1
|
Zhang R, Chen P, Wang Y, Zeng Z, Yang H, Li M, Liu X, Yu W, Hou P. Targeting METTL3 enhances the chemosensitivity of non-small cell lung cancer cells by decreasing ABCC2 expression in an m 6A-YTHDF1-dependent manner. Int J Biol Sci 2024; 20:4750-4766. [PMID: 39309428 PMCID: PMC11414383 DOI: 10.7150/ijbs.97425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has crucial functions in m6A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC50 values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent in vitro and in vivo anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m6A modification of ABCC2 mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m6A-modified mRNA of ABCC2, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m6A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.
Collapse
Affiliation(s)
- Rui Zhang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Pu Chen
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yubo Wang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Zekun Zeng
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Huini Yang
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Mengdan Li
- Department of Cardiology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710061, P.R. China
| | - Xi Liu
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Yu
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- International Joint Research Center for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
2
|
Januškevičienė I, Petrikaitė V. Exploring doxorubicin transport in 2D and 3D models of MDA-MB-231 sublines: impact of hypoxia and cellular heterogeneity on doxorubicin accumulation in cells. Am J Cancer Res 2024; 14:3584-3599. [PMID: 39113879 PMCID: PMC11301288 DOI: 10.62347/vnwh9165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) treatment is challenging due to its aggressive nature and heterogeneity of this type of cancer, characterized by various subtypes and intratumoral diversity. Doxorubicin (DOX) plays a crucial role in TNBC chemotherapy reducing the tumor size and improving patient survival. However, decreased drug uptake and increased resistance in specific cell subpopulations reduce the effectiveness of the treatment. This study explored the differences in DOX transport in MDA-MB-231 phenotypic sublines in cell monolayer (2D model) and cell spheroids (3D cultures). Cell spheroids were formed using magnetic 3D Bioprinting method. DOX transport into cells and spheroids was evaluated using fluorescence microscopy after different incubation durations with DOX in normoxia and hypoxia. In hypoxia, DOX transport into cells was 2.5 to 5-fold lower than in normoxia. The subline F5 monolayer-cultured cells exhibited the highest DOX uptake, while subline H2 cells showed the lowest uptake in normoxia and hypoxia. In 3D cultures, DOX transport was up to 2-fold lower in spheroids formed from subline H2 cells. Spheroids from subline D8 and MDA-MB-231 parent cells had the highest DOX uptake. A correlation was observed between the characteristics of the cells and their resistance to anticancer drugs. The results indicate that different cancer cell subpopulations in tumours due to differences in drug uptake could significantly impact treatment efficacy.
Collapse
Affiliation(s)
- Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences Sukilėlių av., LT-50162 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences Sukilėlių av., LT-50162 Kaunas, Lithuania
| |
Collapse
|
3
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Hallmarks of cancer resistance. iScience 2024; 27:109979. [PMID: 38832007 PMCID: PMC11145355 DOI: 10.1016/j.isci.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
This review explores the hallmarks of cancer resistance, including drug efflux mediated by ATP-binding cassette (ABC) transporters, metabolic reprogramming characterized by the Warburg effect, and the dynamic interplay between cancer cells and mitochondria. The role of cancer stem cells (CSCs) in treatment resistance and the regulatory influence of non-coding RNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are studied. The chapter emphasizes future directions, encompassing advancements in immunotherapy, strategies to counter adaptive resistance, integration of artificial intelligence for predictive modeling, and the identification of biomarkers for personalized treatment. The comprehensive exploration of these hallmarks provides a foundation for innovative therapeutic approaches, aiming to navigate the complex landscape of cancer resistance and enhance patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Shome R, Sen P, Sarkar S, Ghosh SS. Single-cell transcriptomics reveals the intra-tumoral heterogeneity and SQSTM1/P62 and Wnt/β-catenin mediated epithelial to mesenchymal transition and stemness of triple-negative breast cancer. Exp Cell Res 2024; 438:114032. [PMID: 38583856 DOI: 10.1016/j.yexcr.