1
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
2
|
Abstract
Reproductive behavior is the behavior related to the production of offspring and includes all aspects from the establishment of mating systems, courtship, sexual behavior, and parturition to the care of young. In this chapter, I outline the hormonal regulation of the estrous cycle, followed by a description of the neural regulation of female sexual behavior. Ovarian hormones play an important role in the induction of ovulation and behavioral estrus, in which they interact closely with several neurotransmitters and neuropeptides to induce sexual behavior. This chapter discusses the latest research on the role of estrogen, progesterone, serotonin, dopamine, noradrenaline, oxytocin, and GABA in female mating behavior. In addition, the most relevant brain areas, such as the preoptic area and the ventromedial nucleus of the hypothalamus, in which these regulations take place, are discussed.
Collapse
Affiliation(s)
- Eelke M S Snoeren
- Department of Psychology, UiT the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
3
|
García-Juárez M, Beyer C, Gómora-Arrati P, Domínguez-Ordoñez R, Lima-Hernández FJ, Eguibar JR, Galicia-Aguas YL, Etgen AM, González-Flores O. Lordosis facilitation by leptin in ovariectomized, estrogen-primed rats requires simultaneous or sequential activation of several protein kinase pathways. Pharmacol Biochem Behav 2013; 110:13-8. [DOI: 10.1016/j.pbb.2013.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/12/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
4
|
Frau R, Pillolla G, Bini V, Tambaro S, Devoto P, Bortolato M. Inhibition of 5α-reductase attenuates behavioral effects of D1-, but not D2-like receptor agonists in C57BL/6 mice. Psychoneuroendocrinology 2013; 38:542-51. [PMID: 22877998 PMCID: PMC3540184 DOI: 10.1016/j.psyneuen.2012.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022]
Abstract
Converging lines of evidence point to the involvement of neurosteroids in the regulation of dopamine (DA) neurotransmission and signaling, yet the neurobiological bases of this link remain poorly understood. We previously showed that inhibition of steroid 5α-reductase (5αR), the key rate-limiting enzyme in neurosteroidogenesis, attenuates the behavioral effects of non-selective DA receptor agonists in rats, including stereotyped responses and sensorimotor gating deficits, as measured by the prepulse inhibition (PPI) of the acoustic startle reflex. Since previous findings suggested that the role of DA D(1)- and D(2)-like receptor families in behavioral regulation may exhibit broad interspecies and interstrain variations, we assessed the impact of 5αR blockade on the behavioral effects of DAergic agonists in C57BL/6 mice. The prototypical 5αR inhibitor finasteride (FIN; 25-50 mg/kg, intraperitoneally, IP) dose-dependently countered the PPI deficits and the enhancement of rearing responses induced by the full D(1)-like receptor agonist SKF-82958 (0.3 mg/kg, IP); however, FIN did not significantly affect the hyperlocomotive and startle-attenuating effects of SKF-82958. Whereas the D(2)-like receptor agonist quinpirole (QUIN; 0.5 mg/kg, IP) did not induce significant changes in PPI, the combination of this agent and FIN surprisingly produced marked gating and startle deficits. In contrast with previous data on rats, FIN did not affect the reductions of startle reflex and PPI produced by the non-selective DAergic agonist apomorphine (APO; 0.5 mg/kg, IP). These findings collectively indicate that, in C57BL/6 mice, 5αR differentially modulates the effects of D(1)- and D(2)-like receptor agonists in behavioral regulation.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
- Tourette Syndrome Center, University of Cagliari, Italy
| | - Giuliano Pillolla
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Valentina Bini
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Simone Tambaro
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
| | - Paola Devoto
- “Guy Everett” laboratory, Dept. of Biomedical Sciences, University of Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Italy
- Dept. of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles (CA), USA
- Corresponding author: Marco Bortolato, MD PhD, Dept. of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Rm. 527, PSC 1985 Zonal Ave, Los Angeles, CA 90089, Phone: 323-442-3225, Fax: 323-442-3229,
| |
Collapse
|
5
|
Frye CA, Paris JJ, Walf AA, Rusconi JC. Effects and Mechanisms of 3α,5α,-THP on Emotion, Motivation, and Reward Functions Involving Pregnane Xenobiotic Receptor. Front Neurosci 2012; 5:136. [PMID: 22294977 PMCID: PMC3261425 DOI: 10.3389/fnins.2011.00136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/25/2011] [Indexed: 12/13/2022] Open
Abstract
Progestogens [progesterone (P(4)) and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P(4) metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP), influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA), 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR) mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P(4), in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence). Thus, further understanding of 3α,5α-THP's role and mechanisms to enhance affective and motivated processes is essential.
