1
|
Machado BG, Passos FRS, Antoniolli ÂR, Menezes Pereira EW, Santos TKB, Monteiro BS, de Souza Siqueira Lima P, Matos SS, Duarte MC, de Souza Araújo AA, da Silva Almeida JRG, Oliveira Júnior RG, Coutinho HDM, Quintans-Júnior LJ, de Souza Siqueira Quintans J. Enhancing orofacial pain relief: α-phellandrene complexed with hydroxypropyl-β-cyclodextrin mitigates orofacial nociception in rodents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03561-2. [PMID: 39495266 DOI: 10.1007/s00210-024-03561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Orofacial pain affects 10-15% of adults and can severely impact quality of life. Despite ongoing treatment challenges, monoterpene alpha-phellandrene (PHE) shows potential therapeutic benefits. This study aimed to develop and evaluate an inclusion complex of PHE with hydroxypropyl-beta-cyclodextrin (PHE-HPβCD) for treating orofacial pain. The PHE-HPβCD complex was created using physical mixing and characterized by differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC) to determine encapsulation efficiency. The complex exhibited a 70.45% encapsulation efficiency. Male Swiss mice were used in models of orofacial pain induced by formalin, cinnamaldehyde, glutamate, and corneal nociception by hypertonic saline. Additionally, cytokine levels (TNF-α and IL-1β) were measured in the upper lip tissue of mice subjected to the formalin model. Both PHE and PHE-HPβCD showed significant antinociceptive effects at a 50 mg/kg dose during formalin-induced pain, reducing both neurogenic and inflammatory phases of pain. PHE-HPβCD also reduced TNF-α and IL-1β levels. For cinnamaldehyde and glutamate-induced nociception, both treatments reduced pain behavior, but only PHE-HPβCD decreased eye wipes in corneal nociception. These results suggest that PHE, especially in complexed form, alleviates orofacial pain by potentially modulating pain-related receptors (TRPA1 and TRPV1), mediators, like glutamate, and reducing pro-inflammatory cytokines. Further research is needed to explore the precise mechanisms of PHE in chronic orofacial pain models, but the study indicates promising avenues for new pain treatments.
Collapse
Affiliation(s)
| | | | | | - Erik W Menezes Pereira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Brenda Souza Monteiro
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Bouabdallah S, Brinza I, Boiangiu RS, Ibrahim MH, Honceriu I, Al-Maktoum A, Cioanca O, Hancianu M, Amin A, Ben-Attia M, Hritcu L. The Effect of a Tribulus-Based Formulation in Alleviating Cholinergic System Impairment and Scopolamine-Induced Memory Loss in Zebrafish ( Danio rerio): Insights from Molecular Docking and In Vitro/In Vivo Approaches. Pharmaceuticals (Basel) 2024; 17:200. [PMID: 38399415 PMCID: PMC10891926 DOI: 10.3390/ph17020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Tribulus terrestris L. (Tt) has been recently gaining attention for its pharmacological value, including its neuroprotective activities. In this study, we explore the neuroprotective effects of a Tribulus terrestris extract in a zebrafish (Danio rerio) model of scopolamine (SCOP)-induced memory impairment and brain oxidative stress. SCOP, an anticholinergic drug, was employed to replicate fundamental aspects of Alzheimer's disease (AD) in animal models. The fish were treated with ethanolic leaf extract (ELE) from Tt (1, 3, and 6 mg/L) for 15 days. SCOP (100 µM) was administered 30 min before behavioral tests were conducted. Molecular interactions of the major compounds identified via UPLC-PDA/MS in Tt fractions with the active site of acetylcholinesterase (AChE) were explored via molecular docking analyses. Terrestrosin C, protodioscin, rutin, and saponin C exhibited the most stable binding. The spatial memory performance was assessed using the Y-maze test, and memory recognition was examined using a novel object recognition (NOR) test. Tt extract treatment reversed the altered locomotion patterns that were caused by SCOP administration. Biochemical analyses also verified Tt's role in inhibiting AChE, improving antioxidant enzyme activities, and reducing oxidative stress markers. The present findings pave the way for future application of Tt as a natural alternative to treat cognitive disorders.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Laboratoire de Biosurveillance de l’Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azha University, Cairo 11884, Egypt
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| | - Amna Al-Maktoum
- Biology Department, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mossadok Ben-Attia
- Laboratoire de Biosurveillance de l’Environnement (LR01/ES14), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna 7021, Tunisia;
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (L.H.)