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by the complex tumor microenvironment (TME) consisting of an abundance of mesenchymal stem cells (MSCs), which is known to facilitate epithelial-to-mesenchymal transition (EMT). The development of single-cell genomics is a powerful method for defining the intricate genetic landscapes of malignancies. In this study, we have employed single-cell RNA sequencing (scRNA-seq) to dissect the intra-tumoral heterogeneity and analyze the single-cell transcriptomic landscape to detect rare consequential cell subpopulations of significance. The scRNA-seq analysis of TNBC and Normal patient derived samples revealed that EMT markers and transcription factors were most upregulated in MSC population. Further, exploration of gene expression analysis among TNBC and Normal patient-derived MSCs ascertained the role of SQSTM1/P62 and Wnt/β-catenin in TNBC progression. Wnt/β-catenin and Wnt/PCP signaling pathways are prominent contributors of EMT, stemness, and cancer stem cell (CSC) properties of TNBC. SQSTM1/P62 cooperates with the components of the Wnt/PCP signaling pathway and is critically involved at the interface of autophagy and EMT. Moreover, siRNA targeting SQSTM1/P62 and inhibitor of Wnt/β-catenin (FH535) in conjunction was used to explore molecular modification of EMT and stemness markers. Although SQSTM1/P62 is not crucial for cell survival, cytotoxicity assay revealed synergistic interaction between the siRNA/inhibitor. Modulation of these important pathways helped in reduction of expression of genes and proteins contributing to CSC properties. Gene and protein expression analysis revealed the induction of EMT to MET. Moreover, co-treatment resulted in inactivation of non-canonical Wnt VANGL2-JNK signaling axis. The synergistic impact of inhibition of SQSTM1/P62 and Wnt/β-catenin signaling facilitates the development of a potential therapeutic regimen for TNBC.
Collapse
Affiliation(s)
- Rajib Shome
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 39, Assam, India.
| |
Collapse
|
5
|
Strachowska M, Gronkowska K, Sobczak M, Grodzicka M, Michlewska S, Kołacz K, Sarkar T, Korszun J, Ionov M, Robaszkiewicz A. I-CBP112 declines overexpression of ATP-binding cassette transporters and sensitized drug-resistant MDA-MB-231 and A549 cell lines to chemotherapy drugs. Biomed Pharmacother 2023; 168:115798. [PMID: 37913733 DOI: 10.1016/j.biopha.2023.115798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Despite extensive efforts and ongoing progress in personalized anticancer approaches, chemotherapy remains the first line or the only treatment for some tumors that may develop resistance to chemotherapeutics in time due to inter alia overexpression of ATP-binding cassette transporters. Using clinically-relevant resistant models of triple negative breast cancer (MDA-MB-231; TNBC) as well as non-small cell lung cancer (A549; NSCLC), we tested the efficacy of I-CBP112 - CBP/EP300 bromodomain inhibitor to overcome drug resistance by declining ABC gene transcription. I-CBP112 significantly reduced ABCB1, ABCC1, ABCC2, ABCC3, ABCC5 and ABCG2 in all resistant lines, as well as ABCC10 in TNBC and ABCC4 in paclitaxel-resistant NSCLC, thereby increasing intracellular drug accumulation and cytotoxicity in 2D and 3D cultures. This was phenocopied only by the joint effect of ABC inhibitors such as tariquidar (ABCB1 - P-glycoprotein and ABCG2) and MK-571 (ABCC), whereas single inhibition of ABCB1/ABCG2 or ABCC proteins did not affect drug accumulation, thereby implying the need of simultaneous deficiency in activity of majority of drug pumps for enhanced drug retention. I-CBP112 failed to directly inhibit activity of ABCB1, ABCG2 and ABCC subfamily members at the same time. Importantly, I-CBP112 treated cancer cells polarized human macrophages into proinflammatory phenotypes. Moreover, I-CBP112 remained non-toxic to primary cell lines, nor did it enhance anticancer drug toxicity to blood-immune cells. In silico assay of ADMET properties confirmed the desired pharmacokinetic features of I-CBP112. The results suggest that the CBP/p300 inhibitor is a promising co-adjuvant to chemotherapy in drug-resistant cancer phenotypes, capable of decreasing ABC transporter expression.
