1
|
Scaramuzzo RT, Crucitta S, del Re M, Cammalleri M, Bagnoli P, Dal Monte M, Pini A, Filippi L. β3-adREnoceptor Analysis in CORD Blood of Neonates (β3 RECORD): Study Protocol of a Pilot Clinical Investigation. Life (Basel) 2024; 14:776. [PMID: 38929758 PMCID: PMC11204445 DOI: 10.3390/life14060776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Background and Objective: The embryo and the fetus develop in a physiologically hypoxic environment, where vascularization is sustained by HIF-1, VEGF, and the β-adrenergic system. In animals, β3-adrenoceptors (β3-ARs), up-regulated by hypoxia, favor global fetal wellness to such an extent that most diseases related to prematurity are hypothesized to be induced or aggravated by a precocious β3-AR down-regulation, due to premature exposure to a relatively hyperoxic environment. In animals, β3-AR pharmacological agonism is currently investigated as a possible new therapeutic opportunity to counteract oxygen-induced damages. Our goal is to translate the knowledge acquired in animals to humans. Recently, we have demonstrated that fetuses become progressively more hypoxemic from mid-gestation to near-term, but starting from the 33rd-34th week, oxygenation progressively increases until birth. The present paper aims to describe a clinical research protocol, evaluating whether the expression level of HIF-1, β3-ARs, and VEGF is modulated by oxygen during intrauterine and postnatal life, in a similar way to animals. Materials and Methods: In a prospective, non-profit, single-center observational study we will enroll 100 preterm (group A) and 100 full-term newborns (group B). We will collect cord blood samples (T0) and measure the RNA expression level of HIF-1, β3-ARs, and VEGF by digital PCR. In preterms, we will also measure gene expression at 48-72h (T1), 14 days (T2), and 30 days (T3) of life and at 40 ± 3 weeks of post-menstrual age (T4), regardless of the day of life. We will compare group A (T0) vs. group B (T0) and identify any correlations between the values obtained from serial samples in group A and the clinical data of the patients. Our protocol has been approved by the Pediatric Ethical Committee for Clinical Research of the Tuscany region (number 291/2022). Expected Results: The observation that in infants, the HIF-1/β3-ARs/VEGF axis shows similar modulation to that of animals could suggest that β3-ARs also promote fetal well-being in humans.
Collapse
Affiliation(s)
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (M.d.R.)
| | - Marzia del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.C.); (M.d.R.)
| | - Maurizio Cammalleri
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Paola Bagnoli
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Massimo Dal Monte
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.); (M.D.M.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy;
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Neonatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Wong YW, Haqqani H, Molenaar P. Roles of β-adrenoceptor Subtypes and Therapeutics in Human Cardiovascular Disease: Heart Failure, Tachyarrhythmias and Other Cardiovascular Disorders. Handb Exp Pharmacol 2024; 285:247-295. [PMID: 38844580 DOI: 10.1007/164_2024_720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
β-Adrenoceptors (β-ARs) provide an important therapeutic target for the treatment of cardiovascular disease. Three β-ARs, β1-AR, β2-AR, β3-AR are localized to the human heart. Activation of β1-AR and β2-ARs increases heart rate, force of contraction (inotropy) and consequently cardiac output to meet physiological demand. However, in disease, chronic over-activation of β1-AR is responsible for the progression of disease (e.g. heart failure) mediated by pathological hypertrophy, adverse remodelling and premature cell death. Furthermore, activation of β1-AR is critical in the pathogenesis of cardiac arrhythmias while activation of β2-AR directly influences blood pressure haemostasis. There is an increasing awareness of the contribution of β2-AR in cardiovascular disease, particularly arrhythmia generation. All β-blockers used therapeutically to treat cardiovascular disease block β1-AR with variable blockade of β2-AR depending on relative affinity for β1-AR vs β2-AR. Since the introduction of β-blockers into clinical practice in 1965, β-blockers with different properties have been trialled, used and evaluated, leading to better understanding of their therapeutic effects and tolerability in various cardiovascular conditions. β-Blockers with the property of intrinsic sympathomimetic activity (ISA), i.e. β-blockers that also activate the receptor, were used in the past for post-treatment of myocardial infarction and had limited use in heart failure. The β-blocker carvedilol continues to intrigue due to numerous properties that differentiate it from other β-blockers and is used successfully in the treatment of heart failure. The discovery of β3-AR in human heart created interest in the role of β3-AR in heart failure but has not resulted in therapeutics at this stage.
Collapse
Affiliation(s)
- Yee Weng Wong
- Cardiovascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, University of Queensland, The Prince Charles Hospital, Chermside, QLD, Australia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Haris Haqqani
- Cardiovascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, University of Queensland, The Prince Charles Hospital, Chermside, QLD, Australia
- Department of Cardiology, The Prince Charles Hospital, Chermside, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Peter Molenaar
- Cardiovascular Molecular & Therapeutics Translational Research Group, Northside Clinical School of Medicine, University of Queensland, The Prince Charles Hospital, Chermside, QLD, Australia.
