1
|
Kaya A, Ceylan AF, Kavutcu M, Santamaria A, Šoltésová Prnová M, Stefek M, Karasu Ç. A dual-acting aldose reductase inhibitor impedes oxidative and carbonyl stress in tissues of fructose- and streptozotocin-induced rats: comparison with antioxidant stobadine. Drug Chem Toxicol 2024; 47:710-720. [PMID: 37795621 DOI: 10.1080/01480545.2023.2262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
Inhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks. Malondialdehyde (MDA), glutathione S-transferase (GST), nitric oxide synthase (NOS), and catalase (CAT) were increased in the sciatic nerve of F and D. These increases were attenuated by low doses of CMTI and STB in D, but exacerbated by low-dose EPA and high-dose CMTI in F. STB and CMTI and to a lesser extent EPA improved MDA, protein-carbonyl, GST and CAT in the hearts and lungs of F and D. CMTI and STB were more effective than EPA in improving the increased MDA and protein-carbonyl levels in the kidneys of F and especially D. CMTI ameliorated renal GST inhibition in D. In the lungs, hearts, and kidneys of F and D, the GSH to GSSG ratio decreased and caspase-3 activity increased, but partially resolved with treatments. In conclusion, CMTI with ARI/AO activity may be advantageous in overcoming OS, CS, and their undesirable consequences, with low dose efficacy and limited toxicity, compared to ARI or antioxidant alone.
Collapse
Affiliation(s)
- Alican Kaya
- Department of Medical Services and Techniques, Health Services Vocational School, Medical Laboratory Techniques Program, Bayburt University, Bayburt, Turkey
| | - Aslı F Ceylan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Marta Šoltésová Prnová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Çimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Kovacikova L, Prnova MS, Bodo P, Stefek M. Cemtirestat dimerization in liposomes and erythrocytes exposed to peroxyl radicals was reverted by thiol-disulfide exchange with GSH. Free Radic Res 2024; 58:1-10. [PMID: 38145452 DOI: 10.1080/10715762.2023.2298852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
In the model system of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) liposomes exposed to peroxyl radicals generated by the azoinitiator AAPH, cemtirestat (CMTI-SH) inhibited lipid peroxidation more efficiently than the natural antioxidant glutathione. In the concentrations 100 to 500 µM, both CMTI-SH and GSH induced distinct lag phases in the initial stages of lipid peroxidation yet GSH produced consistently shorter induction periods (about twice) than equimolar CMTI-SH. Moreover, concentration dependence of lipid peroxidation inhibition measured at the 80th minute, revealed about three times higher IC50 value for GSH compared to CMTI-SH. When the incubations prolonged till 180 min no further absorbance changes at 270 and 302 nm, respectively, occurred. After addition of the reducing agent tris(2-carboxyethyl)phosphine, the absorbance peak at 270 nm shifted back to 302 nm. These findings pointed to the presence of reducible CMTI-SH disulfide whose definite structure was confirmed by proving identity of TLC retention and spectral data with those of the synthesized CMTI disulfide. When CMTI-SH and GSH were present simultaneously in the liposomal incubations, the mixing effect on the induction period was synergistic rather than additive. This was explained by ability of GSH to reduce CMTI disulfide which was proved in separate experiments with an authentic CMTI disulfide prepared synthetically. This finding was also demonstrated by experiment with CMTI-disulfide to protect the erythrocytes against oxidative damage induced by peroxyl radicals. To conclude, CMTI-SH scavenges reactive oxygen species yielding CMTI disulfide while GSH maintains CMTI-SH in the reduced state. This finding was also demonstrated by experiment with CMTI-disulfide to protect the erythrocytes against oxidative damage induced by peroxyl radicals. CMTI-SH would thus represent the first line of the cellular defense against peroxyl radical mediated oxidative stress.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Marta S Prnova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Pavol Bodo