Collapse
Affiliation(s)
- Magdalena Strachowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland.
| | - Karolina Gronkowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Maciej Sobczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Pomorska St. 251, 92-213 Lodz, Poland
| | - Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Kinga Kołacz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland
| | - Tuhin Sarkar
- Department of Microbiology, University of Kalyani, West Bengal 741245, India
| | - Joanna Korszun
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha St. 12/16, 90-237 Lodz, Poland; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Szaserow St. 128, 04-349 Warsaw, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland; Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 2 Dabrowskiego Sq, 09-402, Plock, Poland
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska St.141/143, 90-236 Lodz, Poland.
| |
Collapse
|
6
|
Feng T, Hou P, Mu S, Fang Y, Li X, Li Z, Wang D, Chen L, Lu L, Lin K, Wang S. Identification of cholesterol metabolism-related subtypes in nonfunctioning pituitary neuroendocrine tumors and analysis of immune infiltration. Lipids Health Dis 2023; 22:127. [PMID: 37563740 PMCID: PMC10413501 DOI: 10.1186/s12944-023-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the role of cholesterol metabolism-related genes in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) invading the cavernous sinus and analyze the differences in immune cell infiltration between invasive and noninvasive NF-PitNETs. METHODS First, a retrospective analysis of single-center clinical data was performed. Second, the immune cell infiltration between invasive and noninvasive NF-PitNETs in the GSE169498 dataset was further analyzed, and statistically different cholesterol metabolism-related gene expression matrices were obtained from the dataset. The hub cholesterol metabolism-related genes in NF-PitNETs were screened by constructing machine learning models. In accordance with the hub gene, 73 cases of NF-PitNETs were clustered into two subtypes, and the functional differences and immune cell infiltration between the two subtypes were further analyzed. RESULTS The clinical data of 146 NF-PitNETs were evaluated, and the results showed that the cholesterol (P = 0.034) between invasive and noninvasive NF-PitNETs significantly differed. After binary logistic analysis, cholesterol was found to be an independent risk factor for cavernous sinus invasion (CSI) in NF-PitNETs. Bioinformatics analysis found three immune cells between invasive and noninvasive NF-PitNETs were statistically significant in the GSE169498 dataset, and 34 cholesterol metabolism-related genes with differences between the two groups were obtained 12 hub genes were selected by crossing the two machine learning algorithm results. Subsequently, cholesterol metabolism-related subgroups, A and B, were obtained by unsupervised hierarchical clustering analysis. The results showed that 12 immune cells infiltrated differentially between the two subgroups. The chi-square test revealed that the two subgroups had statistically significance in the invasive and noninvasive samples (P = 0.001). KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the neural ligand-receptor pathway. GSVA analysis showed that the mTORC signaling pathway was upregulated and played an important role in the two-cluster comparison. CONCLUSION By clinical data and bioinformatics analysis, cholesterol metabolism-related genes may promote the infiltration abundance of immune cells in NF-PitNETs and the invasion of cavernous sinuses by NF-PitNETs through the mTOR signaling pathway. This study provides a new perspective to explore the pathogenesis of cavernous sinus invasion by NF-PitNETs and determine potential therapeutic targets for this disease.
Collapse
Grants
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019Y9045 the Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
- 2020QH2040 Startup Fund for scientific research at Fujian Medical University
Collapse
Affiliation(s)
- Tianshun Feng
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
| | - Pengwei Hou
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shuwen Mu
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yi Fang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxiong Li
- Department of General Surgery, School of Medicine, Dongfang Affiliated Hospital of Xiamen University, Xiamen University, Fuzhou, China
| | - Ziqi Li
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China
| | - Di Wang
- Department of Molecular Pathology, Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuzhou, China
| | - Li Chen
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Lingling Lu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Kunzhe Lin
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shousen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou, China.
