1
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
2
|
Lin R, Wu P, Wu Y, Huang L, Lin B, Huang L. Effects of compound Anoectochilus roxburghii (Wall.) Lindl. oral liquid on relative metabolic enzymes and various biochemical indices in Wistar rats with isoniazid-induced liver injury. J Pharm Biomed Anal 2024; 248:116249. [PMID: 38936169 DOI: 10.1016/j.jpba.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024]
Abstract
Isoniazid (INH) is the first-line anti-tuberculosis drug in clinical practice, and its main adverse effect is drug-induced liver injury (DILI). This study aimed to investigate the hepatoprotective effect of Compound Anoectochilus roxburghii (Wall.) Lindl. Oral Liquid (CAROL) and to provide a new strategy for the search of potential drugs against INH-induced liver injury in Wistar rats. Animal experiment was based on INH (100 mg/kg) induced liver injury to explore the intervention effects of CAROL at doses of 1.35, 2.70, and 5.40 mL/kg. LC-QTOF-MS/MS was used to identify hepatoprotective components in CAROL and its' exposed components in rat serum. The hepatoprotective effect of CAROL was evaluated by pathological observation of rat liver tissue and changes in levels of biochemical indices and cytokines in serum or liver tissue. Of the 58 hepatoprotective components identified, 15 were detected in the serum of rats with liver-injured treated by high-dose CAROL. Results of animal experiments showed that the levels of various biochemical indexes and cytokines were significantly reversed with CAROL intervention. In particular, the expression level of cytokeratin-18 and high-mobility group box 1, as specific and sensitive indicators of DILI, was significantly reduced in the serum of rats with CAROL intervention compared with the INH model group. The same reversal was observed in the levels of TBIL, ALP, ALT, and AST in serum, as well as in the levels of TNF-α, IL-6, SOD, and MDA in liver tissue. For INH-metabolizing enzymes, an evident expression inhibition was observed in N-acetyltransferase 2 and glutathione S-transferases with CAROL intervention, which may be the key to controlling INH hepatotoxicity. CAROL has a favorable hepatoprotective effect on INH-induced liver injury. This study takes the first step in studying the hepatoprotective mechanism of CAROL against INH hepatotoxicity and provides reference for wider clinical applications.
Collapse
Affiliation(s)
- Renyi Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Pingping Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Youjia Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Lingyi Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Bixia Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350002, China.
| | - Liying Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Osama HM, Khadrawy SM, El-Nahass ES, Othman SI, Mohamed HM. Eltroxin and Hesperidin mitigate testicular and renal damage in hypothyroid rats: amelioration of oxidative stress through PPARγ and Nrf2/HO-1 signaling pathway. Lab Anim Res 2024; 40:19. [PMID: 38745206 PMCID: PMC11092223 DOI: 10.1186/s42826-024-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Thyroid hormones (THs) regulate growth, development and function of different tissues. Hypothyroidism is a common clinical disorder characterized by deficiency in THs and adversely affects the development and functions of several organs. This work aimed to investigate the ameliorative effect of eltroxin (ELT), a hypothyroidism medication, and hesperidin (HSP), a flavonoid, against testicular and renal toxicity in hypothyroid rats. Twenty-four rats were divided into four groups and treated orally for 12 weeks. Group I (control), group II (hypothyroidism) received 20 mg/kg carbimazole (CBZ), group III received CBZ and 0.045 mg/kg ELT, and group IV received CBZ and 200 mg/kg HSP. RESULTS CBZ administration induced biochemical and histopathological changes in testis and kidney. Co-administration of ELT or HSP significantly (P < 0.05) ameliorated THs, reduced urea and creatinine while raised follicle stimulating hormone (FSH), Luteinizing hormone (LH), and testosterone in serum. Testicular and renal malondialdehyde level as a lipid peroxidation indicator, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were significantly (P < 0.05) decreased while glutathione content, glutathione peroxidase, and glutathione-s-transferase activities were significantly (P < 0.05) increased. The histopathological changes were also diminished. Decreased mRNA and protein expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and peroxisome proliferator-activated receptor gamma(PPARγ) in hypothyroid rats were up-regulated after ELT or HSP treatment. CONCLUSIONS ELT and HSP showed antioxidant and anti-inflammatory effects against CBZ-induced testicular and renal toxicity, and these effects may be promoted via activating Nrf2/HO-1 and PPARγ signaling pathways.