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
3
|
Reihanifar T, Şahin M, Stefek M, Ceylan AF, Karasu Ç. Cemtirestat, an aldose reductase inhibitor and antioxidant compound, induces ocular defense against oxidative and inflammatory stress in rat models for glycotoxicity. Cell Biochem Funct 2023; 41:622-632. [PMID: 37272424 DOI: 10.1002/cbf.3818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Fructose, endogenously produced as a consequence of activation of the polyol pathway under hyperglycemic conditions, contribute to formation of advanced glycoxidation end products (AGEs) and carbonyl stress. Oxidative stress is increased in diabetes (DM) due to AGEs formation and the utilization of NADPH by aldo-keto reductase, AKR1B1(AR), the first enzyme in polyol pathway. Since inhibition of AR is an attractive approach for the management of diabetic eye diseases, we aimed to compare the effects of a novel AR inhibitor (ARI)/antioxidant (AO) compound cemtirestat on eye tissues with the effects of ARI drug epalrestat and AO agent stobadine in rat model for glycotoxicity. One group of rats was fed high fructose (10% drinking water; 14 weeks), while type-2 DM was induced in the other group of rats with fructose plus streptozotocin (40 mg/kg-bw/day). Diabetic (D) and nondiabetic fructose-fed rats (F) were either untreated or treated with two different doses of cemtirestat (2.5 and 7.5 mg/kg-bw/day), epalrestat (25 and 50 mg/kg-bw/day), or stobadine (25 and 50 mg/kg-bw/day) for 14 weeks. Cemtirestat, epalrestat, and stobadine elaviate the increase in TNF-α, IL-1β, NF-ƙB, and caspase-3 in retina, lens, cornea, and sclera of F and D rats. Both glycotoxicity models resulted in a decrease in GSH to GSSG ratio and a change in glutathione S-transferase activity in eye tissues, but these alterations were improved especially with cemtirestat and stobadine. Lens D-sorbitol of D rats increased more than that of F rats, this increase was only attenuated by cemtirestat and epalrestat. Epalrestat was more effective than cemtirestat and stobadine in inhibiting the increase of vascular endothelial growth factor (VEGF) in the retina of F and D rats. Cemtirestat and stobadine but not epalrestat decreased high level of Nε-(carboxymethyl)lysine in the lens and retina of F and D rats. Cemtirestat is a potential therapeutic in protecting the rat eye against glycotoxicity insults.
Collapse
Affiliation(s)
- Tala Reihanifar
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Muzaffer Şahin
- Department of Ophthalmology, Ankara City Hospital General Hospital (MHC), Eye Section, Ankara, Turkey
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Aslı F Ceylan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Martiniakova M, Kovacova V, Mondockova V, Svik K, Londzin P, Folwarczna J, Soltesova Prnova M, Stefek M, Omelka R. The Effects of Prolonged Treatment with Cemtirestat on Bone Parameters Reflecting Bone Quality in Non-Diabetic and Streptozotocin-Induced Diabetic Rats. Pharmaceuticals (Basel) 2023; 16:ph16040628. [PMID: 37111385 PMCID: PMC10145951 DOI: 10.3390/ph16040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Cemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat. Higher levels of plasma glucose, triglycerides, cholesterol, glycated hemoglobin, magnesium, reduced femoral weight and length, bone mineral density and content, parameters characterizing trabecular bone mass and microarchitecture, cortical microarchitecture and geometry, and bone mechanical properties were determined in STZ-induced diabetic versus non-diabetic rats. Treatment with cemtirestat did not affect all aforementioned parameters in non-diabetic animals, suggesting that this drug is safe. In diabetic rats, cemtirestat supplementation reduced plasma triglyceride levels, increased the Haversian canal area and slightly, but insignificantly, improved bone mineral content. Nevertheless, the insufficient effect of cemtirestat treatment on diabetic bone disease does not support its use in the therapy of this complication of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Karol Svik