| |
Collapse
|
3
|
Javed J, Anjum I, Najm S, Ali N, Nasir Hayat Malik M, Jahan S, Dawoud TM, Nafidi HA, Bourhia M. Uroprotective Potential of Campesterol in Cyclophosphamide Induced Interstitial Cystitis; Molecular Docking Studies. Chem Biodivers 2023; 20:e202301534. [PMID: 37984454 DOI: 10.1002/cbdv.202301534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Cyclophosphamide (CYP) is commonly used to treat cancer of the ovaries, breast, lymph, and blood system and produces interstitial cystitis (IC) via its urotoxic metabolite: i. e., acrolein. The present study was aimed to investigate the uroprotective effect of campesterol (a steroidal phytochemical) in cyclophosphamide induced IC. IC was induced by CYP (150 mg/kg, i. p.) in rats. The Enzyme linked immunosorbent assays for oxidative stress markers and Polymerase Chain Reaction (PCR) for inflammatory cytokines were carried out. The Tissue Organ Bath Technique was used for the evaluation of the spasmolytic effect of campesterol. Different pharmacological antagonists have been used to explore the mechanism of action of campesterol. Treatment with campesterol (70 mg/kg) reduced nociception (55 %), edema (67 %), hemorrhage (67 %), and protein leakage significantly (94 %). The antioxidant activity of campesterol was exhibited by a fall in MDA, NO, and an elevation in SOD, CAT, and GPX levels. Campesterol presented anti-inflammatory potential by decreasing IL-1, TNF-α, and TGF-β expression levels. Histologically, it preserved urothelium from the deleterious effect of CYP. Campesterol showed a spasmolytic effect by reducing bladder overactivity that was dependent on muscarinic receptors, voltage-gated calcium and KATP channels, and cyclo-oxygenase pathways. In silico studies confirmed the biochemical findings. The findings suggest that campesterol could be valorized as a possible therapeutic agent against cyclophosphamide-induced interstitial cystitis.
Collapse
Affiliation(s)
- Joham Javed
- Faculty of Pharmacy, The University of Lahore, Lahore, 55150, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan
| | - Saima Najm
- Lahore College of Pharmaceutical Sciences, Department of Pharmacy, Lahore, 55150, Pakistan
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 55150, Pakistan
| | | | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 55150, Pakistan
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, QC G1 V0 A6, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, 70000, Morocco
| |
Collapse
|
4
|
Anjum I, Ali D, Bourhia M, Chaudhry MA, Siddique F, Bibi M, Gaafar ARZ, Zair T, Khallouki F. Cuminum cyminum Ameliorates Urotoxic Effects of Cyclophosphamide by Modulating Antioxidant, Inflammatory Cytokines, and Urinary Bladder Overactivity: In vivo and in Silico Investigations. Chem Biodivers 2023; 20:e202301268. [PMID: 37843082 DOI: 10.1002/cbdv.202301268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/17/2023]
Abstract
Interstitial Cystitis (IC) is a chronic inflammatory disease that lacks effective treatment. The present study aimed to investigate the potential of aqueous ethanol extract of Cuminum cyminum (AEECC) on oxidative stress, inflammation and overactivity of urinary bladder induced by cyclophosphamide (CYP). Female Sprague-Dawley rats received intraperitoneal administration of cyclophosphamide (150 mg/kg, i. p. 1st , 4th , and 7th days). To investigate the urothelial damage, the bladder weight, nociception behavior, and Evans blue dye extravasation method was used. The antioxidants CAT, GPX and NO were measured. ELISA determined the IL-6 and TNF-α levels. The spasmolytic effect of AEECC was investigated on isolated bladder strips and its mechanisms