Collapse
Affiliation(s)
- Hadeel M Osama
- Genetics and Molecular Biology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sally M Khadrawy
- Genetics and Molecular Biology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - El-Shaymaa El-Nahass
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Sarah I Othman
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Hanaa M Mohamed
- Genetics and Molecular Biology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
5
|
Azadian R, Mohammadalipour A, Memarzadeh MR, Hashemnia M, Aarabi MH. Examining hepatoprotective effects of astaxanthin against methotrexate-induced hepatotoxicity in rats through modulation of Nrf2/HO-1 pathway genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:371-380. [PMID: 37450013 DOI: 10.1007/s00210-023-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.
Collapse
Affiliation(s)
- Razieh Azadian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Megahed A, Gadalla H, Filimban WA, Albukhari TA, Sembawa H, Bagadood RM, Sindi G, Abdelhamid FM, El-Boshy ME, Risha EF. Hesperidin ameliorates thioacetamide-induced liver fibrosis via antioxidative and anti-inflammatory mechanisms targeting TGF-β/α-SMA pathways in rats. Int J Immunopathol Pharmacol 2024; 38:3946320241309004. [PMID: 39707862 DOI: 10.1177/03946320241309004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Our study intended to explore Hesp antioxidant and anti-inflammatory effects against TAA hepatic fibrosis in rats. Hesperidin (Hesp), is a pharmacologically active flavonoid, found abundantly in citrus species. Our present research attempts to inspect the potential hepatoprotective role of Hesp against thioacetamide (TAA)-induced hepatic fibrosis. Thirty-two male albino rats were split up into four equal groups, each with eight rats: Cont group was treated with ip saline. Every other day, the TAA group was injected 100 mg/kg BW ip TAA, Hesp group received every day oral Hesp 200 mg/kg BW as well as TAA + Hesp group received both therapies (TAA, Hesp) for eight successive weeks. Hesp in TAA treated group reduces ALT, AST, and ALP activities, total, direct bilirubin, total cholesterol, and triglycerides, meanwhile TP, Alb, globulin, A/G ratio levels were insignificantly differed. The antioxidant capacity of Hesp was pronounced by a marked reduction in MDA level. While the antioxidant markers (SOD, CAT, GSH) were insignificantly changed after Hesp treatment. A strong significant correlation in treated rats between fibrosis score and CD34 and FGF23 gene expression. Liver sections from dual-treated rats showed a moderately decreased hepatic lesion and the dense, bluish-stained fibrous tissue by Masson's trichrome. Elevated gene expressions of CD34 and FGF23 after TAA hepatotoxicity were diminished by the antifibrotic effect of Hesp. Also, immunohistochemical expression showed reduction of TGF-β and α-SMA in hepatocytes in the dual therapy group. Hesp possesses a potent antioxidant, and antifibrotic activities against TAA induced hepatic fibrosis by modulating TGF-β/α-SMA pathways.
