1
|
Liu Y, Wang H, Zhang S, Peng N, Hai S, Zhao H, Liu J, Liu W. The role of mitochondrial biogenesis, mitochondrial dynamics and mitophagy in gastrointestinal tumors. Cancer Cell Int 2025; 25:46. [PMID: 39955547 PMCID: PMC11829463 DOI: 10.1186/s12935-025-03685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Gastrointestinal tumors remain the leading causes of cancer-related deaths, and their morbidity and mortality remain high, which imposes a great socio-economic burden globally. Mitochondrial homeostasis depend on proper function and interaction of mitochondrial biogenesis, mitochondrial dynamics (fission and fusion) and mitophagy. Recent studies have demonstrated close implication of mitochondrial homeostasis in gastrointestinal tumorigenesis and development. In this review, we summarized the research progress on gastrointestinal tumors and mitochondrial quality control, as well as the underlying molecular mechanisms. It is anticipated that the comprehensive understanding of mitochondrial homeostasis in gastrointestinal carcinogenesis would benefit the application of mitochondria-targeted therapies for gastrointestinal tumors in future.
Collapse
Affiliation(s)
- Yihong Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Hao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shen Zhang
- Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Na Peng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Shuangshuang Hai
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Haibo Zhao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| | - Weixin Liu
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, 110001, Liaoning Province, China.
| |
Collapse
|
2
|
Maruyama R, Kudo Y, Sugiyama T. A new strategy for screening novel functional genes involved in reduction of lipid droplet accumulation. Biofactors 2024; 50:467-476. [PMID: 37983968 DOI: 10.1002/biof.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Lipid droplets (LDs) are organelles that store excess lipids and provide fatty acids for energy production during starvation. LDs are also essential for cellular maintenance, but excessive accumulation of LDs triggers various cancers in addition to metabolic diseases such as diabetes. In this study, we aimed to develop a strategy to identify new genes that reduces accumulation of LDs in cancer cells using an RNA interference (RNAi) screening system employing artificial sequence-enriched shRNA libraries. Monitoring LDs by fluorescent activated cell sorting, the subsequently collected cumulative LDs cells, and shRNA sequence analysis identified a clone that potentially functioned to accumulate LDs. The clone showed no identical sequence to human Refseq. It showed very similar sequence to seven genes by allowing three mismatches. Among these genes, we identified the mediator complex subunit 6 (MED6) gene as a target of this shRNA. Silencing of MED6 led to an increase in LD accumulation and expression of the marker genes, PLIN2 and DGAT1, in fatty cells. MED6 is a member of the mediator complex that regulates RNA polymerase II transcription through transcription factor II. Some mediator complexes play important roles in both normal and pathophysiological transcription processes. These results suggest that MED6 transcriptionally regulates the genes involved in lipid metabolism and suppresses LD accumulation.
Collapse
Affiliation(s)
- Ryuto Maruyama
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
- Department of Life Science, Rikkyo University, Tokyo, Japan
| | - Yasuhiro Kudo
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| | - Tomoyasu Sugiyama
- Graduate School of Bionics, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
3
|
Khandibharad S, Singh S. Single-cell ATAC sequencing identifies sleepy macrophages during reciprocity of cytokines in L. major infection. Microbiol Spectr 2024; 12:e0347823. [PMID: 38299832 PMCID: PMC10913457 DOI: 10.1128/spectrum.03478-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
The hallmark characteristic of macrophages lies in their inherent plasticity, allowing them to adapt to dynamic microenvironments. Leishmania strategically modulates the phenotypic plasticity of macrophages, creating a favorable environment for intracellular survival and persistent infection through regulatory cytokine such as interleukin (IL)-10. Nevertheless, these effector cells can counteract infection by modulating crucial cytokines like IL-12 and key components involved in its production. Using sophisticated tool of single-cell assay for transposase accessible chromatin (ATAC) sequencing, we systematically examined the regulatory axis of IL-10 and IL-12 in a time-dependent manner during Leishmania major infection in macrophages Our analysis revealed the cellular heterogeneity post-infection with the regulators of IL-10 and IL-12, unveiling a reciprocal relationship between these cytokines. Notably, our significant findings highlighted the presence of sleepy macrophages and their pivotal role in mediating reciprocity between IL-10 and IL-12. To summarize, the roles of cytokine expression, transcription factors, cell cycle, and epigenetics of host cell machinery were vital in identification of sleepy macrophages, which is a transient state where transcription factors controlled the epigenetic remodeling and expression of genes involved in pro-inflammatory cytokine expression and recruitment of immune cells.IMPORTANCELeishmaniasis is an endemic affecting 99 countries and territories globally, as outlined in the 2022 World Health Organization report. The disease's severity is compounded by compromised host immune systems, emphasizing the pivotal role of the interplay between parasite and host immune factors in disease regulation. In instances of cutaneous leishmaniasis induced by L. major, macrophages function as sentinel cells. Our findings indicate that the plasticity and phenotype of macrophages can be modulated to express a cytokine profile involving IL-10 and IL-12, mediated by the regulation of transcription factors and their target genes post-L. major infection in macrophages. Employing sophisticated methodologies such as single-cell ATAC sequencing and computational genomics, we have identified a distinctive subset of macrophages termed "sleepy macrophages." These macrophages exhibit downregulated housekeeping genes while expressing a unique set of variable features. This data set constitutes a valuable resource for comprehending the intricate host-parasite interplay during L. major infection.
Collapse
Affiliation(s)
- Shweta Khandibharad
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| | - Shailza Singh
- Systems Medicine Lab, National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
4
|
Maruyama R, Sugiyama T. ER Stress Decreases Gene Expression Of Transmembrane Protein 117 Via Activation of PKR-like ER Kinase. Cell Biochem Biophys 2023; 81:459-468. [PMID: 37421592 DOI: 10.1007/s12013-023-01150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Stress response is an inherent mechanism in the endoplasmic reticulum (ER). The inducers of ER cause a specific cascade of reactions, leading to gene expression. Transmembrane protein 117 (TMEM117) is in the ER and plasma membrane. In our previous study, TMEM117 protein expression was found to be decreased by an ER stress inducer. However, the mechanism underlying this decrease in TMEM117 protein expression remains unclear. This study aimed to elucidate the mechanism underlying the decrease in TMEM117 protein expression during ER stress and identify the unfolded protein response (UPR) pathway related to decreased TMEM117 protein expression. We showed that the gene expression levels of TMEM117 were decreased by ER stress inducers and were regulated by PKR-like ER kinase (PERK), indicating that TMEM117 protein expression was regulated by the signaling pathway. Surprisingly, gene knockdown of activating transcription factor 4 (ATF4) downstream of PERK did not affect the gene expression of TMEM117. These results suggest that TMEM117 protein expression during ER stress is transcriptionally regulated by PERK but not by ATF4. TMEM117 has a potential to be a new therapeutic target against ER stress-related diseases.
Collapse
Affiliation(s)
- Ryuto Maruyama
- Graduate School of Bionics, Tokyo University of Technology, 1401-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan.
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| | - Tomoyasu Sugiyama
- Graduate School of Bionics, Tokyo University of Technology, 1401-1 Katakura-machi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|