were determined. The enhanced nociception behavior, bladder weight, vascular permeability, edema, hemorrhage, nitric oxide, IL-6 and TNF-α levels by CYP administration were significantly reduced by AEECC (250 and 500 mg/kg). A significant increase in serum antioxidant system such as CAT and GPx was also observed in AEECC-treated rats. The AEECC (3 mg/ml) significantly reduced urinary bladder tone in the strips pre-contracted with carbachol in both control and CYP-treated rats. This relaxation was demolished by atropine, nifedipine, glibenclamide, and indomethacin but not with propranolol. The plant extract showed the presence of antioxidant and anti-inflammatory phytochemicals. These results suggest that Cuminum cyminum offers uroprotective activity and can ameliorate CYP-induced bladder toxicity by modulating antioxidant parameters, pro-inflammatory cytokine levels and bladder smooth muscle overactivity. The in silico binding interactions of antioxidant 2I3Y and anti-inflammatory protein 1TNF with various ligands from Cuminum cyminum seeds revealed potential bioactive compounds with promising antioxidant and anti-inflammatory properties, providing valuable insights for drug development and nutraceutical research.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, 44000, Pakistan
| | - Daanyaal Ali
- Faculty of Pharmacy, The University of Lahore, Lahore, 54590, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, 70000, Morocco
| | | | - Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, 12211, Saudi Arabia
| | - Touriya Zair
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes, 50070, Morocco
| | - Farid Khallouki
- Biology Department, FSTE, University Moulay Ismail BP. 609, 52000, Errachidia, Morocco
| |
Collapse
|
5
|
Saima, Anjum I, Najm S, Barkat K, Nafidi HA, Bin Jardan YA, Bourhia M. Caftaric Acid Ameliorates Oxidative Stress, Inflammation, and Bladder Overactivity in Rats Having Interstitial Cystitis: An In Silico Study. ACS OMEGA 2023; 8:28196-28206. [PMID: 38173953 PMCID: PMC10763566 DOI: 10.1021/acsomega.3c01450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/12/2023] [Indexed: 01/05/2024]
Abstract
Interstitial cystitis (IC) is the principal unwanted effect associated with the use of cyclophosphamide (CYP). It results in increased oxidative stress, overexpression of proinflammatory cytokines, and bladder overactivity. Patients receiving CYP treatment had severely depreciated quality of life, as the treatment available is not safe and effective. The goal of this study was to assess the protective effect of caftaric acid in CYP-induced IC. IC was induced in female Sprague Dawley by injecting CYP (150 mg/kg, i.p.). In the present study, oral administration of caftaric acid (20, 40, and 60 mg/kg) significantly decreased inflammation. Caftaric acid significantly increased SOD (93%), CAT (92%), and GSH (90%) while decreased iNOS (97%), IL-6 (90%), TGF 1-β (83%), and TNF-α (96%) compared to the diseased. DPPH assay showed the antioxidant capacity comparable to ascorbic acid. Molecular docking of caftaric acid with selected protein targets further confirmed its antioxidant and anti-inflammatory activities. The cyclophosphamide-induced bladder overactivity had been decreased possibly through the inhibition of M3 receptors, ATP-sensitive potassium channels, calcium channels, and COX enzyme by caftaric acid. Therefore, our findings demonstrate that caftaric acid has a considerable protective role against CYP-induced IC by decreasing the oxidative stress, inflammation, and bladder smooth muscle hyperexcitability. Thus, caftaric acid signifies a likely adjuvant agent in CYP-based chemotherapy treatments.
