1
|
Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019; 33:1475-1490. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since the discovery of rewarding intracranial self-stimulation by Olds and Milner, extensive data have been published on the biological basis of reward. Although participation of the mesolimbic dopaminergic system is well documented, its precise role has not been fully elucidated, and some authors have proposed the involvement of other neural systems in processing specific aspects of reinforced behaviour. AIMS AND METHODS We reviewed published data, including our own findings, on the rewarding effects induced by electrical stimulation of the lateral hypothalamus (LH) and of the external lateral parabrachial area (LPBe) - a brainstem region involved in processing the rewarding properties of natural and artificial substances - and compared its functional characteristics as observed in operant and non-operant behavioural procedures. RESULTS Brain circuits involved in the induction of preferences for stimuli associated with electrical stimulation of the LBPe appear to functionally and neurochemically differ from those activated by electrical stimulation of the LH. INTERPRETATION We discuss the possible involvement of the LPBe in processing emotional-affective aspects of the brain reward system.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Maria A Zafra
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology, Mind, Brain and Behaviour Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Negus SS, Moerke MJ. Determinants of opioid abuse potential: Insights using intracranial self-stimulation. Peptides 2019; 112:23-31. [PMID: 30391425 PMCID: PMC6342636 DOI: 10.1016/j.peptides.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Intracranial self-stimulation (ICSS) is one procedure that can be used for preclinical abuse potential assessment. In ICSS procedures, subjects with microelectrodes implanted into a brain-reward region are trained to press an operant response lever for pulses of electrical brain stimulation, and drugs are evaluated for their effectiveness to increase or "facilitate" ICSS responding (an abuse-related effect) or to depress ICSS responding (an abuse-limiting effect). ICSS has been used for decades to evaluate determinants of opioid abuse potential, and this article reviews pharmacological and biological determinants of opioid abuse potential as revealed by ICSS studies in rodents. One of the most important observations from ICSS studies is that abused mu opioid receptor (MOR) agonists like morphine often fail to produce abuse-related ICSS facilitation in opioid-naïve subjects, but several days of repeated opioid exposure is sufficient for opioid-induced facilitation to emerge. Future studies with ICSS could help (a) to clarify mechanisms that increase MOR agonist abuse potential during early opioid exposure or during chronic exposure leading to dependence, (b) to evaluate novel opioids either developed as candidate analgesics with reduced abuse potential or identified as designer opioids being synthesized and distributed for illicit use, and (c) to test candidate pharmacotherapies for treatment of opioid abuse in non-dependent and dependent subjects.
Collapse
Affiliation(s)
- S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond VA 23298, United States.
| | - Megan J Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond VA 23298, United States
| |
Collapse
|
3
|
Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study. Eur Neuropsychopharmacol 2016; 26:445-55. [PMID: 26851200 DOI: 10.1016/j.euroneuro.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/31/2015] [Accepted: 01/15/2016] [Indexed: 11/23/2022]
Abstract
The nonselective opioid receptor antagonist naltrexone is now used for the treatment of alcoholism, yet naltrexone's central mechanism of action remains poorly understood. One line of evidence suggests that opioid antagonists regulate alcohol drinking through interaction with the mesolimbic dopamine system. Hence, our goal here was to examine the role of the nucleus accumbens connectivity in alcohol reinforcement and naltrexone's actions using manganese-enhanced magnetic resonance imaging (MEMRI). Following long-term free-choice drinking of alcohol and water, AA (Alko Alcohol) rats received injections of MnCl2 into the nucleus accumbens for activity-dependent tracing of accumbal connections. Immediately after the accumbal injections, rats were imaged using MEMRI, and then allowed to drink either alcohol or water for the next 24h. Naltrexone was administered prior to the active dark period, and the second MEMRI was performed 24h after the first scan. Comparison of signal intensity at 1 and 24h after accumbal MnCl2 injections revealed an ipsilateral continuum through the ventral pallidum, bed nucleus of the stria terminalis, globus pallidus, and lateral hypothalamus to the substantia nigra and ventral tegmental area. Activation was also seen in the rostral part of the insular cortex and regions of the prefrontal cortex. Alcohol drinking resulted in enhanced activation of these connections, whereas naltrexone suppressed alcohol-induced activity. These data support the involvement of the accumbal connections in alcohol reinforcement and mediation of naltrexone's suppressive effects on alcohol drinking through their deactivation.