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Marta Soltesova Prnova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, 842 16 Bratislava, Slovakia
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
5
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
6
|
2′-Hydroxy-4′,5′-dimethoxyacetophenone Exhibit Collagenase, Aldose Reductase Inhibition, and Anticancer Activity Against Human Leukemic Cells: An In Vitro, and In Silico Study. Mol Biotechnol 2022; 65:881-890. [DOI: 10.1007/s12033-022-00588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
7
|
Cu(II) mediated oxidation of cemtirestat yields its disulfide under physiological conditions in vitro. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Liu Y, Mo H, Zhang K, Yin M, Yuan S, Li Y, Li Y, Zhu W, Fan Y, Zeng Y, Kurihara H, He R, Chen H. Enhanced Antioxidation Capacity Endowed to a Mixed Type Aldose Reductase Inhibitor Leads to a Promising Anti-Diabetic Complications Agent. Bioorg Chem 2022; 120:105624. [DOI: 10.1016/j.bioorg.2022.105624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022]
|
9
|
Signaling Pathway in the Osmotic Resistance Induced by Angiotensin II AT2 Receptor Activation in Human Erythrocytes. Rep Biochem Mol Biol 2021; 10:314-326. [PMID: 34604421 DOI: 10.52547/rbmb.10.2.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Background Angiotensin II regulates blood volume via AT1 (AT1R) and AT2 (AT2R) receptors. As cell integrity is an important feature of mature erythrocyte, we sought to evaluate, in vitro, whether angiotensin II modulates resistance to hemolysis and the signaling pathway involved. Methods Human blood samples were collected and hemolysis assay and angiotensin II signaling pathway profiling in erythrocytes were done. Results Hemolysis assay created a hemolysis curve in presence of Ang II in several concentrations (10-6 M, 10-8 M, 10-10 M, 10-12 M). Angiotensin II demonstrated protective effect, both in osmotic stressed and physiological situations, by reducing hemolysis in NaCl 0.4% and 0.9%. By adding receptors antagonists (losartan, AT1R antagonist and PD 123319, AT2R antagonist) and/or signaling modulators for AMPK, Akt/PI3K, p38 and PKC we showed the protective effect was enhanced with losartan and abolished with PD 123319. Also, we showed activation of p38 as well as PI3K/Akt pathways in this system. Conclusion Ang II protects human erythrocytes from hypo-osmotic conditions-induced hemolysis by activating AT2 receptors and triggering intracellular pathways.
Collapse
|
10
|
Thakur S, Gupta SK, Ali V, Singh P, Verma M. Aldose Reductase: a cause and a potential target for the treatment of diabetic complications. Arch Pharm Res 2021; 44:655-667. [PMID: 34279787 DOI: 10.1007/s12272-021-01343-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus, a disorder of metabolism, results in the elevation of glucose level in the blood. In this hyperglycaemic condition, aldose reductase overexpresses and leads to further complications of diabetes through the polyol pathway. Glucose metabolism-related disorders are the accumulation of sorbitol, overproduction of NADH and fructose, reduction in NAD+, and excessive NADPH usage, leading to diabetic pathogenesis and its complications such as retinopathy, neuropathy, and nephropathy. Accumulation of sorbitol results in the alteration of osmotic pressure and leads to osmotic stress. The overproduction of NADH causes an increase in reactive oxygen species production which leads to oxidative stress. The overproduction of fructose causes cell death and non-alcoholic fatty liver disease. Apart from these disorders, many other complications have also been discussed in the literature. Therefore, the article overviews the aldose reductase as the causative agent and a potential target for the treatment of diabetic complications. So, aldose reductase inhibitors have gained much importance worldwide right now. Several inhibitors, like derivatives of carboxylic acid, spirohydantoin, phenolic derivatives, etc. could prevent diabetic complications are discussed in this article.