Collapse
Affiliation(s)
- Aya Megahed
- Clinical Pathology Department, Veterinary Medicine Faculty, University of Mansoura, Mansoura, Egypt
| | - Hossam Gadalla
- Clinical Pathology Department, Veterinary Medicine Faculty, University of Mansoura, Mansoura, Egypt
| | - Waheed A Filimban
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Talat A Albukhari
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hatem Sembawa
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rehab M Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghadir Sindi
- Clinical Laboratory Sciences Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Fatma M Abdelhamid
- Clinical Pathology Department, Veterinary Medicine Faculty, University of Mansoura, Mansoura, Egypt
| | - Mohamed E El-Boshy
- Clinical Pathology Department, Veterinary Medicine Faculty, University of Mansoura, Mansoura, Egypt
| | - Engy F Risha
- Clinical Pathology Department, Veterinary Medicine Faculty, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
7
|
Gürler M, Selçuk EB, Özerol BG, Tanbek K, Taşlıdere E, Yıldız A, Yağın FH, Gürel E. Protective effect of dexpanthenol against methotrexate-induced liver oxidative toxicity in rats. Drug Chem Toxicol 2023; 46:708-716. [PMID: 35655424 DOI: 10.1080/01480545.2022.2084103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
Methotrexate is a familiar chemotherapeutic preferred in a wide range of clinical fields such as leukemia, psoriasis, rheumatoid arthritis, neoplastic and autoimmune disorders. However, methotrexate therapy has limitations as it causes severe side effects from which liver damage is the most important one. Several antioxidant compounds have been studied against methotrexate related liver toxicity, but dexpanthenol has not been experienced. Vitamin B5-derived dexpanthenol is a usual therapeutic having a potent anti-inflammatory and antioxidant effect. In this study, we aimed to evaluate the ameliorating effect of dexpanthenol against methotrexate-induced hepatotoxicity. We performed our experiments on Wistar albino rats divided randomly into four groups involving control, dexphantenol, dexpanthenol + methotrexate and methotrexate applied animals. After this experimental work on rats, for the first time, we showed dexpanthenol improvement effect on ROS-caused hepatotoxicity initiated by methotrexate administration in terms of liver tissue antioxidant/oxidant enzymes, liver function tests, and histological changes. We suggest that dexpanthenol might be applied during methotrexate treatment in order to reduce the liver toxicity. However, further studies are needed to find out the optimal dose regimen and to understand the mechanism of action.
Collapse
Affiliation(s)
- Mukaddes Gürler
- Department of Medical Biochemistry, Medical Faculty of Hacettepe University, Ankara, Turkey
| | - Engin Burak Selçuk
- Department of Family Medicine, Medical Faculty of Inonu University, Malatya, Turkey
| | - Beyza Güzide Özerol
- Department of Family Medicine, Yesilyurt Hasan Çalık State Hospital, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Azibe Yıldız
- Department of Histology, Medical Faculty of Inonu University, Malatya, Turkey
| | - Fatma Hilal Yağın
- Department of Biostatistics and Medical Informatics, Medical Faculty of Inonu University, Malatya, Turkey
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty of Inonu University, Malatya, Turkey
| |
Collapse
|
8
|
Gao S, Chen X, Yu Z, Du R, Chen B, Wang Y, Cai X, Xu J, Chen J, Duan H, Cai Y, Zheng G. Progress of research on the role of active ingredients of Citri Reticulatae Pericarpium in liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154836. [PMID: 37119760 DOI: 10.1016/j.phymed.2023.154836] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Liver is a vital organ responsible for metabolizing and detoxifying both endogenous and exogenous substances in the body. However, it is susceptible to damage from chemical and natural toxins. The high incidence and mortality rates of liver disease and its associated complications impose a significant economic burden and survival pressure on patients and their families. Various liver diseases exist, including cholestasis, viral and non-viral hepatitis, fatty liver disease, drug-induced liver injury, alcoholic liver injury, and severe end-stage liver diseases such as cirrhosis, hepatocellular carcinoma (HCC), and cholangiocellular carcinoma (CCA). Recent research has shown