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
7
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
8
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
9
|
Lin X, Yang X, Yang Y, Zhang H, Huang X. Research progress of traditional Chinese medicine as sensitizer in reversing chemoresistance of colorectal cancer. Front Oncol 2023; 13:1132141. [PMID: 36994201 PMCID: PMC10040588 DOI: 10.3389/fonc.2023.1132141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the incidences and mortalities from colorectal cancer (CRC) have been increasing; therefore, there is an urgent need to discover newer drugs that enhance drug sensitivity and reverse drug tolerance in CRC treatment. With this view, the current study focuses on understanding the mechanism of CRC chemoresistance to the drug as well as exploring the potential of different traditional Chinese medicine (TCM) in restoring the sensitivity of CRC to chemotherapeutic drugs. Moreover, the mechanism involved in restoring sensitivity, such as by acting on the target of traditional chemical drugs, assisting drug activation, increasing intracellular accumulation of anticancer drugs, improving tumor microenvironment, relieving immunosuppression, and erasing reversible modification like methylation, have been thoroughly discussed. Furthermore, the effect of TCM along with anticancer drugs in reducing toxicity, increasing efficiency, mediating new ways of cell death, and effectively blocking the drug resistance mechanism has been studied. We aimed to explore the potential of TCM as a sensitizer of anti-CRC drugs for the development of a new natural, less-toxic, and highly effective sensitizer to CRC chemoresistance.
Collapse
Affiliation(s)
- Xiang Lin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushang Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbin Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
10
|
Sharma P, Singh N, Sharma S. Genetic variations in ABC transporter genes as a predictive biomarker for toxicity in North Indian lung cancer patients undergoing platinum-based doublet chemotherapy. J Biochem Mol Toxicol 2023; 37:e23269. [PMID: 36507589 DOI: 10.1002/jbt.23269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/26/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
ATP-binding cassette (ABC) transporters are expressed in various human tissues and play a vital role in the efflux of various chemotherapeutic drugs. The current study has assessed genetic variants of ABCB1, ABCC1, ABCC2, and ABCG2 genes in 407 lung cancer patients undergoing platinum-based doublet chemotherapy. The association of ABCB1 (C1236 T, C3435 T, and G2677 T/A), ABCC1 (G3173 A and G2168 A),ABCC2 (G4544 A), and ABCG2 (C421 A) polymorphisms with chemotherapy-induced adverse events were assessed, and statistical analysis was conducted. Our data showed that patients harboring heterozygous (GA) genotype for ABCC1 G3173 A had an increased risk of developing leukopenia (odds ratio [OR] = 1.88, p = 0.04) and anemia (adjusted odds ratio [AOR] = 2.70, p = 0.03). For ABCC2 G4544 A polymorphism, patients harboring one copy of the mutant (GA) allele showed an increased risk of developing anemia (OR = 4.24, p = 0.03). After adjusting with various confounding factors, the heterozygous (GA) genotype showed a 5.63-fold increased risk of developing anemia (AOR = 5.63, p = 0.03). The ABCB1 G2677 A (OR = 0.37, p = 0.008) and ABCC1 G3173 A (OR = 0.54, p = 0.04) polymorphism showed a lower incidence of developing nephrotoxicity. In ABCG2 C421 A polymorphism, patients harboring heterozygous (CA) genotype had a lower incidence of having diarrhea (OR = 0.25, p = 0.04). An increased risk of having diarrhea was observed in the heterozygous genotype (GA) for ABCC1 G3173 A polymorphism (AOR = 2.78, p = 0.04). An increased risk of liver injury was found in the patients carrying heterozygous genotype of the ABCC1 G3173 A (OR = 2.06, p = 0.02) and ABCB1 C1236 T (OR = 1.85, p = 0.01). This study demonstrates the role of polymorphic variations in ABCB1, ABCC1, ABCC2, and ABCG2 in predicting hematological, nephrotoxicity, gastrointestinal, and hepatotoxicity.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
11
|