Collapse
|
4
|
Simon MJ, Higuera-Matas A, Roura-Martinez D, Ucha M, Santos-Toscano R, Garcia-Lecumberri C, Ambrosio E, Puerto A. Changes in D1 but not D2 dopamine or mu-opioid receptor expression in limbic and motor structures after lateral hypothalamus electrical self-stimulation: A quantitative autoradiographic study. Neurobiol Learn Mem 2015; 127:17-26. [PMID: 26656274 DOI: 10.1016/j.nlm.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH) is involved in the activation of neuroanatomical systems that are also associated with the processing of natural and other artificial rewarding stimuli. Specific components of this behavior (hedonic impact, learning, and motor behavior) may involve changes in different neurotransmitters, such as dopamine and opioids. In this study, quantitative autoradiography was used to examine changes in mu-opioid and D1/D2-dopamine receptor expression in various anatomical regions related to the motor and mesolimbic reward systems after intracranial self-stimulation of the LH. Results of the behavioral procedure and subsequent radiochemical assays show selective changes in D1 but not D2 or mu receptors in Accumbens-Shell, Ventral Pallidum, Caudate-Putamen, and Medial Globus Pallidus. These findings are discussed in relation to the different psychobiological components of the appetitive motivational system, identifying some dissociation among them, particularly with respect to the involvement of the D1-dopamine subsystem (but not D2 or mu receptors) in goal-directed behaviors.
Collapse
Affiliation(s)
- Maria J Simon
- Department of Psychobiology, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain.
| | - A Higuera-Matas
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - D Roura-Martinez
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - M Ucha
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - R Santos-Toscano
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - C Garcia-Lecumberri
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - E Ambrosio
- Department of Psychobiology, National Distance Education University (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - A Puerto
- Department of Psychobiology, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
5
|
Simon MJ, Garcia R, Puerto A. Concurrent stimulation-induced place preference in lateral hypothalamus and parabrachial complex: Differential effects of naloxone. Behav Brain Res 2011; 225:311-6. [DOI: 10.1016/j.bbr.2011.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/12/2011] [Accepted: 07/17/2011] [Indexed: 12/01/2022]
|
6
|
|
7
|
Lloret Linares C, Declèves X, Oppert JM, Basdevant A, Clement K, Bardin C, Scherrmann JM, Lepine JP, Bergmann JF, Mouly S. Pharmacology of morphine in obese patients: clinical implications. Clin Pharmacokinet 2009; 48:635-51. [PMID: 19743886 DOI: 10.2165/11317150-000000000-00000] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Morphine is an analgesic drug used to treat acute and chronic pain. Obesity is frequently associated with pain of various origins (e.g. arthritis, fibromyalgia, cancer), which increases the need for analgesic drugs. Obesity changes drug pharmacokinetics, and for certain drugs, specific modalities of prescription have been proposed for obese patients. However, scant data are available regarding the pharmacokinetics and pharmacodynamics of morphine in obesity. Prescription of morphine depends on pain relief but the occurrence of respiratory adverse effects correlates with obesity, and is not currently taken into account. Variations in the volume of distribution, elimination half-life and oral clearance of morphine, as well as recent advances in the respective roles of drug-metabolizing enzymes, catechol-O-methyltransferase and the mu opioid receptor in morphine pharmacokinetics and pharmacodynamics, may contribute to differences between obese and non-obese patients. In addition, drug-drug interactions may alter the disposition of morphine and its glucuronide metabolites, which may either increase the risk of adverse effects or reduce drug efficacy.