that flavonoids found in Citri Reticulatae Pericarpium (CRP) have the potential to normalize blood glucose, cholesterol levels, and liver lipid levels. Additionally, these flavonoids exhibit anti-inflammatory properties, prevent oxidation and lipid peroxidation, and reduce liver toxicity, thereby preventing liver injury. Given these promising findings, it is essential to explore the potential of active components in CRP for developing new drugs to treat liver diseases. OBJECTIVE Recent studies have revealed that flavonoids, including hesperidin (HD), hesperetin (HT), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangerine (TN), and erodcyol (ED), are the primary bioactive components in CRP. These flavonoids exhibit various therapeutic effects on liver injury, including anti-oxidative stress, anti-cytotoxicity, anti-inflammatory, anti-fibrosis, and anti-tumor mechanisms. In this review, we have summarized the research progress on the hepatoprotective effects of HD, HT, NIN, NOB, NRG, TN, ED and limonene (LIM), highlighting their underlying molecular mechanisms. Despite their promising effects, the current clinical application of these active ingredients in CRP has some limitations. Therefore, further studies are needed to explore the full potential of these flavonoids and develop new therapeutic strategies for liver diseases. METHODS For this review, we conducted a systematic search of three databases (ScienceNet, PubMed, and Science Direct) up to July 2022, using the search terms "CRP active ingredient," "liver injury," and "flavonoids." The search data followed the PRISMA standard. RESULTS Our findings indicate that flavonoids found in CRP can effectively reduce drug-induced liver injury, alcoholic liver injury, and non-alcoholic liver injury. These therapeutic effects are mainly attributed to the ability of flavonoids to improve liver resistance to oxidative stress and inflammation while normalizing cholesterol and liver lipid levels by exhibiting anti-free radical and anti-lipid peroxidation properties. CONCLUSION Our review provides new insights into the potential of active components in CRP for preventing and treating liver injury by regulating various molecular targets within different cell signaling pathways. This information can aid in the development of novel therapeutic strategies for liver disease.
Collapse
Affiliation(s)
- Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
9
|
El-Beheiry KM, El-Sayed El-Sayad M, El-Masry TA, Elsisi AE. Combination of metformin and hesperidin mitigates cyclophosphamide-induced hepatotoxicity. Emerging role of PPAR-γ/Nrf-2/NF-κB signaling pathway. Int Immunopharmacol 2023; 117:109891. [PMID: 36812672 DOI: 10.1016/j.intimp.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Cyclophosphamide (CP) is widely used as an immunosuppressive and chemotherapeutic drug. However, its therapeutic application is restricted by its adverse effects, particularly hepatotoxicity. Both metformin (MET) and hesperidin (HES) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, the principal aim of the current study is to investigate the hepatoprotective effects of MET, HES, and their combinations on the CP-induced hepatotoxicity model. Hepatotoxicity was evoked by a single (I.P) injection of CP (200 mg/kg) on day 7. For this study, 64 albino rats were randomly categorized into eight equal groups; naïve, control vehicle, untreated CP (200 mg/kg, IP), and CP 200 groups treated with MET 200, HES 50, HES 100 or a combination of MET 200 with HES 50 and HES 100 respectively orally daily for 12 days. At the end of the study, the liver function biomarkers, oxidative stress, inflammatory parameters, histopathological and immunohistochemical analysis of PPAR-γ, Nrf-2, NF-κB, Bcl-2, and caspase3 were assessed. CP significantly increased serum ALT, AST, total bilirubin, hepatic MDA, NO content, NF-κB, and TNF-α. Otherwise, albumin, hepatic GSH content, Nrf-2, and PPAR-γ expression decreased considerably compared to the control vehicle group. The combinations of MET200 with HES50 or HES100 induced pronounced hepatoprotective, anti-oxidative, anti-inflammatory, and anti-apoptotic effects on CP-treated rats. The possible explanation of such hepatoprotective effects may be mediated via upregulation of Nrf-2, PPAR-γ, Bcl-2 expression, hepatic GSH content, and marked suppression of TNF-α and NF-κB expression. In conclusion, the current study showed that combining MET and HES revealed a remarkable hepatoprotective effect against CP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kareman M El-Beheiry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Magda El-Sayed El-Sayad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Alaa E Elsisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
