUC for CAT with respect to presence of lymph node metastasis was 0.7450 (p = 0.0036), whereas AUC for MDA according to the depth of tumour invasion was 0.7457 (p = 0.0118). CRC is associated with enzymatic/non-enzymatic redox imbalance as well as increased oxidative damage to proteins and lipids. Redox biomarkers can be potential diagnostic indicators of CRC advancement.
Collapse
Affiliation(s)
- Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland.
| | - Konrad Zaręba
- nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | - Wioletta Romaniuk
- Department of Haematology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland.
| | - Adam Markowski
- Department of Internal Medicine and Gastroenterology, Polish Red Cross Memorial Municipal Hospital, Sienkiewicza 79, 15-003 Bialystok, Poland.
| | - Bogusław Kędra
- nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland.
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland.
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland.
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland.
| | | |
Collapse
|
24
|
Moradi-Marjaneh R, Hassanian SM, Mehramiz M, Rezayi M, Ferns GA, Khazaei M, Avan A. Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways. J Cell Physiol 2018; 234:10072-10079. [PMID: 30515827 DOI: 10.1002/jcp.27881] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) are produced by mitochondria during metabolism. In physiological states, the production of ROS and their elimination by antioxidants are kept in balance. However, in pathological states, elevated levels of ROS interact with susceptible cellular target compounds including lipids, proteins, and DNA and deregulate oncogenic signaling pathways that are involved in colorectal cancer (CRC) carcinogenesis. Although antioxidant compounds have been successfully used in the treatment of CRC as prevention approaches, they have also been shown in some cases to promote disease progression. In this review, we focus on the role of ROS in gastrointestinal homeostasis, CRC progression, diagnosis, and therapy with particular emphasis on ROS-stimulated pathways.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran.,Department of Physiology and Neurogenic inflammation research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehraneh Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology and Neurogenic inflammation research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Anti-Inflammatory and Antioxidant Properties of the Extract, Tiliroside, and Patuletin 3-O- β-D-Glucopyranoside from Pfaffia townsendii (Amaranthaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6057579. [PMID: 30364020 PMCID: PMC6186378 DOI: 10.1155/2018/6057579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Brazilian ginseng, including Pfaffia townsendii, is used in popular medicine as a natural anti-inflammatory, tonic, analgesic, and antidiabetic agent. In this study, we investigated the chemical composition and evaluated the antioxidant and anti-inflammatory activities of the P. townsendii ethanolic extract as well as the major isolated glycoside flavonoids tiliroside and patuletin 3-O-β-D-glucopyranoside. Chromatographic techniques and spectroscopic analysis were used for the isolation and identification of the major compounds. The antioxidant potential was determined through DPPH and ORAC-FL assays. The total phenolic content was measured using Folin-Ciocalteu reagent. The anti-inflammatory activity was determined based on a model of paw edema and carrageenan- (Cg-) induced pleurisy. We identified three phenolic acids, one carboxylic acid and two flavonoids, patuletin 3-O-β-D-glucopyranoside, and tiliroside. The ethanol crude extracts, partitions and isolated flavonoids (4581 μmol of Trolox equivalents/g of extract in ORAC and a SC50 of approximately 31.9 μg/mL in the DPPH assay) demonstrated antioxidant activity, and the ethanolic extract as well as isolated flavonoids inhibited paw edema induced by Cg and leukocyte migration in the Cg-induced pleurisy model. The extract, tiliroside, and patuletin 3-O-β-D-glucopyranoside obtained from P. townsendii have therapeutic potential against oxidative stress-related and inflammatory disorders.
Collapse
|
26
|
Mangifesta M, Mancabelli L, Milani C, Gaiani F, de'Angelis N, de'Angelis GL, van Sinderen D, Ventura M, Turroni F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci Rep 2018; 8:13974. [PMID: 30228361 PMCID: PMC6143603 DOI: 10.1038/s41598-018-32413-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
The human intestine retains a complex microbial ecosystem, which performs crucial functions that impact on host health. Several studies have indicated that intestinal dysbiosis may impact on the establishment of life-threatening intestinal diseases such as colorectal cancer. An adenomatous polyp is the result of abnormal tissue growth, which is benign but is considered to be associated with a high risk of developing colorectal cancer, based on its grade of dysplasia. Development of diagnostic tools that are based on surveying the gut microbiota and are aimed at early detection of colorectal cancer represent highly desirable target. For this purpose, we performed a pilot study in which we applied a metataxonomic analysis based on 16S rRNA gene sequencing approach to unveil the composition of microbial communities of intestinal polyps. Moreover, we performed a meta-analysis involving the reconstructed microbiota composition of adenomatous polyps and publicly available metagenomics datasets of colorectal cancer. These analyses allowed the identification of microbial taxa such as Faecalibacterium, Bacteroides and Romboutsia, which appear to be depleted in cancerogenic mucosa as well as in adenomatous polyps, thus representing novel microbial biomarkers associated with early tumor formation. Furthermore, an absolute quantification of Fusubacterium nucleatum in polyps further compounded the important role of this microorganism as a valuable putative microbial biomarker for early diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Marta Mangifesta
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federica Gaiani
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, Parma, Italy
| | - Nicola de'Angelis
- Department of HPB Surgery and Liver Transplantation, Henri-Mondor Hospital, Université Paris Est-UPEC, Créteil, France
| | | | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
27
|
He HW, Wang NN, Yi XM, Tang CP, Wang D. Low-level serum miR-24-2 is associated with the progression of colorectal cancer. Cancer Biomark 2018; 21:261-267. [PMID: 29171985 DOI: 10.3233/cbm-170321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND colorectal cancer (CRC) is the second leading cause of cancer and cancer-related death in the world. Noninvasive biomarkers for early diagnosis of CRC are highly demanded. OBJECTIVE The up-regulation of specific microRNAs (miRNAs) in serum has been considered a promising biomarker of CRC and miR-24-2 may be a potential biomarker in the diagnosis the progression of CRC. METHODS Sixty-eighty healthy subjects and 228 CRC patients were divided into six groups: control group, CRC 0, CRC I, CRC II, CRC III, CRC IV and CRC V. Serum level of miR-24-2 was measured by real-time qPCR. Serum lipid profiles and oxidative-related molecules were also measured. RESULTS Serum levels of miR-24-2 in CRC patients were significantly higher than healthy subjects (p< 0.05). In addition, the expression level of the miR-24-2 was decreased with the progression of CRC and reached the lowest level in CRC V. Spearman Rank Correlation analysis showed that miR-24-2 level was negatively related to the levels of superoxide dismutase (SOD) and reduced glutathione (GSH), aspartate transaminase (AST), alanine transaminase (ALT), cholesterol and triglyceride (p< 0.05). CONCLUSIONS Serum miR-24-2 is a potential negative biomarker in the diagnosis of the progression of CRC patients and associated with biochemical indices.
