1
|
Akbarzadeh M, Vahedian V, Hamid Abudulmohesen Z, Ghadimi P, Fathi Maroufi N, Farzaneh A, Bastani S, Roshanravan N, Pirpour Tazehkand A, Fattahi A, Faridvand Y, Talebi M, Farajzadeh D, Akbarzadeh M. The evaluation of melatonin and EGF interaction on breast cancer metastasis. Horm Mol Biol Clin Investig 2024; 0:hmbci-2023-0082. [PMID: 39042852 DOI: 10.1515/hmbci-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Metastasis in breast cancer is the first cause of death in patients. The epidermal growth factor (EGF) increases cancer cells' invasion, and migration. Melatonin's inhibitory effects on various types of cancer were confirmed. This study aimed to investigate whether melatonin could apply its impact through the EGF-related pathways or not. METHODS First, MDA-MB-231 and MCF7 cells were cultured, and then melatonin effects on cell viability were determined by MTT assay. Transwell invasion assay was applied to identify the invasiveness of these breast cancer cell lines under treatment of EGF and melatonin. Real-time RT-PCR then investigated the expression of MMP9 and MMP2 in determined groups. Cell proliferation was also assayed under EGF and melatonin treatment using Ki67 assessment by flow cytometry. RESULTS The rate of invasion and migration of EGF-treated cells increased in both groups, in which melatonin caused increased invasion by EGF just in MCF7 cells. MMP9 and MMP2 expression increased significantly in both cell lines under EGF treatment, and melatonin increased these genes' expression in both cell lines (p<0.05). EGF increased the MMP9 and MMP2 gene expression, and melatonin increased EGF-induced expression (p<0.05). The EGF reduced the expression of the Ki67 protein in the MCF7 cell line, which was negatively affected by melatonin and EGF. In contrast, along with melatonin, EGF did not affect the proliferation of the MDA-MB-231 cell line. CONCLUSIONS The results of this study show that melatonin in the presence of EGF does not show the anti-cancer properties previously described for this substance.
Collapse
Affiliation(s)
- Moloud Akbarzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Department of Hematology, Transfusion Medicine and Cellular Therapy/Cell Therapy Center (CTC-USP), Clinical Hospital and Cancer Institute (ICESP), Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Department of Clinical Medicine, Division of Medical Investigation Laboratory (LIM/31), Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology and Immuno-Oncology, Clinical Hospital, Faculty of Medicine, University of Sao Paulo (FMUSP-HC), Sao Paulo, Brazil
- Comprehensive Center for Translational and Precision Oncology (CTO), SP State Cancer Institute (ICESP), Sao Paulo, Brazil
| | - Zahraa Hamid Abudulmohesen
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz, Iran
- Biomedical Engineering Department, Engineering College, Al-Mustaqbal University, Hillh, Babylon
| | - Parvin Ghadimi
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | - Ali Farzaneh
- Department of Health Information Management, School of Allied Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Bastani
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, 48432 Tabriz University of Medical Sciences , Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Blood Banking Department, Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Farajzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Tangsiri M, Hheidari A, Liaghat M, Razlansari M, Ebrahimi N, Akbari A, Varnosfaderani SMN, Maleki-Sheikhabadi F, Norouzi A, Bakhtiyari M, Zalpoor H, Nabi-Afjadi M, Rahdar A. Promising applications of nanotechnology in inhibiting chemo-resistance in solid tumors by targeting epithelial-mesenchymal transition (EMT). Biomed Pharmacother 2024; 170:115973. [PMID: 38064969 DOI: 10.1016/j.biopha.2023.115973] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.
Collapse
Affiliation(s)
- Mona Tangsiri
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahtab Razlansari
- Faculty of Mathematics and Natural Sciences, Tübingen University, Tübingen 72076, Germany
| | - Narges Ebrahimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Norouzi
- Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| |
Collapse
|
3
|
Li H, Li J, Ma Y, Wang Z, Peng Z, Xu H, Bi H, Althaf Hussain S, Li Z. The active phthalate metabolite, DHEP, induces proliferation and metastasis of prostate cancer cells via upregulation of β-catenin and downregulation of KLF7. Bioorg Chem 2023; 141:106864. [PMID: 37734194 DOI: 10.1016/j.bioorg.2023.106864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Phthalates such as DHEP are among the widely used compounds in industry. It has been shown that DHEP can convey various biological consequences in mammalian cells, among them, the carcinogenic effects of DHEP are emphasized. The present study aimed to assess the impact of DHEP exposure on the proliferation and invasiveness of DU145 prostate cancer cells through in vitro and in vivo models. The DU145 cells were treated with increasing concentrations of DHEP and the tumorigenic parameters were analyzed. KLF7 as a probable mediator of the effect of DHEP was either overexpressed or knocked down in DU145 to evaluate the probable impact of KLF7 on the biological effects of DHEP. The effect of DHEP was also studied in a DU145 xenograft tumor model. The moderate doses of DHEP increased the proliferation and migration of DU145 cells. In the case of gene expression patterns, DHEP reduced the levels of p53 and KLF7 while elevated the expression of β-catenin. The knock-down of KLF7 conveyed comparable effects to that of DHEP to some degree and increased the proliferation of DU145 cells, while the transduction of KLF7 increased the expressions of p53 and p21 along with controlling the tumor size. The present study demonstrated the potential of DHEP in increasing the tumorigenic properties of DU145 cells along with a focus on the underlying mechanisms. Sustained exposure to DHEP can cause a dysregulation in balance between oncogenes and tumor suppressor genes which is the hallmark of malignant transformation. Thus, special considerations seem necessary for the safe exploitation of phthalates.