10
|
Al-Rahim AM, Mahmood RI, Mohammed MM, Omer D. In vitro evaluation of antioxidant and cytotoxic activity of folate-methotrexate conjugated to bovine serum albumin nanoparticles against MCF-7, HepG2, and PC3 cell lines. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Gur C, Kandemir FM, Caglayan C, Satıcı E. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways. Chem Biol Interact 2022; 365:110073. [PMID: 35921949 DOI: 10.1016/j.cbi.2022.110073] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/04/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022]
Abstract
Paclitaxel (PTX) is a widely used chemotherapeutic drug particularly effective against lung, breast, and ovarian cancer, though its usefulness is limited due to its multi-organ toxicity. The mechanisms underlying PTX toxicity are currently not yet known and there are no approved treatments for its control or prevention. This study aimed to investigate whether hesperidin (HSP) had a protective effect on paclitaxel-induced hepatotoxicity and nephrotoxicity from biochemical, and molecular perspectives. The rats were administered PTX 2 mg/kg, b.w. intraperitoneally for the first 5 consecutive days, then 100 or 200 mg/kg b.w. HSP orally for 10 consecutive days. Our results demonstrated that HSP decreased the PTX induced lipid peroxidation, improved the serum hepatic and renal functions (by decreasing the levels of AST, ALT, ALP, urea, and creatinine), and restored the liver and kidney antioxidant armory (SOD, CAT, GPx, and GSH). HSP also significantly reduced mRNA expression levels of NF-κB, TNF-α, IL-1β, IL-6, MAPK 14, Caspase-3, Bax, LC3A, LC3B, MMP2, and MMP9 whereas caused an increase in levels of Nrf2, HO-1, and Bcl-2 in the kidney and liver of PTX-induced rats. In addition, caspase-3, Bax, and Bcl-2 protein levels were examined by Western blot analysis, and it was determined that HSP decreased caspase-3 and Bax protein levels, but increased Bcl-2 protein levels. The findings of the study suggest that HSP has chemopreventive potential against PTX-induced hepatorenal toxicity plausibly through the attenuation of oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Emine Satıcı
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
12
|
Olayinka ET, Ore A, Adewole KE, Oyerinde O. Evaluation of the toxicological effects of atrazine-metolachlor in male rats: in vivo and in silico studies. Environ Anal Health Toxicol 2022; 37:e2022021-0. [PMID: 36262065 PMCID: PMC9582417 DOI: 10.5620/eaht.2022021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
The types and mechanisms of atrazine-metolachlor toxicity, an herbicide composed of atrazine (ATR) and metolachlor (MET), need to be further investigated. This study evaluated the toxic actions of ATR-MET by in vivo and in silico methods. Here, varying doses of ATR-MET were orally administered to rats once daily for twenty-one days using normal saline as control. Molecular docking was used to characterize the binding of ATR and MET with androgen receptor (AR) to predict their potential endocrine-disrupting effects, using testosterone as benchmark. ATR-MET-induced-testicular toxicity (reduced sperm motility, count, and daily sperm production and increased live/dead ratio) was accompanied with testicular oxidative stress (diminished level of reduced glutathione, activities of glutathione-S-transferase, superoxide dismutase and catalase and increased level of malondialdehyde). Furthermore, ATR-MET induced cardiovascular toxicity (increased levels of plasma total cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides) with concomitant induction of renal toxicity (increased plasma creatinine and urea levels), and hepatotoxicity (increased plasma bilirubin, alkaline phosphatase, acid phosphatase, alanine aminotransferase and aspartate aminotransferase). Binding energy and amino acid interactions from in silico study revealed that MET possessed endocrine-disrupting capacity. In conclusion, exposure to atrazine-metolachlor could promote cardiovascular, renal, hepatic, as well as reproductive impairment in experimental male albino rats.