Collapse
Affiliation(s)
- Célia Lloret Linares
- Unit of Therapeutic Research, Department of Internal Medicine, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Stephens MK, Riley AL. Naloxone-precipitated conditioned taste aversions in morphine-dependent Fischer (F344) and Lewis rat strains. Pharmacol Biochem Behav 2008; 92:60-7. [PMID: 19000706 DOI: 10.1016/j.pbb.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/15/2008] [Accepted: 10/17/2008] [Indexed: 11/13/2022]
Abstract
The Fischer 344 (F344) and Lewis (LEW) rat strains are genetically divergent populations that are used to study the effects of and responses to drugs of abuse. In this context, LEW rats display faster acquisition of drug self-administration than F344 rats. Interestingly, these strains have also been reported to differ in their somatic responses to morphine withdrawal. To address possible strain differences in the affective response to withdrawal, the present study assessed the ability of naloxone-precipitated withdrawal from morphine to induce conditioned taste aversions in male F344 and LEW rats. Specifically, subjects from each of these strains were given chronic morphine to induce dependence and then given access to a novel saccharin solution followed by naloxone. These pairings were given every fourth day for a total of two conditioning trials after which subjects were given access to saccharin but without naloxone administration to assess extinction of the naloxone-induced aversion. Behavioral assays of withdrawal were also performed after each naloxone administration. Both F344 and LEW subjects acquired aversions to the naloxone-associated taste with no significant differences in the rate of acquisition of the aversions. Differences did appear during extinction with LEW animals extinguishing the taste aversion significantly faster than F344 animals. The data were discussed in terms of the relative strength of the affective responses during withdrawal and the role of such responses to drug use and abuse.
Collapse
Affiliation(s)
- Melissa K Stephens
- Department of Psychology, American University, Washington, DC 20016, USA.
| | | |
Collapse
|
9
|
CRINER SH, LIU J, SCHULTEIS G. Rapid neuroadaptation in the nucleus accumbens and bed nucleus of the stria terminalis mediates suppression of operant responding during withdrawal from acute opioid dependence. Neuroscience 2007; 144:1436-46. [PMID: 17161915 PMCID: PMC1805631 DOI: 10.1016/j.neuroscience.2006.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/30/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
Abstract
Single injections of morphine induce a state of acute opioid dependence in humans and animals, measured as precipitated withdrawal when an antagonist is administered 4-24 h after morphine. Additional morphine exposure at daily or weekly intervals results in further increases in withdrawal severity, suggesting that acute opioid dependence reflects the early stages in the development of a chronic state of dependence. The current study evaluated the role of the nucleus accumbens (NAC), bed nucleus of stria terminalis (BNST), interstitial nucleus of posterior limb of the anterior commissure (IPAC), and central amygdala (CeA) in the expression of antagonist-precipitated suppression of operant responding for food as a measure of withdrawal from acute opioid dependence. Rats trained on a fixed-ratio 15 schedule received one or four daily injections of morphine, with the lipophobic opioid antagonist methylnaloxonium (16-2000 ng) infused into one of the brain regions or the lateral ventricle (i.c.v.) 4 h after the final morphine injection. After acute morphine methylnaloxonium was more potent upon infusion into the NAC (17.9-fold potency shift), BNST (6.8-fold) and CeA (5.5-fold) than it was upon i.c.v. administration. Following repeat morphine the NAC and BNST but not CeA continued to show greater sensitivity relative to i.c.v. infusion (12.9-, 8.7-, and 3.2-fold potency shifts, respectively). The IPAC was insensitive to methylnaloxonium after acute or repeat morphine at doses that reliably suppressed responding upon i.c.v. infusion (125-500 ng). Thus, among the components of extended amygdala examined in this study, rapid neuroadaptation within the nucleus accumbens and bed nucleus of the stria terminalis appear to play the most prominent role in antagonist-precipitated suppression of operant responding during the early stages in the development of opioid dependence.
