1
|
Castillo-González J, Buscemi L, Vargas-Rodríguez P, Serrano-Martínez I, Forte-Lago I, Caro M, Price M, Hernández-Cortés P, Hirt L, González-Rey E. Cortistatin exerts an immunomodulatory and neuroprotective role in a preclinical model of ischemic stroke. Pharmacol Res 2024; 210:107501. [PMID: 39521024 DOI: 10.1016/j.phrs.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is the result of a permanent or transient occlusion of a brain artery, leading to irreversible tissue injury and long-term sequelae. Despite ongoing advancements in revascularization techniques, stroke remains the second leading cause of death worldwide. A comprehensive understanding of the complex and interconnected mechanisms, along with the endogenous mediators that modulate stroke responses is essential for the development of effective interventions. Our study investigates cortistatin, a neuropeptide extensively distributed in the immune and central nervous systems, known for its immunomodulatory properties. With neuroinflammation and peripheral immune deregulation as key pathological features of brain ischemia, cortistatin emerges as a promising therapeutic candidate. To this aim, we evaluated its potential effect in a well-established middle cerebral artery occlusion (MCAO) preclinical stroke model. Our findings indicated that the peripheral administration of cortistatin at 24 h post-stroke significantly reduced neurological damage and enhanced recovery. Importantly, cortistatin-induced neuroprotection was multitargeted, as it modulated the glial reactivity and astrocytic scar formation, facilitated blood-brain barrier recovery, and regulated local and systemic immune dysfunction. Surprisingly, administration of cortistatin at immediate and early post-stroke time points proved to be not beneficial and even detrimental. These results emphasize the importance of understanding the spatio-temporal dynamics of stroke pathology to develop innovative therapeutic strategies with appropriate time windows. Premature interruption of certain neuroinflammatory processes might inadvertently compromise neuroprotective mechanisms. In summary, our study highlights cortistatin as a novel pleiotropic therapeutic approach against ischemic stroke, offering new treatment options for patients who undergo early revascularization intervention but unsuccessful recovery.
Collapse
Affiliation(s)
- J Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - L Buscemi
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | - P Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Price
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | | | - L Hirt
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland.
| | - E González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain.
| |
Collapse
|
2
|
Ma Z, Liu D, Zhou M, Gu S, Zuo H. Plasma levels of urea cycle related amino acids in association with risk of ischemic stroke: Findings from a nested case-control study. J Stroke Cerebrovasc Dis 2024; 33:107531. [PMID: 38101276 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVES The role of urea cycle related amino acids in the development of ischemic stroke (IS) remains unclear. The study aimed to evaluate the association of these amino acids with IS. MATERIALS AND METHODS We conducted a case-control study nested within a cohort study in Changshu, Eastern China. A total of 321 cases and 321 controls matched by age and gender were finally included. Plasma levels of ornithine, arginine, spermidine, and proline were measured using ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS). Odds ratios (ORs) and their 95 % confidence intervals (CIs) were calculated by conditional logistic regression analyses. RESULTS Plasma ornithine was inversely associated with risk of IS [crude OR: 0.62 (95 % CI: 0.40-0.97)]. After adjustment for body mass index, smoking, hypertension, family history of stroke, estimated glomerular filtration rate, and total cholesterol, the corresponding ORs for the highest compared to the lowest quartiles was essentially unchanged [adjusted OR: 0.62 (95 % CI: 0.39-0.99)]. The risk association remained significant after repeating the analyses by excluding the first two years of follow-up. Plasma arginine, spermidine, and proline were not associated with the risk of IS. CONCLUSION We observed that higher plasma levels of ornithine were associated with a lower risk of incident IS. Our novel findings suggest a protective role of ornithine in the pathogenesis of IS.