Collapse
Affiliation(s)
- Saima
- Faculty
of Pharmacy, The University of Lahore, Lahore 55150, Pakistan
| | - Irfan Anjum
- Faculty
of Pharmacy, The University of Lahore, Lahore 55150, Pakistan
| | - Saima Najm
- Department
of Pharmacy, Lahore College of Pharmaceutical
Sciences, Lahore 55150, Pakistan
| | - Kashif Barkat
- Faculty
of Pharmacy, The University of Lahore, Lahore 55150, Pakistan
| | - Hiba-Allah Nafidi
- Department
of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325, Quebec City, Quebec G1V 0A6, Canada
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory
of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| |
Collapse
|
6
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
7
|
Mercan M, Sehirli AO, Gultekin C, Chukwunyere U, Sayiner S, Gencosman S, Cetinel S, Abacioglu N. MESNA (2-Mercaptoethanesulfonate) Attenuates Brain, Heart, and Lung Injury Induced by Carotid Ischemia-Reperfusion in Rats. Niger J Clin Pract 2023; 26:941-948. [PMID: 37635578 DOI: 10.4103/njcp.njcp_654_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Ischemia-reperfusion (I/R) causes organ dysfunction as a result of the increased formation of various reactive oxygen metabolites, infiltration of inflammatory cells, interstitial edema, cellular dysfunction, and tissue death. Aim The study aimed to investigate the cytoprotective effect of 2-mercaptoethanesulfonate (MESNA) against tissue damage in rats exposed to carotid ischemia-reperfusion. Materials and Methods Twenty-four male Wistar albino rats were divided into four groups (n = 6): sham, carotid I/R, I/R + MESNA (75 mg/kg), and I/R + MESNA (150 mg/kg) groups. To induce ischemia in rats, the carotid arteries were ligated with silk sutures for 10 min; the silk suture was then opened, and 1 h reperfusion was done. MESNA (75 and 150 mg/kg) was administered intraperitoneally 30 min before ischemia-reperfusion. Tissue samples from the animals were taken for histological examination, while the serum levels of some biochemical parameters were utilized to evaluate the systemic alterations. ANOVA and Tukey's post hoc tests were applied with a significance level of 5%. Results The ischemia-reperfusion-induced tissue damage as evidenced by increase in serum levels of alanine transaminase, aspartate aminotransferase, alkaline phosphatase, malondialdehyde, lactate dehydrogenase, and matrix metalloproteinases (MMP-1, -2, -8) was significantly (P < 0.05-0.0001) reversed after treatment with MESNA in a dose-dependent manner. Treatment with MESNA (75 and 150 mg/kg), significantly (P < 0.05-0.0001) decreased the I/R-induced increase in serum tumor necrosis factor-alpha (TNF-α) and Interleukin-1-beta (IL-1 β). Conclusion The results of this study suggest that MESNA has a protective effect on tissues by suppressing cellular responses to oxidants and inflammatory mediators associated with carotid ischemia-reperfusion.
Collapse
Affiliation(s)
- M Mercan
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - A O Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - C Gultekin
- Department of Surgery, Faculty of Veterinary, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - U Chukwunyere
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Gencosman
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| | - S Cetinel
- Department of Histology and Embryology, Faculty of Medicine, Marmara University, İstanbul, Türkiye
| | - N Abacioglu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Near East Boulevard, 99138 Nicosia, North Cyprus
| |
Collapse
|
8
|
Anjum I, Mobashar A, Jahan S, Najm S, Nafidi HA, Bin Jardan YA, Bourhia M. Spasmolytic and Uroprotective Effects of Apigenin by Downregulation of TGF-β and iNOS Pathways and Upregulation of Antioxidant Mechanisms: In Vitro and In Silico Analysis. Pharmaceuticals (Basel) 2023; 16:811. [PMID: 37375759 DOI: 10.3390/ph16060811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Apigenin is a phytochemical obtained from Chamomilla recutita. Its role in interstitial cystitis is not yet known. The present study is aimed at understanding the uroprotective and spasmolytic effects of apigenin in cyclophosphamide-induced interstitial cystitis. The uroprotective role of apigenin was analyzed by qRT-PCR, macroscopic analysis, Evans blue dye leakage, histological evaluation, and molecular docking. The spasmolytic response was measured by adding cumulative concentrations of apigenin to isolated bladder tissue pre-contracted with KCl (80 mM) and carbachol (10-9-10-4) on non-incubated and pre-incubated tissues with atropine, 4DAMP, methoctramine, glibenclamide, barium chloride, nifedipine, indomethacin, and propranolol. Apigenin inhibited pro-inflammatory cytokines (IL-6, TNF-α and TGF 1-β) and oxidant enzymes (iNOS) while increasing antioxidant enzymes (SOD, CAT, and GSH) in CYP-treated groups compared to the control. Apigenin restored normal tissue of the bladder by decreasing pain, edema, and hemorrhage. Molecular docking further confirmed the antioxidant and anti-inflammatory properties of apigenin. Apigenin produced relaxation against carbachol-mediated contractions, probably via blockade of M3 receptors, KATP channels, L-type calcium channels, and prostaglandin inhibition. While the blockade of M2 receptors, KIR channels, and β-adrenergic receptors did not contribute to an apigenin-induced spasmolytic effect, apigenin presented as a possible spasmolytic and uroprotective agent with anti-inflammatory, antioxidant effects by attenuating TGF-β/iNOS-related tissue damage and bladder muscle overactivity. Thus, it is a potential agent likely to be used in treatment of interstitial cystitis.