Collapse
Affiliation(s)
- Cheryl A. Frye
- Department of Psychology, The University at Albany-SUNYAlbany, NY, USA
- Biological Sciences, The University at Albany-SUNYAlbany, NY, USA
- The Centers for Neuroscience, The University at Albany-SUNYAlbany, NY, USA
- Life Science Research, The University at Albany-SUNYAlbany, NY, USA
| | - J. J. Paris
- Department of Psychology, The University at Albany-SUNYAlbany, NY, USA
| | - A. A. Walf
- Life Science Research, The University at Albany-SUNYAlbany, NY, USA
| | - J. C. Rusconi
- Biological Sciences, The University at Albany-SUNYAlbany, NY, USA
| |
Collapse
|
6
|
Infusions of anti-sense oligonucleotides for DARPP-32 to the ventral tegmental area reduce effects of progesterone- and a dopamine type 1-like receptor agonist to facilitate lordosis. Behav Brain Res 2009; 206:286-92. [PMID: 19782104 DOI: 10.1016/j.bbr.2009.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 07/14/2009] [Accepted: 09/19/2009] [Indexed: 11/22/2022]
Abstract
Manipulating dopamine and/or adenosine 3',5' monophosphate regulated phosphoprotein of 32 kDa (DARPP-32) can influence sexual behavior of rodents. The ventral tegmental area (VTA) is an important brain site for progestogens to facilitate sexual behavior of rodents. We hypothesized that, in the VTA, dopamine type 1-like receptor (D1)-mediated increases in progesterone (P4)-facilitated lordosis involve DARPP-32. To investigate this, ovariectomized hamsters and rats, primed with estradiol (E2; 10 microg), received infusions to the VTA of saline vehicle or sense or anti-sense oligonucleotides targeted against DARPP-32 (4 nM). Subjects were then administered P4 via subcutaneous injection (hamsters: 200 microg; rats: 0 or 100 microg). Hamsters and rats were pre-tested for lordosis 3.5 h post-P4 injections, and then infused with the D1 agonist SKF38393 (100 ng) or vehicle to the VTA, and re-tested for sexual behavior 30 min later. Anti-sense oligonucleotides targeted against DARPP-32, but not infusions of sense oligonucleotides, to the VTA blocked the ability of systemic P4 to enhance receptive behavior of hamsters and rats. Similarly, SKF38393-mediated increases in P4-facilitated sexual behaviors were blocked by DARPP-32 anti-sense oligonucleotides to the VTA. The same pattern of effects was not observed in rats that were primed with E2-alone. Together, these findings suggest that, in the midbrain VTA, P4's actions to facilitate sexual behavior of female rodents, involving D1 receptors, may require DARPP-32.