Collapse
Affiliation(s)
- Ze Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dong Liu
- School of Public Health, Nantong University, Nantong, China
| | - Meng Zhou
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shujun Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Changshu, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Guan Y, Liu T, Xu F, Xie S, Gu W, Bie Y. Integration of 16S rRNA gene sequencing and LC/MS-based metabolomic analysis of early biomarkers of acute ischaemic stroke in Tibetan miniature pigs. J Microbiol Methods 2023; 215:106846. [PMID: 37863204 DOI: 10.1016/j.mimet.2023.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Acute ischaemic stroke (AIS) is a complex, systemic, pathological, and physiological process. Systemic inflammatory responses and disorders of the gut microbiome contribute to increased mortality and disability following AIS. We conducted 16S high-throughput sequencing and ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry-based non-targeted metabolomic analyses of the plasma from a Tibetan miniature pig middle cerebral artery occlusion (MCAO) model. A significant decrease in the abundance of Firmicutes and a significant increase in the abundance of Actinobacteria were observed after the onset of AIS. Among the plasma metabolites, the levels of phospholipids and amino acids were considerably altered. Loading values and differential metabolite-bacterial group association analyses of the metabolome and microbiome indicated a correlation between the microbiome and metabolome of Tibetan miniature pigs after MCAO. Furthermore, significant changes were observed in the ABC transporter pathway and purine metabolism in the gut microbiome-plasma metabolome during the early stage of AIS. Kyoto Encyclopaedia of Genes and Genomes enrichment analysis showed that arginine, proline, and cyanoamino acid metabolism was upregulated while ABC transporter metabolism pathway and carbohydrate digestion and absorption were substantially downregulated. The results of this study suggest that AIS affects the gut microbiota and plasma metabolites in Tibetan miniature pigs and that faecal microbiota transplantation could be a potential therapeutic approach for AIS.
Collapse
Affiliation(s)
- Yajin Guan
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Tianping Liu
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Fei Xu
- Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China
| | - Shuilin Xie
- Guangdong Mingzhu Biotechnology Co., Ltd., Foshan 510168, China.
| | - Weiwang Gu
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 519110, China; Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510000, China.
| | - Yanan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510000, China.
| |
Collapse
|
4
|
Lin D, Zhu Y, Tian Z, Tian Y, Liang C, Peng X, Li J, Wu X. Causal associations between gut microbiota, gut microbiota-derived metabolites, and cerebrovascular diseases: a multivariable Mendelian randomization study. Front Cell Infect Microbiol 2023; 13:1269414. [PMID: 38029236 PMCID: PMC10663354 DOI: 10.3389/fcimb.2023.1269414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mounting evidence has demonstrated the associations between gut microbiota, gut microbiota-derived metabolites, and cerebrovascular diseases (CVDs). The major categories of CVD are ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). However, the causal relationship is still unclear. Methods A two-sample Mendelian randomization (MR) study was conducted leveraging the summary data from genome-wide association studies. The inverse variance-weighted, maximum likelihood, weighted median, and MR.RAPS methods were performed to detect the causal relationship. Several sensitivity analyses were carried out to evaluate potential horizontal pleiotropy and heterogeneity. Finally, reverse MR analysis was conducted to examine the likelihood of reverse causality, and multivariable MR was performed to adjust the potential confounders. Results We collected 1,505 host single nucleotide polymorphisms (SNPs) linked to 119 gut microbiota traits and 1,873 host SNPs associated with 81 gut metabolite traits as exposure data. Among these, three gut bacteria indicated an elevated risk of IS, two of ICH, and one of SAH. In contrast, five gut bacteria were associated with a reduced risk of IS, one with ICH, and one with SAH. Our study also demonstrated the potential causal associations between 11 gut microbiota-derived metabolites and CVD. Conclusions This study provided evidence of the causal relationship between gut microbiota, gut microbiota-derived metabolites, and CVD, thereby offering novel perspectives on gut biomarkers and targeted prevention and treatment for CVD.
Collapse
Affiliation(s)
- Dihui Lin
- School of Medicine, Jishou University, Jishou, China
| | - Yingjie Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Zhi Tian
- Department of Neurosurgery, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Yong Tian
- School of Medicine, Jishou University, Jishou, China
- Department of Neurology, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Chengcai Liang
- School of Medicine, Jishou University, Jishou, China
- Department of Neurology, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Xiaowei Peng
- School of Medicine, Jishou University, Jishou, China
- Department of Neurology, The First Affiliated Hospital of Jishou University, Jishou, China
| | - Jinping Li
- Department of Orthopedics, The Affiliated Changsha Central Hospital, Changsha, China
| | - Xinrui Wu
- School of Medicine, Jishou University, Jishou, China
| |
Collapse