Collapse
Affiliation(s)
- Irfan Anjum
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences Lahore, Lahore 54600, Pakistan
| | - Saima Najm
- Department of Pharmacy, Lahore College of Pharmaceutical Sciences, Lahore 54000, Pakistan
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11481, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| |
Collapse
|
9
|
Peng X, Zhang X, Wang C, Olatunji OJ. Protective effects of asperuloside against cyclophosphamide-induced urotoxicity and hematotoxicity in rats. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Cyclophosphamide (CP) is a highly efficacious chemotherapy drug for treating cancers and autoimmune disorders, but it is also notable for its deleterious side effects including urotoxicity in cancer patients, which has been extensively linked to CP-induced oxidative/inflammatory cascades. Herein, we investigated the protective effects of asperuloside (ASP) against CP-induced urotoxicity. Rats received oral administration of ASP (20 and 40 mg/kg bw/day) for 35 days and were injected with weekly CP (100 mg/kg bw, i.p.) for 4 weeks to induce acute bladder toxicity. CP acutely altered haematological parameters and significantly reduced body weight gain, bladder glutathione peroxidase, reduced glutathione, catalase, and superoxide dismutase activities. Furthermore, CP caused an upward surge in bladder malondialdehyde, nuclear factor-kappa B, tumour necrosis factor-α, interleukin-1β, and interleukin 6 concentrations. ASP supplementation ameliorated CP-induced haematological derangement and bladder urotoxicity through the restoration of oxidative and inflammatory parameters in CP-treated rats. These findings suggested that ASP could be valorised as a possible therapeutic agent against chemotherapy-related toxicities as well as oxidative damage disorders.
Collapse
Affiliation(s)
- Xiaozhuang Peng
- Emergency Intensive Care Unit, Wuhu Second Peoples Hospital , Wuhu City , 241001, Anhui , China
| | - Xiaomin Zhang
- Emergency Intensive Care Unit, Wuhu Second Peoples Hospital , Wuhu City , 241001, Anhui , China
| | - Chen Wang
- Emergency Intensive Care Unit, Wuhu Second Peoples Hospital , Wuhu City , 241001, Anhui , China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University , Hat Yai , 90110 , Thailand
| |
Collapse
|
10
|
A Narrative Review on the Bioactivity and Health Benefits of Alpha-Phellandrene. Sci Pharm 2022. [DOI: 10.3390/scipharm90040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aromatic essential oils play a significant role in pharmaceuticals, food additives, cosmetics, and perfumery. Essential oils mostly comprise aliphatic hydrocarbons, monoterpenoids, sesquiterpenoids and diterpenes. Plant extracts comprise a complex mixture of terpenes, terpenoids, aliphatic and phenol-derived aromatic components. Terpenes are a significant class of hydrocarbons with numerous health benefits. These biological functions of essential oil components are examined in vitro and in vivo studies. Some studies evaluated the properties and functions of α-phellandrene (α-PHE). Detailed evaluation to determine the functions of α-PHE over a spectrum of health care domains needs to be initiated. Its possible mechanism of action in a biological system could reveal the future opportunities and challenges in using α-PHE as a pharmaceutical candidate. The biological functions of α-PHE are reported, including anti-microbial, insecticidal, anti-inflammatory, anti-cancer, wound healing, analgesic, and neuronal responses. The present narrative review summarizes the synthesis, biotransformation, atmospheric emission, properties, and biological activities of α-PHE. The literature review suggests that extended pre-clinical studies are necessary to develop α-PHE-based adjuvant therapeutic approaches.