Collapse
|
7
|
Frye CA, Walf AA. In the ventral tegmental area, progestogens' membrane-mediated actions for lordosis of rats involve the second-messenger phospholipase C. Brain Res 2008; 1230:218-23. [PMID: 18671954 DOI: 10.1016/j.brainres.2008.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/03/2008] [Accepted: 07/08/2008] [Indexed: 11/16/2022]
Abstract
Steroid hormones have pervasive functional effects. Although steroids are generally known to have actions via binding to their cognate steroid receptors, it is becoming clearer that steroids can have non-traditional actions that do not require activation of cognate steroid receptors. We have found that progestogen-facilitated lordosis of rodents is enhanced by activation of dopamine type 1 (D1) or GABA(A) receptors and their downstream effectors, such as second messengers, in the ventral tegmental area (VTA). The role of phospholipase C in these effects is not clear. If progestins' actions through D1 and GABA(A) receptors in the VTA are mediated through PLC, then inhibiting PLC formation in the VTA, via infusions of U73122 (400nM/side), should reduce progestin (5alpha-pregnan-3alpha-ol-20-one; 3alpha,5alpha-THP; 100 or 200ng/side)-facilitated lordosis and its enhancement by D1 (SKF38393; 100ng/side) or GABA(A) (muscimol; 100ng/side) receptor agonists in ovariectomized, estradiol-primed rats. We found that 3alpha,5alpha-THP-, SKF38393-, and muscimol-facilitated lordosis was attenuated by infusions of the PLC inhibitor, U73122, but not vehicle, to the VTA. Thus, progestogens' non-traditional actions in the VTA to enhance lordosis through D1 and/or GABA(A) include activity of PLC.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, Research, The University at Albany - SUNY, Albany, NY 12222, USA.
| | | |
Collapse
|
8
|
Frye CA, Walf AA. In the ventral tegmental area, the membrane-mediated actions of progestins for lordosis of hormone-primed hamsters involve phospholipase C and protein kinase C. J Neuroendocrinol 2007; 19:717-24. [PMID: 17680887 DOI: 10.1111/j.1365-2826.2007.01580.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Progestin-facilitated lordosis of rodents is enhanced by activation of dopamine type 1 (D(1)) or GABA(A) receptors, their downstream G-proteins, and/or second messengers in the ventral tegmental area (VTA). We examined whether the ability of progestins to enhance lordosis via actions at D(1) and/or GABA(A) receptors is contingent upon activation of the second messenger phospholipase C (PLC) and its associated kinase, protein kinase C (PKC), in the VTA. If the actions of progestins through D(1) and GABA(A) receptors in the VTA are mediated through PLC and PKC, then inhibiting PLC formation (Experiment 1) or blocking PKC (Experiment 2) should reduce progestin-facilitated lordosis and its enhancement by D(1) (SKF38393) or GABA(A) (muscimol) receptor agonists. In Experiment 1, ovariectomised hamsters, primed with oestradiol (10 microg; h 0) + progesterone (100 microg; h 45), were pretested for lordosis and motor behaviour (h 48) and then infused with the PLC inhibitor, U73122 (400 nM/side), or vehicle. Thirty minutes later, hamsters were retested and then received infusions of SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle to the VTA. Hamsters were post-tested for lordosis and motor behaviour 30 min later. In Experiment 2, a similar protocol was utilised except that instead of the PLC inhibitor hamsters were infused with the PKC inhibitor, bisindolylmaleimide (75 nM/side). Systemic progesterone, SKF38393-, and muscimol-facilitated lordosis was attenuated by infusion of the PLC inhibitor, U73122, or the PKC inhibitor, bisindolylmaleimide, compared to vehicle to the VTA. Thus, the actions of progestins in the VTA to enhance lordosis through D(1) and/or GABA(A) may include downstream activity of PLC and PKC.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/metabolism
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Cell Membrane/metabolism
- Cricetinae
- Dopamine Agonists/metabolism