Collapse
Affiliation(s)
- Ebenezer Tunde Olayinka
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University Oyo, Oyo State
Nigeria
| | - Ayokanmi Ore
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University Oyo, Oyo State
Nigeria
| | - Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State,
Nigeria
| | - Oyepeju Oyerinde
- Biochemistry Unit, Department of Chemical Sciences, Ajayi Crowther University Oyo, Oyo State
Nigeria
| |
Collapse
|
13
|
Al-Abkal F, Abdel-Wahab BA, El-Kareem HFA, Moustafa YM, Khodeer DM. Protective Effect of Pycnogenol against Methotrexate-Induced Hepatic, Renal, and Cardiac Toxicity: An In Vivo Study. Pharmaceuticals (Basel) 2022; 15:ph15060674. [PMID: 35745592 PMCID: PMC9229807 DOI: 10.3390/ph15060674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022] Open
Abstract
Methotrexate (MTX) is one of the most commonly used chemotherapies for various types of cancer, including leukemia, breast cancer, hepatocarcinoma, and gastric cancers. However, the efficacy of MTX is frequently limited by serious side effects. Several studies have reported that the cytotoxic effect of MTX is not limited to cancer cells but can also affect normal tissues, leading to prospective damage to many organs. In the present study, we extensively investigated the molecular and microscopic basis of MTX-induced toxicity in different organs (liver, kidney, and heart) and explored the possible protective effect of pycnogenol, a polyphenolic component extracted from the bark of P. pinaster, to attenuate these effects. Biochemical analysis revealed that administration of MTX significantly reduced the function of the liver, kidney, and heart. Histological and immunohistochemical analysis indicated that MTX treatment caused damage to tissues of different organs. Interestingly, administration of pycnogenol (10, 20, and 30 mg/kg) significantly attenuated the deterioration effects of MTX on different organs in a dose-dependent manner, as demonstrated by biochemical and histological analysis. Our results reveal that pycnogenol successfully ameliorated oxidative damage and reduced toxicity, inflammatory response, and histological markers induced by methotrexate treatment. Taken together, this study provides solid evidence for the pharmacological application of pycnogenol to attenuate damage to different organs induced by MTX treatment.
Collapse
Affiliation(s)
- Faten Al-Abkal
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (F.A.-A.); (Y.M.M.)
| | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt;
| | - Hanaa F. Abd El-Kareem
- Zoology Department, Faculty of Science, Ain Shams University, Abbasseya, Cairo 11566, Egypt;
| | - Yasser M. Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (F.A.-A.); (Y.M.M.)
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Cairo 11829, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (F.A.-A.); (Y.M.M.)
- Correspondence: ; Tel.: +20-100-93345855
| |
Collapse
|
14
|
Alfwuaires MA. Galangin mitigates oxidative stress, inflammation, and apoptosis in a rat model of methotrexate hepatotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20279-20288. [PMID: 34729716 DOI: 10.1007/s11356-021-16804-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Methotrexate (MTX) is an efficient chemotherapeutic agent for treating various malignancies and autoimmune diseases. However, the long-term use of MTX can result in hepatotoxicity and this limits its use. Galangin (Gal) is a potent flavonoid with various biological activities; however, its protective effect against MTX hepatotoxicity has not been previously investigated. This study evaluated the hepatoprotective of Gal against MTX-induced liver injury. Rats received Gal for 10 days and a single dose of MTX (20 mg/kg) at day 7. The administration of MTX induced liver damage reflected by increased serum biomarkers of liver function and histopathological manifestations. MTX increased hepatic reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA), and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), and diminished GSH and antioxidant enzymes. Gal relieved liver injury, ameliorated liver function, oxidative stress, and inflammation markers, and increased antioxidants in MTX-treated rats. In addition, Gal decreased the expression of inflammation and apoptosis markers in MTX-treated rats. In conclusion, Gal possesses a hepatoprotective effect mediated by attenuating oxidative damage, inflammation, and apoptosis in rats.