Collapse
|
11
|
Almeida de Oliveira LS, de Moura Bandeira SR, Gomes Gonçalves RL, Pereira de Sousa Neto B, Carvalho de Rezende D, dos Reis-Filho AC, Sousa IJO, Pinheiro-Neto FR, Timah Acha B, do Nascimento Caldas Trindade G, do Nascimento LG, de Sousa DP, de Castro Almeida FR, Lucarini M, Durazzo A, Arcanjo DDR, de Assis Oliveira F. The Isopropyl Gallate Counteracts Cyclophosphamide-Induced Hemorrhagic Cystitis in Mice. BIOLOGY 2022; 11:728. [PMID: 35625456 PMCID: PMC9138278 DOI: 10.3390/biology11050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Hemorrhagic cystitis is the main adverse effect associated with the clinical use of oxazaphosphorine, resulting in increased oxidative stress and proinflammatory cytokines, which culminate in injury of the bladder tissue. The aim of this study was to evaluate the protective effect of isopropyl gallate (IPG) against ifosfamide (IFOS)-induced hemorrhagic cystitis in mice. The induction of the hemorrhagic cystitis model was carried out using a single dose of IFOS (400 mg/kg, i.p.) four hours after oral pretreatment with IPG (6.25, 12.5, 25, and 50 mg/kg) or saline (vehicle). Mesna (positive control; 80 mg/kg, i.p.) was administered four hours before and eight hours after induction of cystitis. In the present study, IPG 25 mg/kg significantly decreased edema and hemorrhage, with a reduction of the bladder wet weight (36.86%), hemoglobin content (54.55%), and peritoneal vascular permeability (42.94%) in urinary bladders of mice. Interestingly, IPG increased SOD activity (89.27%) and reduced MDA levels (35.53%), as well as displayed anti-inflammatory activity by decreasing TNF-α (88.77%), IL-1β (62.87%), and C-reactive protein (56.41%) levels. Our findings demonstrate that IPG has a substantial protective role against IFOS-induced hemorrhagic cystitis in mice by enhancing antioxidant activity and proinflammatory mechanisms. Thus, IPG represents a promising co-adjuvant agent in oxazaphosphorine-based chemotherapy treatments.
Collapse
Affiliation(s)
- Lucas Solyano Almeida de Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Sara Raquel de Moura Bandeira
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Rodrigo Lopes Gomes Gonçalves
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Benedito Pereira de Sousa Neto
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Diana Carvalho de Rezende
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Antonio Carlos dos Reis-Filho
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Ian Jhemes Oliveira Sousa
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Flaviano Ribeiro Pinheiro-Neto
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Boris Timah Acha
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Gabriela do Nascimento Caldas Trindade
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Lázaro Gomes do Nascimento
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.G.d.N.); (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.G.d.N.); (D.P.d.S.)