- Dopamine Agonists/pharmacology
- Estrenes/metabolism
- Estrenes/pharmacology
- Female
- GABA Agonists/metabolism
- GABA Agonists/pharmacology
- Indoles/metabolism
- Indoles/pharmacology
- Lordosis
- Maleimides/metabolism
- Maleimides/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Muscimol/metabolism
- Muscimol/pharmacology
- Ovariectomy
- Progestins/metabolism
- Progestins/pharmacology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Pyrrolidinones/metabolism
- Pyrrolidinones/pharmacology
- Receptors, Dopamine D1/metabolism
- Receptors, GABA-A/metabolism
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- C A Frye
- Departments of Psychology and Biological Sciences, and the Centers for Neurosience and Life Sciences Research, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | |
Collapse
|
9
|
Petralia SM, Frye CA. In the ventral tegmental area, cyclic AMP mediates the actions of progesterone at dopamine type 1 receptors for lordosis of rats and hamsters. J Neuroendocrinol 2006; 18:902-14. [PMID: 17076766 DOI: 10.1111/j.1365-2826.2006.01488.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progesterone-facilitated lordosis is enhanced by activation of, and inhibited by antagonism of, dopamine type 1 receptors (D1) in the ventral tegmental area (VTA). Given that D1 activation leads to increases in cyclic AMP (cAMP), we hypothesised that, in the VTA, progesterone's actions on lordosis that involve D1 are mediated, in part, by cAMP. In Experiment 1, naturally receptive rats and hamsters were pretested for lordosis, infused with the cAMP analogue 8-bromo-cAMP (200 ng) or vehicle to the VTA, and tested again 30 min later. In Experiments 2 and 3, ovariectomised, oestradiol (10 microg) + progesterone (0 or 100 microg)-primed rats and oestradiol (10 microg) + progesterone (0 or 200 microg)-primed hamsters were pretested for lordosis and infused with 8-bromo-cAMP (200 ng), the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine (12 microM) or vehicle to the VTA. Subjects were tested again 30 min later. In Experiment 4, oestradiol + progesterone-primed rats and hamsters were pretested and infused with the D1 agonist SKF38393 (0 or 100 ng) to the VTA. Thirty minutes later, subjects were tested again and infused with 2',5'-dideoxyadenosine (12 microM) or vehicle. Subjects were tested again 30 min later. VTA infusions of 8-bromo-cAMP enhanced lordosis of naturally receptive or hormone-primed rats and hamsters and 2',5'-dideoxyadenosine decreased lordosis of oestradiol + progesterone-primed rats and hamsters. D1-mediated increases in progesterone-facilitated lordosis were reduced by 2',5'-dideoxyadenosine. These data suggest that progesterone-facilitated lordosis of rats and hamsters may be modulated by D1 and cAMP activity in the VTA.
Collapse
Affiliation(s)
- S M Petralia
- Department of Psychology, The University of Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|
10
|
Frye CA, Walf AA, Petralia SM. In the ventral tegmental area, progestins have actions at D1 receptors for lordosis of hamsters and rats that involve GABA A receptors. Horm Behav 2006; 50:332-7. [PMID: 16750831 DOI: 10.1016/j.yhbeh.2006.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/14/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
In the ventral tegmental area (VTA), progestins facilitate lordosis via actions at gamma-aminobutyric acid (GABA)(A)/benzodiazepine receptor complexes (GBRs) and dopamine type 1 receptors (D1). The relationship between progestins' actions at GBRs and D1 in the VTA for facilitating sexual behavior of hamsters and rats was examined. Ovariectomized (ovx), estradiol (E(2); 10 microg)+progesterone (P; 250 microg; SC)-primed hamsters, with bilateral guide cannulae to the VTA, were pre-tested for sexual and motor behavior and infused with the GBR antagonist bicuculline (100 ng/side) or vehicle. Thirty minutes later, hamsters were re-tested and then infused with the D1 agonist SKF38393 (100 ng/side) or vehicle. Hamsters were post-tested 30 min later. Ovx, E(2) (10 