Collapse
Affiliation(s)
- S. H. CRINER
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J. LIU
- Department of Anesthesiology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - G. SCHULTEIS
- Department of Anesthesiology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA 92161, USA
| |
Collapse
|
10
|
Amitai N, Liu J, Schulteis G. Discrete cues paired with naloxone-precipitated withdrawal from acute morphine dependence elicit conditioned withdrawal responses. Behav Pharmacol 2006; 17:213-22. [PMID: 16571999 PMCID: PMC2266687 DOI: 10.1097/00008877-200605000-00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acute bolus doses of morphine induce a state of acute opioid dependence as measured by naloxone-precipitated withdrawal. Repeated morphine and precipitated withdrawal experience further enhances naloxone-induced withdrawal severity, partly because of direct neuroadaptation to repeated morphine, and partly because of conditioned associations of context and withdrawal experience. To determine whether a discrete tone/light conditioned stimulus could elicit conditioned withdrawal responses in acute dependence, rats trained on a fixed-ratio-15 operant schedule for food reward received morphine (5.6 mg/kg) 4x at daily or weekly intervals, with each morphine injection followed at 4 h by naloxone (1.0 mg/kg) and an operant session. The conditioned stimulus was presented to a Paired group after each naloxone injection. Separate control groups experienced the conditioned stimulus either at a different time of the day or on a different day of the week than naloxone (Unpaired), received naloxone without any conditioned stimulus exposure [Paired-no conditioned stimulus (Paired-NO CS)] or received vehicle instead of naloxone before conditioned stimulus presentation (NaI-Naive). On the test day, all rats received vehicle before conditioned stimulus exposure. The conditioned stimulus alone reliably suppressed responding in Paired groups relative to control conditions with either daily or weekly intervals between conditioning sessions. The administration of morphine 4 h before conditioned stimulus exposure on the test day was not necessary to observe conditioned withdrawal. Thus, conditioned withdrawal is reliably established to discrete cues associated with naloxone-precipitated withdrawal from acute, infrequent (weekly) opioid exposure.
Collapse
Affiliation(s)
- Nurith Amitai
- Group Program in Neuroscience, University of California, San Diego
| | - Jian Liu
- Group Program in Neuroscience, University of California, San Diego
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA 92161
| | - Gery Schulteis
- Dept. of Anesthesiology, University of California, San Diego
- Group Program in Neuroscience, University of California, San Diego
- Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego CA 92161
| |
Collapse
|
11
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
12
|
Harris AC, Gewirtz JC. Acute opioid dependence: characterizing the early adaptations underlying drug withdrawal. Psychopharmacology (Berl) 2005; 178:353-66. [PMID: 15696323 DOI: 10.1007/s00213-005-2155-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/24/2004] [Indexed: 11/26/2022]
Abstract
RATIONALE While opioid withdrawal is typically studied under conditions of chronic (i.e., continuous) drug administration, withdrawal signs can also be demonstrated in both humans and animals after a single opioid exposure. This phenomenon, termed acute dependence, may be useful in understanding the early stages of opioid dependence and addiction. OBJECTIVE This review provides an overview of acute dependence by comparing withdrawal from acute and chronic opioid exposure across dimensions ranging from symptomatology to neural substrates. Assessment of repeated withdrawals from acute opioid administration is also presented as a tool for better understanding the adaptive changes induced by multiple drug exposures. CONCLUSIONS Although not identical phenomena, acute and chronic dependence share a number of characteristics. Examining potentiations of withdrawal severity across multiple acute opioid exposures may be especially valuable in characterizing the development of drug dependence. Further study of acute dependence promises to lead to more effective treatments for opioid withdrawal and addiction.
Collapse
Affiliation(s)
- Andrew C Harris
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, USA
| | | |
Collapse
|