| | - Fernanda Regina de Castro Almeida
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Daniel Dias Rufino Arcanjo
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
- Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil
| | - Francisco de Assis Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| |
Collapse
|
12
|
Fatima M, Anjum I, Abdullah A, Abid SZ, Malik MN. Boswellic Acids, Pentacyclic Triterpenes, Attenuate Oxidative Stress, and Bladder Tissue Damage in Cyclophosphamide-Induced Cystitis. ACS OMEGA 2022; 7:13697-13703. [PMID: 35559194 PMCID: PMC9088903 DOI: 10.1021/acsomega.1c07292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 06/03/2023]
Abstract
Boswellic acids, derived from the Boswellia serrata plant, have been demonstrated to have anti-inflammatory properties in experimental animal models. The present study was aimed to evaluate the uro-protective effect of boswellic acids in rats with cyclophosphamide-induced cystitis. Interstitial cystitis was induced by cyclophosphamide (CYP). In order to analyze the reduction of the urothelial damage, the bladder weight, the nociception response, and the Evans blue dye extravasation from the bladder were evaluated. To investigate the involvement of lipid peroxidation and enzymatic antioxidants CAT, SOD, and GPX and MPO and NO were evaluated. IL-6 and TNF-α were measured by the ELISA immunoassay technique. The results showed that pretreatment with boswellic acids significantly reduced urothelial damage which was accompanied by a decrease in the activity of MDA, CPO, and NO levels and prevention of the depletion of CAT, SOD, and GPX. The levels of IL-6 and TNF-α were dramatically reduced by boswellic acids. Histopathological findings revealed a considerable reduction in cellular infiltration, edema, epithelial denudation, and bleeding. Our findings showed that boswellic acids, by their antioxidant and anti-inflammatory properties, negate the detrimental effects of cyclophosphamide on the bladder, suggesting boswellic acids as promising therapeutic alternatives for cystitis.
Collapse
Affiliation(s)
- Maryam Fatima
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, 54000 Lahore, Pakistan
| | - Irfan Anjum
- Department
of Pharmacology, Faculty of Pharmacy, The
University of Lahore, 54000 Lahore, Pakistan
| | - Aamir Abdullah
- Allama
Iqbal Medical College, Jinnah Hospital Lahore, 54550 Lahore, Pakistan
| | - Shaun Zshaan Abid
- Allama
Iqbal Medical College, Jinnah Hospital Lahore, 54550 Lahore, Pakistan
| | | |
Collapse
|
13
|
Boiangiu RS, Bagci E, Dumitru G, Hritcu L, Todirascu-Ciornea E. Angelica purpurascens (Avé-Lall.) Gilli. Essential Oil Improved Brain Function via Cholinergic Modulation and Antioxidant Effects in the Scopolamine-Induced Zebrafish ( Danio rerio) Model. PLANTS (BASEL, SWITZERLAND) 2022; 11:1096. [PMID: 35448824 PMCID: PMC9030736 DOI: 10.3390/plants11081096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Angelica purpurascens (Avé-Lall.) Gilli. is a medicinal plant that displays antioxidant, anticholinesterase, and neuroprotective properties. The effect of A. purpurascens essential oil (APO) on memory impairments and brain oxidative stress in zebrafish (Danio rerio) treated with scopolamine (Sco), as well as the underlying mechanism involved, were investigated in this study. Exposure to Sco (100 μM) resulted in anxiety in zebrafish, as assessed by the novel tank diving test (NTT), whereas spatial memory and novelty response dysfunctions, as evidenced by the Y-maze test and novel object recognition test (NOR), were noticed. When zebrafish were given Sco and simultaneously given APO (25 and 150 μL/L, once daily for 13 days), the deficits were averted. An increase in brain antioxidant enzymes, a reduction of lipid peroxidation, and protein oxidation were linked to this impact. Furthermore, acetylcholinesterase (AChE) activity was significantly reduced in the brains of APO-treated zebrafish. The main detected components in the APO composition were β-phellandrene (33.80%), sabinene (6.80%), α-pinene (5.30%), germacrene-D (4.50%), α-phellandrene (4.20%), and p-cymene (3.80%) based on gas chromatography-mass spectrometry (GC-MS) investigations. Our findings show that APO's beneficial effect in a zebrafish model of Sco-induced memory impairment is mediated through multiple mechanisms, including the restoration of cholinergic system function and the improvement of the brain antioxidant state. As a result, APO could be employed as a potential source of bioactive molecules with useful biological properties and medicinal uses.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Eyup Bagci
- Department of Biology, Faculty of Science, Firat University, 23119 Elazig, Turkey;
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (R.S.B.); (E.T.-C.)