microg)-primed rats were pre-tested, infused first with bicuculline or vehicle, second with SKF38393 or vehicle, third with 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP; 0, 100, or 200 ng) and were post-tested 10 and 60 min after 3alpha,5alpha-THP infusions. VTA infusions of SKF38393 increased lordosis of hamsters or rats. Bicuculline pretreatment reduced SKF38393- and/or progesterone-mediated increases in lordosis of E2-primed hamsters. In E2-primed rats, bicuculline blocked SKF38393- and/or 3alpha,5alpha-THP-mediated increases in lordosis. There were no effects on motor behavior. Thus, in the VTA, GBR activity modulates D1-mediated actions for lordosis of hamsters and rats.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/administration & dosage
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Bicuculline/pharmacology
- Cricetinae
- Desoxycorticosterone/administration & dosage
- Desoxycorticosterone/analogs & derivatives
- Desoxycorticosterone/pharmacology
- Dopamine Agonists/administration & dosage
- Dopamine Agonists/pharmacology
- Female
- GABA Antagonists/pharmacology
- Injections
- Male
- Motor Activity/drug effects
- Posture
- Progestins/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, Dopamine D1/drug effects
- Receptors, GABA-A/physiology
- Sexual Behavior, Animal/drug effects
- Species Specificity
- Steroids/administration & dosage
- Steroids/pharmacology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/physiology
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
11
|
Frye CA, Walf AA, Petralia SM. Progestin facilitation of lordosis in rodents involves adenylyl cyclase activity in the ventral tegmental area. Horm Behav 2006; 50:237-44. [PMID: 16643916 DOI: 10.1016/j.yhbeh.2006.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 11/30/2022]
Abstract
Increasing cAMP, or activating dopamine type 1 (D(1)) or GABA(A)/benzodiazepine receptor complexes (GBRs), in the ventral tegmental area (VTA) enhances lordosis of rodents. Whether D(1)- and/or GBR-mediated increases in progestin-facilitated lordosis involve the cAMP-synthesizing enzyme, adenylyl cyclase, in the VTA, was investigated. In Experiment 1, ovariectomized estradiol (E(2); 10 microg at h 0)+progesterone (P; 250 microg at h 45)-primed hamsters first received bilateral infusions of the adenylyl cyclase inhibitor, 2',5'-dideoxyadenosine (DDA; 12 microM/side), or vehicle, and then were infused with the D(1) agonist, SKF38393 (100 ng/side), the GBR agonist, muscimol (100 ng/side), or vehicle, to the VTA. Lordosis was evaluated before and 30 min after each infusion. In Experiment 2, ovariectomized, E(2)-primed (10 microg at h 0) rats received VTA infusions of DDA (12 microM/side) or vehicle; SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle; and the neurosteroid, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP; 100 or 200 ng/side), or beta-cyclodextrin vehicle. Lordosis was assessed before the series of infusions, immediately after drug infusions and 10 or 60 min after 3alpha,5alpha-THP infusions. Progestin- or progestin plus SKF38393-or muscimol-mediated increases in lordosis were blocked by DDA pretreatment. Thus, in the VTA, progestins' membrane action may involve adenylyl cyclase.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| | | | | |
Collapse
|
12
|
Frye CA, Walf AA, Petralia SM. Progestins' effects on sexual behaviour of female rats and hamsters involving D1 and GABA(A) receptors in the ventral tegmental area may be G-protein-dependent. Behav Brain Res 2006; 172:286-93. [PMID: 16780967 DOI: 10.1016/j.bbr.2006.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 05/05/2006] [Accepted: 05/12/2006] [Indexed: 11/24/2022]
Abstract