Collapse
Affiliation(s)
- Hecheng Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jianping Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yubo Ma
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zihe Peng
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hang Xu
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hang Bi
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhaolun Li
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
4
|
Bahremani M, Rashtchizadeh N, Sabzichi M, Vatankhah AM, Danaiyan S, Poursistany H, Mohammadian J, Ghorbanihaghjo A. Enhanced chemotherapeutic efficacy of docetaxel in human lung cancer cell line via GLUT1 inhibitor. J Biochem Mol Toxicol 2023; 37:e23348. [PMID: 36999407 DOI: 10.1002/jbt.23348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023]
Abstract
The dose-dependent adverse effects of anticancer agents need new methods with lesser toxicity. The objective of the current research was to evaluate the efficacy of GLUT1 inhibitor, as an inhibitor of glucose consumption in cancer cells, in augmenting the efficiency of docetaxel with respect to cytotoxicity and apoptosis. Cell cytotoxicity was assessed by using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Annexin V/PI double staining was employed to evaluate apoptosis percentage. Quantitative real-time polymerase chain reaction (RT-PCR) analysis was accomplished to detect the expression of genes involved in the apoptosis pathway. The IC50 values for docetaxel and BAY-876 were 3.7 ± 0.81 and 34.1 ± 3.4 nM, respectively. The severity of synergistic mutual effects of these agents on each other was calculated by synergy finder application. It showed that the percentage of apoptotic cells following co-administration of docetaxel and BAY-876 increased to 48.1 ± 2.8%. In comparison without GLUT1 co-administration, the combined therapy decreased significantly the transcriptome levels of the Bcl-2 and Ki-67 and a remarkable increase in the level of the Bax as proapoptotic protein(p < 0.05). Co-treatment of BAY-876 and docetaxel depicted a synergistic effect which was calculated using the synergy finder highest single agent (HSA) method (HSA synergy score: 28.055). These findings recommend that the combination of GLUT-1 inhibitor and docetaxel can be considered as a promising therapeutic approach for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Mona Bahremani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rashtchizadeh
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Danaiyan
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Mohammadian
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Bakhshandeh N, Mohammadi M, Mohammadi P, Nazari E, Damchi M, Khodabandelu S, Mokhtari H. Increased expression of androgen receptor and PSA genes in LNCaP (prostate cancer) cell line due to high concentrations of EGCG, an active ingredient in green tea. Horm Mol Biol Clin Investig 2022:hmbci-2022-0054. [PMID: 36578191 DOI: 10.1515/hmbci-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Androgen receptor (AR) play a key role in the onset and progression of prostate cancer. Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound and the active ingredient in green tea, which is involved in modulating gene expression through epigenetic alterations. Previous studies have shown that EGCG at low concentrations reduces the expression of AR and prostate-specific antigen (PSA) in the LNCaP cell line of prostate cancer. In this study, the effect of higher EGCG concentrations on AR and PSA expression in LNCaP prostate cancer cell line was investigated. METHODS In this study, LNCaP prostate cancer cell line was used and after MTT test, concentrations of 40, 60 and 80 μg/mL EGCG were used for treatment. Then, the expression of AR and PSA genes was evaluated by RT-PCR. AR protein expression was also assessed by Western blotting. RESULTS The present study showed that treatment of LNCaPs cells by EGCG reduces cell proliferation. The IC50 value was 42.7 μg/mL under experimental conditions. It was also observed that EGCG at concentrations of 40 and 80 μg/mL increased the expression of AR and PSA (p<0.05). CONCLUSIONS The present study showed that the effect of EGCG on AR expression was different at different concentrations, so that unlike previous studies, higher concentrations of EGCG (80 and 40 μg/mL) increased AR and PSA expression. It seems that due to the toxic effects of EGCG in high concentrations on cancer cells and the possibility of its effect on normal cells, more caution should be exercised in its use.
Collapse
Affiliation(s)
- Nadereh Bakhshandeh
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Mohammadi
- Health System Research, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Parisa Mohammadi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Elahe Nazari
- Department of Biology, Islamic Azad University, Gorgan Branch, Gorgan, Iran
| | - Mehdi Damchi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sajad Khodabandelu
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Mokhtari
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Tabakhiyan F, Mir A, Vahedian V. Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6). Horm Mol Biol Clin Investig 2022; 43:389-396. [PMID: 35709206 DOI: 10.1515/hmbci-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC), the most common form of liver cancer, is a leading cause of tumor-associated mortality worldwide. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The progression of HCC is often associated with chronic inflammation, expression levels of inflammatory mediators, chemokine, and cytokines. In this study, we try to evaluate the PI3K and pro-inflammatory cytokines, TGF-β, IL-1, and IL-6 expression level in patients with liver cancer. MATERIALS AND METHODS The kupffer cells were isolated from patient's specimens. Real-time PCR was applied to evaluate the expression level of PI3K in cell lines or tumors. The concentrations of TGF-β, IL-1, and IL-6 were measured by the quantitative ELISA kit. RESULTS PI3K mRNA expression in cancer cells was increased markedly vs. normal cells. The ELISA results demonstrated over expression of TGF-β, IL-1, and IL-6 in patients and positive correlation between tumor size and stage. DISCUSSION This study suggests that targeting the expression level of PI3K and pro-inflammatory chemokine and cytokines, TGF-β, IL-1, and IL-6, may be a potential diagnostic strategy in HCC patients.
Collapse
Affiliation(s)
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Islamic Republic of Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Sao Paulo, Brazil
| |
Collapse
|
7
|
Vascular mimicry: A potential therapeutic target in breast cancer. Pathol Res Pract 2022; 234:153922. [DOI: 10.1016/j.prp.2022.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|