Collapse
Affiliation(s)
- Manal A Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
15
|
Protective effects of melatonin and L-carnitine against methotrexate-induced toxicity in isolated rat hepatocytes. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:87-97. [PMID: 34821957 DOI: 10.1007/s00210-021-02176-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to evaluate the possible protective effects of melatonin (MEL) and/or L-carnitine (L-CAR) against methotrexate (MTX)-induced toxicity in isolated rat hepatocytes. Hepatocytes were prepared using collagenase techniques of perfusion and digestion of rat liver. Trypan blue uptake, as well as, glutathione (GSH), lipid peroxidation (LPO), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-α) levels were measured. Caspase-3 activity was also assessed. Pre-incubation of hepatocytes with MEL (1 mM) and/or L-CAR (10 mM) 30 min prior to intoxication with MTX, significantly protected hepatocytes against toxicity. In addition, LPO, NO, TNF-α levels, and caspase-3 activity were decreased in comparison to the MTX-intoxicated group. Furthermore, the two drugs increased the MTX-depleted GSH level. MEL and L-CAR prevented MTX-induced hepatocytotoxicity, at least partly, by their antioxidative, antiinflammatory, and antiapoptotic effects. Further studies are recommended on the clinical pharmacologic and toxicologic effects of MEL and L-CAR in patients receiving MTX.
Collapse
|
16
|
Osman AT, Sharkawi SMZ, Hassan MIA, Abo-Youssef AM, Hemeida RAM. Empagliflozin and neohesperidin protect against methotrexate-induced renal toxicity via suppression of oxidative stress and inflammation in male rats. Food Chem Toxicol 2021; 155:112406. [PMID: 34256053 DOI: 10.1016/j.fct.2021.112406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Kidney injury from chemotherapy is one of the worsening problems associated with methotrexate (MTX) use. This work aims to examine the nephroprotective effects of empagliflozin (EMPA) and neohesperidin dihydrochalcone (NHD) provoked by MTX. A rat model was implemented by a single administration of MTX (20 mg/kg, i.p.). EMPA and NHD were administered in two doses (10 and 30 mg/kg, p.o.) and (40 and 80 mg/kg, p.o.), respectively for 14 consecutive days, using N-acetylcysteine (150 mg/kg, p.o.) as a reference standard. Pretreatment with EMPA and NHD showed significant attenuation in the renal function biomarkers, histopathological abrasions, and renal oxidative parameters. Also, EMPA and NHD pretreatment produced marked reductions in the expression of IL-6 and TNF-α level as proinflammatory biomarkers. Furthermore, EMPA and NHD pretreatment revealed marked decreases in the expression level of NF-ĸB, Keap1, HSP70, and caspase-3 and notable increases in Nrf2, PPARγ and HO-1 expression levels. EMPA and NHD can constrain oxidative stress liberation, inflammatory mediators proliferation, and apoptotic reactions in the renal tissue, which may be promising for further clinical applications to protect against MTX-induced renal injury or at least to reduce its adverse effects.