In the ventral tegmental area (VTA), progestins have actions involving dopamine type 1-like receptors (D(1)) and gamma-aminobutyric acid (GABA)(A)/benzodiazepine receptor complexes (GBRs) for lordosis. Evidence suggests that D(1) and GBRs can have G-protein-mediated effects. We investigated if, in the VTA, inhibiting G-proteins prevents D(1)- and/or GBR-mediated increases in progestin-facilitated lordosis. Hamsters, with bilateral guide cannulae to the VTA, received systemic E(2) (10 microg) at hour 0 and progesterone (P, 250 microg) at hour 45. At hour 48, hamsters were pre-tested for lordosis and infused with the G-protein inhibitor, guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S, 50 microM/side), or 10% DMSO saline vehicle. Thirty minutes after initial infusions, hamsters were re-tested and then immediately infused with the D(1) agonist, SKF38393 (100 ng/side), the GBR agonist, muscimol (100 ng/side), or saline vehicle. Hamsters were post-tested for lordosis 30 min later. For rats, E(2) (10 microg) priming at hour 0 was followed by lordosis pre-testing at hour 44. After pre-testing, rats received infusions of GDP-beta-S or vehicle, followed by infusions of SKF38393, muscimol, or vehicle and then infusions of the neurosteroid, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP, 100 or 200 ng/side), or beta-cyclodextrin vehicle. Rats were tested immediately after each infusion of SKF38393, muscimol or vehicle, as well as 10 and 60 min after 3alpha,5alpha-THP or vehicle infusions. Inhibiting G-proteins, in the VTA, reduced the ability of systemic P or intra-VTA SKF38393 or muscimol to facilitate lordosis of E(2)-primed hamsters. Blocking G-proteins, in the VTA, prevented SKF38393-, muscimol- and/or 3alpha,5alpha-THP-mediated increases in lordosis of E(2)-primed rats. Thus, progestins' actions in the VTA for lordosis that involve D(1) and/or GBRs may also include recruitment of G-proteins.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, Life Sciences 1058, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
13
|
Petralia SM, Walf AA, Frye CA. In the ventral tegmental area, progestins' membrane-mediated actions for lordosis of hamsters and rats involve protein kinase A. Neuroendocrinology 2006; 84:405-14. [PMID: 17384517 DOI: 10.1159/000100510] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 11/24/2006] [Indexed: 01/17/2023]
Abstract
Progestin-facilitated lordosis of hamsters and rats is enhanced by activation of dopamine type 1 (D1) or GABAA/benzodiazepine receptor complexes (GBRs) in the ventral tegmental area (VTA) and these effects involve G-proteins and second messengers, such as adenosine 3',5'-monophosphate (cAMP). We examined whether D1- and/or GBR-mediated increases in progestin-facilitated lordosis of female hamsters and rats involve the cAMP-dependent protein kinase, protein kinase A (PKA), in the VTA. In experiment 1, ovariectomized hamsters, primed with estradiol (E2; 10 microg at h 0) + progesterone (P; 100 microg at h 45), were first pre-tested for lordosis and motor behavior (h 48) and then infused with the PKA inhibitor, Rp-cAMP (100 ng/side), or vehicle. Thirty minutes later, hamsters were retested and then received infusions of the D1 agonist, SKF38393 (100 ng/side), the GBR agonist, muscimol (100 ng/side), or vehicle to the VTA. Hamsters were post-tested for lordosis and motor behavior 30 min later. In Experiment 2, ovariectomized rats, primed with E2 (10 microg at h 0), were first pre-tested for lordosis and then infused with Rp-cAMP (100 ng/side) or vehicle to the VTA at h 44. Immediately after testing, rats received infusions of SKF38393 (100 ng/side), muscimol (100 ng/side), or vehicle and were retested for lordosis. Rats were then infused with the neurosteroid, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP; 100 or 200 ng/side), or beta-cyclodextrin vehicle and were post-tested for lordosis and motor behavior 10 and 60 min later. The enhancing effects of progestins or progestins plus D1 or GBR activation on lordosis of E2-primed hamsters and rats were blocked by the PKA inhibitor, Rp-cAMP. Thus, in the VTA, progestins' membrane actions involving D1 or GBRs are mediated, in part, by PKA.
Collapse
Affiliation(s)
- Sandra M Petralia
- Department of Psychology , The University at Albany, SUNY, Albany, NY 12222, USA
| | | | | |
Collapse
|