Collapse
Affiliation(s)
- H W He
- Department of Urology, Jinling Hospital, Nanjing 210002, Jiangsu, China.,Department of Urology, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - N N Wang
- Department of Anesthesiology, Jinling Hospital, Nanjing 210002, Jiangsu, China.,Department of Urology, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - X M Yi
- Department of Urology, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - C P Tang
- Department of Urology, Jinling Hospital, Nanjing 210002, Jiangsu, China
| | - D Wang
- Department of Urology, Jinling Hospital, Nanjing 210002, Jiangsu, China
| |
Collapse
|
28
|
Ghareeb AE, Moawed FSM, Ghareeb DA, Kandil EI. Potential Prophylactic Effect of Berberine against Rat Colon Carcinoma Induce by 1,2-Dimethyl Hydrazine. Asian Pac J Cancer Prev 2018; 19:1685-1690. [PMID: 29938466 PMCID: PMC6103593 DOI: 10.22034/apjcp.2018.19.6.1685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2018] [Accepted: 05/24/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction: Colon Cancer remains one of the major worldwide causes of cancer related morbidity and mortality in both genders. Berberine (BBR), a major component of alkaloids that possess a variety of pharmacological properties. Objective: This study shows the ameliorating roles of berberine on 1,2 Di methyl hydrazine (DMH) induced colon cancer in male Swiss albino rats. Methods: The rats were segregated into four groups: group 1, control rats; group 2, rats were orally received berberine (75 mg/kg b.wt./day) daily for ten weeks; group 3,rats were subcutaneously injected with DMH (20 mg/kg b.wt) once a week for 8 weeks ,group 4, rats were treated firstly with berberine for two weeks before DMH intoxication and concurrently with DMH over 8 weeks. Result: DMH injection decreased the antioxidants levels (GSH and SOD) and increased inflammatory markers (MPO, MAPK and COX-2). Moreover, it downregulated apoptotic markers (Caspase-3 and P53) expression that confirmed by colon cell proliferation. The prophylactic effect of berberine was noticed as its pre-and co-administration increased antioxidants status and apoptotic markers expression that associated with inflammatory markers down-regulation with absence of proliferated colon cells. Conclusion: Therefore, the overall findings proved that the anti-proliferative effect of berberine return to its antioxidants and anti-inflammatory properties that activated the programmed cell death process.
Collapse
Affiliation(s)
- Ahmed E Ghareeb
- Biochemistry Department, Faculty of Science, Ain Shams University, Egypt
| | | | | | | |
Collapse
|
29
|
Trajano LADSN, Trajano ETL, Silva MADS, Stumbo AC, Mencalha AL, Fonseca ADSD. Genomic stability and telomere regulation in skeletal muscle tissue. Biomed Pharmacother 2018; 98:907-915. [DOI: 10.1016/j.biopha.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
|
30
|
Precancerous ACF induction affects their regional distribution forsaking oxidative stress implication in 1,2-dimethylhydrazine-induced colon carcinogenesis model. Inflammopharmacology 2017; 26:457-468. [DOI: 10.1007/s10787-017-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 01/28/2023]
|
31
|
Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int J Mol Sci 2017; 18:ijms18071352. [PMID: 28672811 PMCID: PMC5535845 DOI: 10.3390/ijms18071352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested the potential involvement of oxidative stress in gastrointestinal cancers. In light of this, research efforts have been focused on the potential of dietary antioxidant intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Rice bran, a by-product of rice milling, has been shown to contain an abundance of phytochemicals, which are dietary antioxidants. To date, a number of studies have shown the antioxidative effect of rice bran intake, and some demonstrated that such an effect may contribute to gastrointestinal cancer prevention, largely through the antioxidative properties of rice bran phytochemicals. In addition, these phytochemicals were shown to provide protection against cancer through mechanisms linked to oxidative stress, including β-catenin-mediated cell proliferation and inflammation. The present article provides an overview of current evidence for the antioxidative properties of rice bran and its phytochemicals, and for the potential of such properties in cancer prevention through the oxidative-stress-linked mechanisms mentioned above. The article also highlights the need for an evaluation of the effectiveness of rice bran dietary interventions among cancer survivors in ameliorating oxidative stress and reducing the level of gastrointestinal cancer biomarkers, thereby establishing the potential of such interventions among these individuals in the prevention of cancer recurrence.
Collapse
|