Collapse
Affiliation(s)
- Sapna Thakur
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sonu Kumar Gupta
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Villayat Ali
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Priyanka Singh
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
11
|
Kovacikova L, Prnova MS, Majekova M, Bohac A, Karasu C, Stefek M. Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications. Molecules 2021; 26:molecules26102867. [PMID: 34066081 PMCID: PMC8151378 DOI: 10.3390/molecules26102867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023] Open
Abstract
Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Magdalena Majekova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Andrej Bohac
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- Biomagi, Inc., Mamateyova 26, 851 04 Bratislava, Slovakia
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Beşevler, 06500 Ankara, Turkey;
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
- Correspondence:
| |
Collapse
|
12
|
Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotox Res 2021; 39:588-597. [PMID: 33713301 DOI: 10.1007/s12640-021-00349-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
Aldose reductase (AR) catalyzes the conversion of glucose to sorbitol in a NADPH-dependent reaction, thereby increasing the production of reactive oxygen species (ROS). Since AR activation is linked to redox dysregulation and cell damage in neurodegenerative diseases, AR inhibitors (ARIs) constitute promising therapeutic tools for the treatment of these disorders. Among these compounds, the novel substituted triazinoindole derivatives cemtirestat (CMTI) and COTI, as well as the clinically employed epalrestat (EPA) and the pyridoindole-antioxidant stobadine (STB), were tested in both PC12 cells and BV2 microglia exposed to four different neurotoxic models. These include (1) oxidative stress with hydrogen peroxide (H2O2), (2) mitochondrial complex IV inhibition with NaN3, (3) endoplasmic reticulum-stress and lipotoxicity induced by palmitic acid/bovine serum albumin (PAM/BSA), and (4) advanced carbonyl compound lipotoxicity by 4-hydroxynonenal (4-HNE). All toxic compounds decreased cell viability and increased ROS formation in both PC12 and BV2 cells in a concentration-dependent manner (1-1000 μM; NaN3 < H2O2≈PAM/BSA < 4-HNE). In PC12 cells, EPA increased cell viability in all toxic models only at 1 μM, whereas CMTI restored baseline viability in all toxic models. COTI afforded protection against lipotoxicity, while STB only prevented H2O2-induced toxicity. Except for the 4-HNE model, EPA prevented ROS generation in all other toxic models, whereas CMTI, COTI, and STB prevented ROS production in all toxic models. In BV2 cells, EPA and CMTI restored baseline cell viability in all toxic models tested, while COTI and STB did not prevent the loss of viability in the NaN3 model. All ARIs and STB efficiently prevented ROS formation in all toxic models in a concentration-independent manner. The differential protective effects evoked by the novel ARIs and STB on the toxic models tested herein provide novel and relevant comparative evidence for the design of specific therapeutic strategies against neurodegenerative events associated with neurological disorders.
Collapse
|
13
|
Combatting Nitrosative Stress and Inflammation with Novel Substituted Triazinoindole Inhibitors of Aldose Reductase in PC12 Cells Exposed to 6-Hydroxydopamine Plus High Glucose. Neurotox Res 2020; 39:210-226. [PMID: 33146867 DOI: 10.1007/s12640-020-00305-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/22/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Cellular redox dysregulation produced by aldose reductase (AR) in the presence of high blood sugar is a mechanism involved in neurodegeneration commonly observed in diabetes mellitus (DM) and Parkinson's disease (PD); therefore, AR is a key target for treatment of both diseases. The substituted triazinoindole derivatives 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (cemtirestat or CMTI) and 2-(3-oxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl) acetic acid (COTI) are well-known AR inhibitors (ARIs). The neuroprotective properties of CMTI, COTI, the clinically used epalrestat (EPA), and the pyridoindole antioxidants stobadine and SMe1EC2 were all tested in the neurotoxic models produced by hyperglycemic glucotoxicity (HG, 75 mM D-glucose, 72 h), 6-hydroxydopamine (6-OHDA), and HG+6-OHDA models in PC12 cells. Cell viability decreased in all toxic models, increased by 1-5 μM EPA, and decreased by COTI at ≥ 2.5 μM. In the HG model alone, where compounds were present in the medium for 24 h after a continuous 24-h exposure to HG, cell viability was improved by 100 nM-5 μM EPA, 1-10 μM ARIs, and the antioxidants studied, but decreased by EPA at ≥ 10 μM. In the 6-OHDA model alone, where cells were treated with compounds for 24 h and further exposed to 100 μM 6-OHDA (8 h), only the antioxidants protected cell viability. In the HG+6-OHDA model, where cells were treated with all compounds (1 nM to 50 μM) for 48 h and exposed to 75 mM glucose for 24 h followed by incubation with 6-OHDA for 8 h, cell viability was protected by 100 nM-10 μM ARIs and 100-500 nM EPA, but not by antioxidants. All ARIs inhibited the HG+6-OHDA-induced increase in iNOS, IL-1β, TNF-α, 3-NT, and total oxidant status at 1-50 μM, while increased SOD, CAT, GPx, and total antioxidant status at 1-10 μM. EPA and CMTI also reduced the HG+6-OHDA-induced increase in the cellular levels of nuclear factor kB (NF-KB). The neuroprotective potential of the novel ARIs and the pyridoindole antioxidants studied constitutes a promising tool for the development of therapeutic strategies against DM-induced and PD-related neurodegeneration.