Collapse
Affiliation(s)
- Adel T Osman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Souty M Z Sharkawi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed I A Hassan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| |
Collapse
|
17
|
Empagliflozin and neohesperidin mitigate methotrexate hepatotoxicity via Nrf2/PPARγ/HO-1 signalling initiation and suppression of NF-κB/Keap1/HSP70/caspase-3 axis in rats. Life Sci 2021; 278:119638. [PMID: 34051216 DOI: 10.1016/j.lfs.2021.119638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
Hepatotoxicity is the main adverse effect of methotrexate (MTX), which limits its clinical use and effectiveness. Both empagliflozin (EMPA) and neohesperidin dihydrochalcone (NHD) have promising criteria for suppressing oxidative stress, inflammation and apoptosis. In this current study, we suggested that EMPA and NHD exhibit protective effects against MTX-triggered liver injury, considering N-acetylcysteine (NAC) as a reference standard. In order to inspect our suggestion, An experimental rat model comprising 70 male adult rats (7 groups, 10 rats in each) was implemented to investigate the effects of MTX (20 mg/kg, i.p. once), alone or with EMPA (10 and 30 mg/kg/day, p.o.), NHD (40 and 80 mg/kg/day, p.o.), and NAC (150 mg/kg/day, p.o.) compared to the normal control animals (1%CMC, p.o.). Pre-treatment with EMPA and NHD showed significant attenuation in liver function abnormalities, pathological tissue deteriorations, hepatic oxidative stress parameters, and the level of expression of pro-inflammatory cytokines TNF-α and IL-6. Also, EMPA and NHD showed significant decreases in NF-κB/Keap1/HSP70/caspase-3 and increases in Nrf2/PPARγ/HO-1 expression levels. In addition, EMPA and NHD showed a marked enhancement of the anti-tumour activity of MTX against HepG2 and lung (A549) cancer cells. This research reveals that both EMPA and NHD can inhibit oxidation, inflammatory reactions, and apoptosis in the liver tissues of MTX-treated rats, mainly through Nrf2/PPARγ/HO-1 signalling initiation and suppression of NF-κB/Keap1/HSP70/caspase-3 axis, considered a unique class of drugs that attenuates or at least delays the onset of MTX-induced toxicity and serves as an innovative therapeutic target for future clinical application in humans.
Collapse
|
18
|
Kuzu M, Kandemir FM, Yıldırım S, Çağlayan C, Küçükler S. Attenuation of sodium arsenite-induced cardiotoxicity and neurotoxicity with the antioxidant, anti-inflammatory, and antiapoptotic effects of hesperidin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10818-10831. [PMID: 33099738 DOI: 10.1007/s11356-020-11327-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
In the scope of the study, the protective effect of hesperidin (HES), a flavanone glycoside, was investigated against sodium arsenite (NaAsO2, SA) induced heart and brain toxicity. For this purpose, 35 Sprague-Dawley male rats were divided into 5 different groups, 7 in each group. Physiological saline was given to the first group. Dose of 200 mg/kg of HES to the second group, 10 mg/kg dose of SA to the 3rd group, 100 mg/kg HES and 10 mg/kg SA to the 4th group, 200 mg/kg HES, and 10 mg/kg SA to the 5th group were given orally for 15 days. At the end of the study, biochemical, histopathological, and immunohistochemical examinations were performed on the heart and brain tissues of the rats. According to the results, SA increased malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and decreased glutathione (reduced, GSH) level and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in both tissues. Also, it increased cardiac lactate dehydrogenase (LDH) and creatine kinase isoenzyme-MB (CK-MB) activities and cardiac troponin-I level (cTn-I), cerebral acetylcholine esterase activity, nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-one beta (IL-1β), and cysteine aspartate-specific protease-3 (caspase-3) levels. In addition, as a result of histopathological examination, it was determined that SA damaged tissue architecture, and as a result of immunohistochemical examination, it increased cardiac Bcl-2-associated X protein (Bax) and cerebral glial fibrillary acidic protein (GFAP) expression. The results have also shown that HES co-treatment has an antioxidant, anti-inflammatory, antiapoptotic effect on SA-induced toxicity and aids to protect tissue architecture by showing a regulatory effect on all values. Consequently, it was determined that HES co-treatment had a protective effect on SA-induced heart and brain toxicity in rats.
Collapse
Affiliation(s)
- Müslüm Kuzu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk, Turkey.
| | - Fatih Mehmet Kandemir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Cüneyt Çağlayan
- Department of Basic Sciences, Faculty of Veterinary Medicine, Bingöl University, Bingol, Turkey
| | - Sefa Küçükler
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
19
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|