|
5
|
Sheng B, Li YZ, Wu AP, Wang DD, Yang PP. Salidroside attenuates oxygen and glucose deprivation-induced neuronal injury by inhibiting ferroptosis. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.369611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
6
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
7
|
Li T, Zhao J, Gao H. Depletion of Arg1-Positive Microglia/Macrophages Exacerbates Cerebral Ischemic Damage by Facilitating the Inflammatory Response. Int J Mol Sci 2022; 23:13055. [PMID: 36361836 PMCID: PMC9655877 DOI: 10.3390/ijms232113055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 09/09/2023] Open
Abstract
Stroke is a serious worldwide disease that causes death and disability, more than 80% of which is ischemic stroke. The expression of arginase 1 (Arg1), a key player in regulating nitrogen homeostasis, is altered in the peripheral circulation after stroke. Growing evidence indicates that ischemic stroke also induces upregulated Arg1 expression in the central nervous system, especially in activated microglia and macrophages. This implies that Arg1 may affect stroke progression by modulating the cerebral immune response. To investigate the effect of Arg1+ microglia/macrophages on ischemic stroke, we selectively eliminated cerebral Arg1+ microglia/macrophages by mannosylated clodronate liposomes (MCLs) and investigated their effects on behavior, neurological deficits, and inflammatory responses in mice after ischemic stroke. More than half of Arg1+ cells, mainly Arg1+ microglia/macrophages, were depleted after MCLs administration, resulting in a significant deterioration of motility in mice. After the elimination of Arg1+ microglia/macrophages, the infarct volume expanded and neuronal degenerative lesions intensified. Meanwhile, the absence of Arg1+ microglia/macrophages significantly increased the production of pro-inflammatory cytokines and suppressed the expression of anti-inflammatory factors, thus profoundly altering the immune microenvironment at the lesion site. Taken together, our data demonstrate that depletion of Arg1+ microglia/macrophages exacerbates neuronal damage by facilitating the inflammatory response, leading to more severe ischemic injury. These results suggest that Arg1+ microglia/macrophages, as a subpopulation regulating inflammation, is beneficial in controlling the development of ischemia and promoting recovery from injury. Regulation of Arg1 expression on microglia/macrophages at the right time may be a potential target for the treatment of ischemic brain injury.
Collapse
Affiliation(s)
- Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | |
Collapse
|
8
|
Mader MMD, Czorlich P. The role of L-arginine metabolism in neurocritical care patients. Neural Regen Res 2022; 17:1446-1453. [PMID: 34916417 PMCID: PMC8771107 DOI: 10.4103/1673-5374.327331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide is an important mediator of vascular autoregulation and is involved in pathophysiological changes after acute neurological disorders. Nitric oxide is generated by nitric oxide synthases from the amino acid L-arginine. L-arginine can also serve as a substrate for arginases or lead to the generation of dimethylarginines, asymmetric dimethylarginine, and symmetric dimethylarginine, by methylation. Asymmetric dimethylarginine is an endogenous inhibitor of nitric oxide synthase and can lead to endothelial dysfunction. This review discusses the role of L-arginine metabolism in patients suffering from acute and critical neurological disorders often requiring neuro-intensive care treatment. Conditions addressed in this review include intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage, and traumatic brain injury. Recent therapeutic advances in the field are described including current randomized controlled trials for traumatic brain injuries and hemorrhagic stroke.
Collapse
Affiliation(s)
- Marius Marc-Daniel Mader
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Fouda AY, Eldahshan W, Xu Z, Lemtalsi T, Shosha E, Zaidi SA, Abdelrahman AA, Cheng PNM, Narayanan SP, Caldwell RW, Caldwell RB. Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury. Exp Neurol 2022; 348:113923. [PMID: 34780773 PMCID: PMC9122100 DOI: 10.1016/j.expneurol.2021.113923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Arginase 1 (A1) is the enzyme that hydrolyzes the amino acid, L-arginine, to ornithine and urea. We have previously shown that A1 deletion worsens retinal ischemic injury, suggesting a protective role of A1. In this translational study, we aimed to study the utility of systemic pegylated A1 (PEG-A1, recombinant human arginase linked to polyethylene glycol) treatment in mouse models of acute retinal and brain injury. Cohorts of WT mice were subjected to retinal ischemia-reperfusion (IR) injury, traumatic optic neuropathy (TON) or brain cerebral ischemia via middle cerebral artery occlusion (MCAO) and treated with intraperitoneal injections of PEG-A1 or vehicle (PEG only). Drug penetration into retina and brain tissues was measured by western blotting and immunolabeling for PEG. Neuroprotection was measured in a blinded fashion by quantitation of NeuN (neuronal marker) immunolabeling of retina flat-mounts and brain infarct area using triphenyl tetrazolium chloride (TTC) staining. Furthermore, ex vivo retina explants and in vitro retina neuron cultures were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (R) and treated with PEG-A1. PEG-A1 given systemically did not cross the intact blood-retina/brain barriers in sham controls but reached the retina and brain after injury. PEG-A1 provided neuroprotection after retinal IR injury, TON and cerebral ischemia. PEG-A1 treatment was also neuroprotective in retina explants subjected to OGD/R but did not improve survival in retinal neuronal cultures exposed to OGD/R. In summary, systemic PEG-A1 administration is neuroprotective and provides an excellent route to deliver the drug to the retina and the brain after acute injury.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Wael Eldahshan