Collapse
|
14
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
15
|
Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells 2020; 9:cells9081906. [PMID: 32824296 PMCID: PMC7465054 DOI: 10.3390/cells9081906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA) signaling is known to play key roles in the initiation and maintenance of various chronic pain models. Here we examined whether LPA signaling is also involved in diabetes-induced abnormal pain behaviors. The high-fat diet (HFD) showing elevation of blood glucose levels and body weight caused thermal, mechanical hyperalgesia, hypersensitivity to 2000 or 250 Hz electrical-stimulation and hyposensitivity to 5 Hz stimulation to the paw in wild-type (WT) mice. These HFD-induced abnormal pain behaviors and body weight increase, but not elevated glucose levels were abolished in LPA1−/− and LPA3−/− mice. Repeated daily intrathecal (i.t.) treatments with LPA1/3 antagonist AM966 reversed these abnormal pain behaviors. Similar abnormal pain behaviors and their blockade by daily AM966 (i.t.) or twice daily Ki16425, another LPA1/3 antagonist was also observed in db/db mice which show high glucose levels and body weight. Furthermore, streptozotocin-induced similar abnormal pain behaviors, but not elevated glucose levels or body weight loss were abolished in LPA1−/− and LPA3−/− mice. These results suggest that LPA1 and LPA3 play key roles in the development of both type I and type II diabetic neuropathic pain.
Collapse
|
16
|
Soltesova Prnova M, Medina-Campos ON, Pedraza-Chaverri J, Colín-González AL, Piedra-García F, Rangel-López E, Kovacikova L, Ceylan A, Karasu C, Santamaria A, Stefek M. Antioxidant Mechanisms in the Neuroprotective Action of Cemtirestat: Studies in Chemical Models, Liposomes and Rat Brain Cortical Slices. Neuroscience 2020; 443:206-217. [PMID: 32681927 DOI: 10.1016/j.neuroscience.2020.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Neuroprotective action of the novel aldose reductase (AR) inhibitor cemtirestat (CMT), 2-(3-thioxo-2H-[1,2,4]triazino[5,6-b]indol-5(3H)-yl)acetic acid, was recently proved in experimental rat models of diabetes. The in vivo results indicated that the antioxidant activity of this compound might have participated on its effects. The aim of this study was to explore in a greater detail the putative antioxidant mechanisms potentially involved in CMT mediated neuroprotection. Antioxidant efficacy per se of CMT was proved by a ferric reducing antioxidant power (FRAP) test and CMT was found to scavenge reactive oxygen species (ROS) generated in water phase chemically with decreasing efficacy as follows ROO > H2O2 > O2-. Studies in liposomes revealed the ability of CMT to inhibit lipid peroxidation more efficiently than melatonin, yet less effectively than Trolox. In the rat brain cortical slices, CMT reduced the loss of cell viability/mitochondrial function induced by quinolinic acid (QUIN), and inhibited lipid peroxidation. In addition, CMT normalized the GSH/GSSG ratio which could be explained, at least partially, by the ability of this compound to release free GSH from the pool of endogenously bound disulfides. Neuronal cell damage induced by QUIN or H2O2 was reduced by CMT as proved by significant drop in propidium iodide incorporation into cells. On balance then, our results corroborated the notion of a multifunctional action of CMT as a drug combining AR inhibition with direct antioxidant and ROS scavenging activity. Moreover, the ability of CMT to restore thiol-disulfide homeostasis was proved.
Collapse
Affiliation(s)
- Marta Soltesova Prnova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Omar Noel Medina-Campos
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Francisco Piedra-García
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Lucia Kovacikova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Asli Ceylan
- Department of Medical Pharmacology, School of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Cimen Karasu
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, Ciudad de México, Mexico
| | - Milan Stefek
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|