| |
Collapse
|
14
|
Chen J, Xu L, Jiang L, Wu Y, Wei L, Wu X, Xiao S, Liu Y, Gao C, Cai J, Su Z. Sonneratia apetala seed oil attenuates potassium oxonate/hypoxanthine-induced hyperuricemia and renal injury in mice. Food Funct 2021; 12:9416-9431. [PMID: 34606558 DOI: 10.1039/d1fo01830b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonneratia apetala seeds are considered as prospective nutraceuticals with a high content of unsaturated fatty acids (UFAs) which are mainly distributed in the oil. It is well-known that UFAs could exhibit urate-lowering potency and protect against renal injury, indicating that S. apetala seed oil (SSO) may possess hypouricemic and nephroprotective effects. Consequently, the present work attempted to probe into the effects and mechanisms of SSO on potassium oxonate/hypoxanthine-induced hyperuricemia and associated renal injury. The results indicated that SSO treatment prominently inhibited the increase of serum uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) levels and hepatic xanthine oxidase (XOD) activity in hyperuricemia mice. Kidney indexes and histopathological lesions were also remarkably ameliorated. Additionally, SSO treatment improved the renal anti-oxidant status in hyperuricemia mice by significantly reversing the increase in ROS and MDA levels as well as the decline in SOD, CAT and GSH-Px activities. SSO dramatically downregulated the expression and secretion of pro-inflammatory factors involving MCP-1, IL-1β, IL-6, IL-18 and TNF-α elicited by hyperuricemia. Furthermore, after SSO treatment, increased protein expressions of GLUT9, URAT1 and OAT1 in the hyperuricemia mice were obviously reversed. SSO treatment enormously restored Nrf2 activation and subsequent translation of related anti-oxidative enzymes in the kidneys. TXNIP/NLRP3 inflammasome activation was also obviously suppressed by SSO. In conclusion, SSO exerted favorable hypouricemic effects owing to its dual functions of downregulating the XOD activity and modulating the expressions of renal urate transport-associated proteins, and it also could alleviate hyperuricemia-induced renal injury by restoring the Keap1-Nrf2 pathway and blocking the TXNIP/NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jinfen Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Lieqiang Xu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Linyun Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Long Wei
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.
| | - Xiaoli Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shihong Xiao
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.
| | - Yuhong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China. .,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China
| | - Jian Cai
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China. .,Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China
| | - Ziren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China. .,Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Medicine, Dongguan, 523808, People's Republic of China
| |
Collapse
|
15
|
Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, Giraldo-Gomez DM, Magaña JJ, Leyva-Gómez G. Therapeutic Applications of Terpenes on Inflammatory Diseases. Front Pharmacol 2021; 12:704197. [PMID: 34483907 PMCID: PMC8414653 DOI: 10.3389/fphar.2021.704197] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/03/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the search for natural products with biological applications as alternative treatments for several inflammatory diseases has increased. In this respect, terpenes are a family of organic compounds obtained mainly from plants and trees, such as tea, cannabis, thyme, and citrus fruits like lemon or mandarin. These molecules present attractive biological properties such as analgesic and anticonvulsant activities. Furthermore, several studies have demonstrated that certain terpenes could reduce inflammation symptoms by decreasing the release of pro-inflammatory cytokines for example, the nuclear transcription factor-kappa B, interleukin 1, and the tumor necrosis factor-alpha. Thus, due to various anti-inflammatory drugs provoking side effects, the search and analysis of novel therapeutics treatments are attractive. In this review, the analysis of terpenes' chemical structure and their mechanisms in anti-inflammatory functions are addressed. Additionally, we present a general analysis of recent investigations about their applications as an alternative treatment for inflammatory diseases. Furthermore, we focus on terpenes-based nanoformulations and employed dosages to offer a global perspective of the state-of-the-art.
Collapse
Affiliation(s)
- María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, Ciudad de México, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Lidia Escutia-Guadarrama
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David M. Giraldo-Gomez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Unidad de Microscopía, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jonathan J. Magaña
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Instituto Tecnologico de Monterrey, Ciudad de México, México
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|