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Esraa Shosha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Syed Ah Zaidi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Ammar A Abdelrahman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Paul Ning-Man Cheng
- Bio-cancer Treatment International, 511-513, Bioinformatics Building, Hong Kong Science Park, Tai Po, Hong Kong, China
| | - S Priya Narayanan
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Clinical and Administrative Pharmacy, University of Georgia, Augusta, GA, United States
| | - R William Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
10
|
Mader MM, Böger R, Appel D, Schwedhelm E, Haddad M, Mohme M, Lamszus K, Westphal M, Czorlich P, Hannemann J. Intrathecal and systemic alterations of L-arginine metabolism in patients after intracerebral hemorrhage. J Cereb Blood Flow Metab 2021; 41:1964-1977. [PMID: 33461409 PMCID: PMC8327100 DOI: 10.1177/0271678x20983216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alterations in the concentration of nitric oxide (NO) and L-arginine metabolites have been associated with the pathophysiology of different vascular diseases. Here, we describe striking changes in L-arginine metabolism after hemorrhagic stroke. Blood and cerebrospinal fluid (CSF) samples of patients with intracerebral hemorrhage (ICH) and/or intraventricular hemorrhage were collected over a ten-day period. Liquid chromatography-tandem mass spectrometry was used to quantify key substrates and products of L-arginine metabolizing enzymes as well as asymmetric (ADMA) and symmetric dimethylarginine (SDMA). Changes in the plasma were limited to early reductions in L-ornithine, L-lysine, and L-citrulline concentrations. Intrathecally, we observed signs of early NO synthase (NOS) upregulation followed by a decrease back to baseline accompanied by a rise in the level of its endogenous NOS-inhibitor ADMA. SDMA demonstrated increased levels throughout the observation period. For arginase, a pattern of persistently elevated activity was measured and arginine:glycine amidinotransferase (AGAT) appeared to be reduced in its activity at later time points. An early reduction in CSF L-arginine concentration was an independent risk factor for poor outcome. Together, these findings further elucidate pathophysiological mechanisms after ICH potentially involved in secondary brain injury and may reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Marius M Mader
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Appel
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Munif Haddad
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
12
|
Fouda AY, Eldahshan W, Narayanan SP, Caldwell RW, Caldwell RB. Arginase Pathway in Acute Retina and Brain Injury: Therapeutic Opportunities and Unexplored Avenues. Front Pharmacol 2020; 11:277. [PMID: 32256357 PMCID: PMC7090321 DOI: 10.3389/fphar.2020.00277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemic retinopathies represent a major cause of visual impairment and blindness. They include diabetic retinopathy (DR), acute glaucoma, retinopathy of prematurity (ROP), and central (or branch) retinal artery occlusion (CRAO). These conditions share in common a period of ischemia or reduced blood supply to the retinal tissue that eventually leads to neuronal degeneration. Similarly, acute brain injury from ischemia or trauma leads to neurodegeneration and can have devastating consequences in patients with stroke or traumatic brain injury (TBI). In all of these conditions, current treatment strategies are limited by their lack of effectiveness, adverse effects or short time window for administration. Therefore, there is a great need to identify new therapies for acute central nervous system (CNS) injury. In this brief review article, we focus on the pathway of the arginase enzyme as a novel therapeutic target for acute CNS injury. We review the recent work on the role of arginase enzyme and its downstream components in neuroprotection in both retina and brain acute injury models. Delineating the similarities and differences between the role of arginase in the retina and brain neurodegeneration will allow for better understanding of the role of arginase in CNS disorders. This will also facilitate repurposing the arginase pathway as a new therapeutic target in both retina and brain diseases.
Collapse
Affiliation(s)
- Abdelrahman Y Fouda
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Wael Eldahshan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - S Priya Narayanan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, United States
| | - R William Caldwell
- Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
13
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Bordy R, Quirié A, Marie C, Wendling D, Totoson P, Demougeot C. Vascular Arginase Is a Relevant Target to Improve Cerebrovascular Endothelial Dysfunction in Rheumatoid Arthritis: Evidence from the Model of Adjuvant-Induced Arthritis. Transl Stroke Res 2019; 11:4-15. [DOI: 10.1007/s12975-019-00699-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/06/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
|