Stockmann P, Kuhnert L, Leinung W, Lakoma C, Scholz B, Paskas S, Mijatović S, Maksimović-Ivanić D, Honscha W, Hey-Hawkins E. The More the Better-Investigation of Polymethoxylated N-Carboranyl Quinazolines as Novel Hybrid Breast Cancer Resistance Protein Inhibitors. Pharmaceutics 2023; 15:241. [PMID: 36678870 PMCID: PMC9866861 DOI: 10.3390/pharmaceutics15010241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The ineffectiveness and failing of chemotherapeutic treatments are often associated with multidrug resistance (MDR). MDR is primarily linked to the overexpression of ATP-binding cassette (ABC) transporter proteins in cancer cells. ABCG2 (ATP-binding cassette subfamily G member 2, also known as the breast cancer resistance protein (BCRP)) mediates MDR by an increased drug efflux from the cancer cells. Therefore, the inhibition of ABCG2 activity during chemotherapy ought to improve the efficacy of the administered anti-cancer agents by reversing MDR or by enhancing the agents' pharmacokinetic properties. Significant efforts have been made to develop novel, powerful, selective, and non-toxic inhibitors of BCRP. However, thus far the clinical relevance of BCRP-selective MDR-reversal has been unsuccessful, due to either adverse drug reactions or significant toxicities in vivo. We here report a facile access towards carboranyl quinazoline-based inhibitors of ABCG2. We determined the influence of different methoxy-substitution patterns on the 2-phenylquinazoline scaffold in combination with the beneficial properties of an incorporated inorganic carborane moiety. A series of eight compounds was synthesized and their inhibitory effect on the ABCG2-mediated Hoechst transport was evaluated. Molecular docking studies were performed to better understand the structure-protein interactions of the novel inhibitors, exhibiting putative binding modes within the inner binding site. Further, the most potent, non-toxic compounds were investigated for their potential to reverse ABCG2-mediated mitoxantrone (MXN) resistance. Of these five evaluated compounds, N-(closo-1,7-dicarbadodecaboran(12)-9-yl)-6,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-quinazolin-4-amine (DMQCd) exhibited the strongest inhibitory effect towards ABCG2 in the lower nanomolar ranges. Additionally, DMQCd was able to reverse BCRP-mediated MDR, making it a promising candidate for further research on hybrid inorganic-organic compounds.
Collapse
Affiliation(s)
- Philipp Stockmann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Wencke Leinung
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Cathleen Lakoma
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Birte Scholz
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Svetlana Paskas
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, Belgrade University, 11060 Belgrade, Serbia
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Chandra F, Tania TF, Nurcahyanti ADR. Bixin and Fuxoxanthin Alone and in Combination with Cisplatin Regulate ABCC1 and ABCC2 Transcription in A549 Lung Cancer Cells. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:15-20. [PMID: 37313537 PMCID: PMC10259734 DOI: 10.4103/jpbs.jpbs_50_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/15/2023] Open
Abstract
Background The ATP-Binding Cassette (ABC) transporter has long been studied to confer drug resistance in human tumors and play important role in metabolic processes and cellular signaling. The overexpression of ABCB1, ABCC1, ABCC2, ABCC3, and ABCG2 leads to decreased sensitivity of lung cancer to cisplatin. At the transcription level, the expression of ABC transporters is highly regulated and requires the complex interplay of factors involved in differentiation and development, cell survival and apoptosis upon intrinsic and environmental stress. The p53 regulation of drug-resistance genes is also complex yet not well understood. Previously, we demonstrated the synergistic interaction between bixin or fucoxanthin with cisplatin in A549 lung cancer cells. Objectives Current study aims to identify whether carotenoids enhancing therapeutic effect of Cisplatin due to the ability to reverse drug resistance associated proteins, such as ABC transporter and regulating the tumor suppressor corresponding gene, p53. Methods Real-Time Quantitative-Polymerase Chain Reaction (RT-qPCR) was performed to estimate the expression level of ABCC1 and ABCC2, and p53 of A549 cell lines in response to carotenoids alone and in combination with cisplatin. Results and Conclusion The administration of bixin or fucoxanthin decreases the expression of ABCC1 and ABCC2. Both carotenoids, either alone or in combination with cisplatin, upregulated p53 gene expression indicating the mechanism of proliferation inhibition and apoptosis occurs via the p53 caspase-independent pathway.