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Cammalleri M, Amato R, Dal Monte M, Filippi L, Bagnoli P. The β3 adrenoceptor in proliferative retinopathies: "Cinderella" steps out of its family shadow. Pharmacol Res 2023; 190:106713. [PMID: 36863427 DOI: 10.1016/j.phrs.2023.106713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (β-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the β-AR family, β1- and β2-AR have long been attracting attention because their pharmacology is intensely used for human health, while β3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, β3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of β3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of β3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that β3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting β3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
HIF-1-Dependent Induction of β3 Adrenoceptor: Evidence from the Mouse Retina. Cells 2022; 11:cells11081271. [PMID: 35455951 PMCID: PMC9029465 DOI: 10.3390/cells11081271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
A major player in the homeostatic response to hypoxia is the hypoxia-inducible factor (HIF)-1 that transactivates a number of genes involved in neovessel proliferation in response to low oxygen tension. In the retina, hypoxia overstimulates β-adrenoceptors (β-ARs) which play a key role in the formation of pathogenic blood vessels. Among β-ARs, β3-AR expression is increased in proliferating vessels in concomitance with increased levels of HIF-1α and vascular endothelial growth factor (VEGF). Whether, similarly to VEGF, hypoxia-induced β3-AR upregulation is driven by HIF-1 is still unknown. We used the mouse model of oxygen-induced retinopathy (OIR), an acknowledged model of retinal angiogenesis, to verify the hypothesis of β3-AR transcriptional regulation by HIF-1. Investigation of β3-AR regulation over OIR progression revealed that the expression profile of β3-AR depends on oxygen tension, similar to VEGF. The additional evidence that HIF-1α stabilization decouples β3-AR expression from oxygen levels further indicates that HIF-1 regulates the expression of the β3-AR gene in the retina. Bioinformatics predicted the presence of six HIF-1 binding sites (HBS #1-6) upstream and inside the mouse β3-AR gene. Among these, HBS #1 has been identified as the most suitable HBS for HIF-1 binding. Chromatin immunoprecipitation-qPCR demonstrated an effective binding of HIF-1 to HBS #1 indicating the existence of a physical interaction between HIF-1 and the β3-AR gene. The additional finding that β3-AR gene expression is concomitantly activated indicates the possibility that HIF-1 transactivates the β3-AR gene. Our results are indicative of β3-AR involvement in HIF-1-mediated response to hypoxia.
Collapse
|
5
|
Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021; 42:1179-1201. [PMID: 34967048 PMCID: PMC9303287 DOI: 10.1002/med.21874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023]
Abstract
The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care UnitUniversity of PisaPisaItaly
| | - Alessandro Pini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maurizio Cammalleri
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Paola Bagnoli
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Massimo Dal Monte
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| |
Collapse
|
6
|
Erdogan BR, Michel MC, Arioglu-Inan E. Expression and Signaling of β-Adrenoceptor Subtypes in the Diabetic Heart. Cells 2020; 9:cells9122548. [PMID: 33256212 PMCID: PMC7759850 DOI: 10.3390/cells9122548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a chronic, endocrine disorder that effects millions of people worldwide. Cardiovascular complications are the major cause of diabetes-related morbidity and mortality. Cardiac β1- and β2-adrenoceptor (AR) stimulation mediates positive inotropy and chronotropy, whereas β3-AR mediates negative inotropic effect. Changes in β-AR responsiveness are thought to be an important factor that contributes to the diabetic cardiac dysfunction. Diabetes related changes in β-AR expression, signaling, and β-AR mediated cardiac function have been studied by several investigators for many years. In the present review, we have screened PubMed database to obtain relevant articles on this topic. Our search has ended up with wide range of different findings about the effect of diabetes on β-AR mediated changes both in molecular and functional level. Considering these inconsistent findings, the effect of diabetes on cardiac β-AR still remains to be clarified.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
7
|
Kaykı-Mutlu G, Papazisi O, Palmen M, Danser AHJ, Michel MC, Arioglu-Inan E. Cardiac and Vascular α 1-Adrenoceptors in Congestive Heart Failure: A Systematic Review. Cells 2020; 9:E2412. [PMID: 33158106 PMCID: PMC7694190 DOI: 10.3390/cells9112412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
As heart failure (HF) is a devastating health problem worldwide, a better understanding and the development of more effective therapeutic approaches are required. HF is characterized by sympathetic system activation which stimulates α- and β-adrenoceptors (ARs). The exposure of the cardiovascular system to the increased locally released and circulating levels of catecholamines leads to a well-described downregulation and desensitization of β-ARs. However, information on the role of α-AR is limited. We have performed a systematic literature review examining the role of both cardiac and vascular α1-ARs in HF using 5 databases for our search. All three α1-AR subtypes (α1A, α1B and α1D) are expressed in human and animal hearts and blood vessels in a tissue-dependent manner. We summarize the changes observed in HF regarding the density, signaling and responses of α1-ARs. Conflicting findings arise from different studies concerning the influence that HF has on α1-AR expression and function; in contrast to β-ARs there is no consistent evidence for down-regulation or desensitization of cardiac or vascular α1-ARs. Whether α1-ARs are a therapeutic target in HF remains a matter of debate.
Collapse
Affiliation(s)
- Gizem Kaykı-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; (G.K.-M.); (E.A.-I.)
| | - Olga Papazisi
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (O.P.); (M.P.)
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (O.P.); (M.P.)
| | - A. H. Jan Danser
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; (G.K.-M.); (E.A.-I.)
| |
Collapse
|