Collapse
Affiliation(s)
- Ferdy Chandra
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Teresa F. Tania
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Agustina D. R. Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
13
|
Acquired drug resistance interferes with the susceptibility of prostate cancer cells to metabolic stress. Cell Mol Biol Lett 2022; 27:100. [PMCID: PMC9673456 DOI: 10.1186/s11658-022-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed. Methods Using a range of phenotypic and metabolic assays, we assessed the sensitivity of human prostate cancer PC-3 and DU145 cells, and their drug-resistant lineages (PC-3_DCX20 and DU145_DCX20), to combined docetaxel/metformin stress. Their adaptation responses have been assessed, in particular the shifts in their metabolic profile and invasiveness. Results Metformin increased the sensitivity of PC-3 wild-type (WT) cells to docetaxel, as illustrated by the attenuation of their motility, proliferation, and viability after the combined drug application. These effects correlated with the accumulation of energy carriers (NAD(P)H and ATP) and with the inactivation of ABC drug transporters in docetaxel/metformin-treated PC-3 WT cells. Both PC-3 WT and PC-3_DCX20 reacted to metformin with the Warburg effect; however, PC-3_DCX20 cells were considerably less susceptible to the cytostatic/misbalancing effects of metformin. Concomitantly, an epithelial–mesenchymal transition and Cx43 upregulation was seen in these cells, but not in other more docetaxel/metformin-sensitive DU145_DCX20 populations. Stronger cytostatic effects of the combined fenofibrate/docetaxel treatment confirmed that the fine-tuning of the balance between energy supply and expenditure determines cellular welfare under metabolic stress. Conclusions Collectively, our data identify the mechanisms that underlie the limited potential of metformin for the chemotherapy of drug-resistant tumors. Metformin can enhance the sensitivity of cancer cells to chemotherapy by inducing their metabolic decoupling/imbalance. However, the acquired chemoresistance of cancer cells impairs this effect, facilitates cellular adaptation to metabolic stress, and prompts the invasive front formation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00400-1.
Collapse
|
14
|
Lin X, Xu L, Tan H, Zhang X, Shao H, Yao L, Huang X. The potential effects and mechanisms of Gegen Qinlian Decoction in oxaliplatin-resistant colorectal cancer based on network pharmacology. Heliyon 2022; 8:e11305. [DOI: 10.1016/j.heliyon.2022.e11305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
|
15
|
Witkowski J, Polak S, Rogulski Z, Pawelec D. In Vitro/In Vivo Translation of Synergistic Combination of MDM2 and MEK Inhibitors in Melanoma Using PBPK/PD Modelling: Part II. Int J Mol Sci 2022; 23:11939. [PMID: 36233247 PMCID: PMC9570053 DOI: 10.3390/ijms231911939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
The development of in vitro/in vivo translational methods for synergistically acting drug combinations is needed to identify the most effective therapeutic strategies. We performed PBPK/PD modelling for siremadlin, trametinib, and their combination at various dose levels and dosing schedules in an A375 xenografted mouse model (melanoma cells). In this study, we built models based on in vitro ADME and in vivo PK/PD data determined from the literature or estimated by the Simcyp Animal simulator (V21). The developed PBPK/PD models allowed us to account for the interactions between siremadlin and trametinib at PK and PD levels. The interaction at the PK level was described by an interplay between absorption and tumour disposition levels, whereas the PD interaction was based on the in vitro results. This approach allowed us to reasonably estimate the most synergistic and efficacious dosing schedules and dose levels for combinations of siremadlin and trametinib in mice. PBPK/PD modelling is a powerful tool that allows researchers to properly estimate the in vivo efficacy of the anticancer drug combination based on the results of in vitro studies. Such an approach based on in vitro and in vivo extrapolation may help researchers determine the most efficacious dosing strategies and will allow for the extrapolation of animal PBPK/PD models into clinical settings.
Collapse
Affiliation(s)
- Jakub Witkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Adamed Pharma S.A., Adamkiewicza 6a, 05-152 Czosnów, Poland
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Zbigniew Rogulski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | |
Collapse
|
16
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
17
|
Wang L, Sun X, He J, Liu Z. Identification and Validation of Prognostic Related Hallmark ATP-Binding Cassette Transporters Associated With Immune Cell Infiltration Patterns in Thyroid Carcinoma. Front Oncol 2022; 12:781686. [PMID: 35837087 PMCID: PMC9273952 DOI: 10.3389/fonc.2022.781686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a large superfamily of membrane proteins that facilitate the translocation of heterogeneous substrates. Studies indicate that ABC transporters may play important roles in various carcinomas. However, the correlation between ABC transporters and immunomodulation in thyroid carcinoma (TC), as well as the prognoses for this disease, is poorly understood.TC data from The Cancer Genome Atlas (TCGA) database were used to identify prognostic hallmark ABC transporters associated with immune cell infiltration patterns via multiple bioinformatic analyses. Thereafter, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the expression of these selected hallmark ABC transporters in both TC and para-cancerous thyroid tissues. Of a total of 49 ABC transporters, five (ABCA8, ABCA12, ABCB6, ABCB8, and ABCC10) were identified as hallmark ABC transporters. All five were differentially expressed in TC and associated with the relapse-free survival rates of patients with TC. Immunoregulation by these five hallmark ABC transporters involved the modulation of various aspects of immune cell infiltration, such as hot or cold tumor subsets and the abundances of infiltrating immune cells, as well as specific immunomodulators and chemokines. Besides the diverse significantly correlated factors, the five hallmark ABC transporters and correlated genes were most highly enriched in plasma membrane, transporter activity, and transmembrane transport of small molecules. In addition, many chemicals, namely bisphenol A and vincristine, affected the expression of these five transporters. The qRT-PCR results of collected TC and para-cancerous thyroid tissues were consistent with those of TCGA. The findings in this study may reveal the role played by these five hallmark ABC transporters in regulating immune cell infiltration patterns in TC as well as the molecular mechanisms underlying their functions, leading to a better understanding of their potential prognostic and immunotherapeutic values.
Collapse
Affiliation(s)
- Lidong Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
- Department of 1st Gynecologic Oncology Surgery, Jilin Cancer Hospital, Changchun, China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
18
|
Xiao Q, Koutsilieri S, Sismanoglou DC, Lauschke VM. CFTR reduces the proliferation of lung adenocarcinoma and is a strong predictor of survival in both smokers and non-smokers. J Cancer Res Clin Oncol 2022; 148:3293-3302. [PMID: 35715537 PMCID: PMC9587080 DOI: 10.1007/s00432-022-04106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Background One of the main hurdles of oncological therapy is the development of drug resistance. The ABC transporter gene family contributes majorly to cancer chemoresistance. However, effects of somatic expression of most ABC transporters on cancer outcomes remain largely unclear. Methods We systematically analyzed expression signatures of all 48 human ABC transporters in samples from 8562 patients across 14 different cancer types. The association between CFTR (ABCC7) expression and outcomes was analyzed experimentally using knock-downs and pharmacological CFTR stimulation. Results Across 720 analyzed clinical associations with patient outcomes, 363 were nominally significant of which 29 remained significant after stringent Bonferroni correction. Among those were various previously known associations, as well as a multitude of novel factors that correlated with poor prognosis or predicted improved outcomes. The association between low CFTR levels and reduced survival in lung adenocarcinoma was confirmed in two independent cohorts of 246 patients with a history of smoking (logrank P = 0.0021, hazard ratio [HR], 0.49) and 143 never-smokers (logrank P = 0.0023, HR 0.31). Further in vitro experiments using naturally CFTR expressing lung adenocarcinoma cells showed that treatment with CFTR potentiators significantly reduced proliferation at therapeutically relevant concentrations. Conclusions These results suggest that CFTR acts as a pharmacologically activatable tumor suppressor and constitutes a promising target for adjuvant therapy in lung adenocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04106-x.
Collapse
Affiliation(s)
- Qingyang Xiao
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Stefania Koutsilieri
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Despoina-Christina Sismanoglou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.,Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany. .,University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
19
|
Targeting breast cancer resistance protein (BCRP/ABCG2): Functional inhibitors and expression modulators. Eur J Med Chem 2022; 237:114346. [DOI: 10.1016/j.ejmech.2022.114346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/16/2022]
|
20
|
Xavier CP, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
|
21
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|