1
|
Bressan GN, Rodrigues T, da Silva MEB, Schetinger MRC, Scussel R, Machado-de-Ávila RA, Abel JDS, Fachinetto R. Effects of Acute Haloperidol Treatment on Dopaminergic Markers, GAD 67, and A 2A Receptors in Rats with High and Low VCMs. Neurochem Res 2024; 50:4. [PMID: 39540951 DOI: 10.1007/s11064-024-04275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/26/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Vacuous chewing movements (VCM) have been utilized as an experimental model of orofacial dyskinesia (OD) in rodents to study the underlying molecular mechanisms related to tardive dyskinesia (TD). This study aimed to investigate if the acute treatment with haloperidol can alter components of the dopaminergic synapse or its modulators such as glutamic acid decarboxylase (GAD67) and adenosine 2A (A2A) receptor. Furthermore, to evaluate if changes in molecular markers are associated with the number of VCMs induced by haloperidol in rats it is proposing a method to classify the animals into High and Low VCM groups. Here, we treated rats with haloperidol decanoate (single injection, intramuscularly, 28 mg/Kg of unconjugated haloperidol) and evaluated the number of VCMs after 4 weeks. Haloperidol-treated rats were divided into three groups (Low, High, and Spontaneous VCM) according to the evaluation of the VCM profile proposed here. After, dopamine (DA) levels, monoamine oxidase (MAO) activity, and the immunoreactivity of tyrosine hydroxylase (TH), dopamine transporter (DAT), D2 receptor, GAD67, and A2A were determined in brain structures. No significant differences were found in DA levels, MAO activity, and immunoreactivity of the TH, DAT, D2 receptor, GAD67, and A2A receptor in brain structures. VCM intensity was correlated with TH immunoreactivity in Sn in the High VCM group while it was inversely correlated with the immunoreactivity of the A2A receptor in the striatum of the Spontaneous VCM group. Other significant correlations were found considering the VCM profile suggesting that High VCM after acute haloperidol treatment seems to be associated with the lack of ability to reorganize the neurotransmission in the nigrostriatal pathway. Further studies could clarify the main targets involved in the motor side effects of antipsychotics. The present study demonstrated an easy way to separate the animals into High and Low VCMs.
Collapse
Affiliation(s)
- Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | - Rahisa Scussel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | - Jéssica da Silva Abel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil.
- Centro de Ciências da Saúde, Departamento de Fisiologia e Farmacologia, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Rodrigues T, Bressan GN, Krum BN, Soares FAA, Fachinetto R. Influence of the dose of ketamine used on schizophrenia-like symptoms in mice: A correlation study with TH, GAD 67, and PPAR-γ. Pharmacol Biochem Behav 2023; 233:173658. [PMID: 37804866 DOI: 10.1016/j.pbb.2023.173658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Collapse
Affiliation(s)
- Talita Rodrigues
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
4
|
Tiezza MD, Ribaudo G, Orian L. Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180803123137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organodiselenides are an important class of compounds characterized by the
presence of two adjacent covalently bonded selenium nuclei. Among them,
diaryldiselenides and their parent compound diphenyl diselenide attract continuing interest
in chemistry as well as in close disciplines like medicinal chemistry, pharmacology and
biochemistry. A search in SCOPUS database has revealed that in the last three years 105
papers have been published on the archetypal diphenyl diselenide and its use in organic
catalysis and drug tests. The reactivity of the Se-Se bond and the redox properties of selenium
make diselenides efficient catalysts for numerous organic reactions, such as Bayer-
Villiger oxidations of aldehydes/ketones, epoxidations of alkenes, oxidations of alcohols
and nitrogen containing compounds. In addition, organodiselenides might find application
as mimics of glutathione peroxidase (GPx), a family of enzymes, which, besides performing other functions,
regulate the peroxide tone in the cells and control the oxidative stress level. In this review, the essential synthetic
and reactivity aspects of organoselenides are collected and rationalized using the results of accurate
computational studies, which have been carried out mainly in the last two decades. The results obtained in
silico provide a clear explanation of the anti-oxidant activity of organodiselenides and more in general of their
ability to reduce hydroperoxides. At the same time, they are useful to gain insight into some aspects of the enzymatic
activity of the GPx, inspiring novel elements for rational catalyst and drug design.
Collapse
Affiliation(s)
- Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Universita degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Busanello A, Leal CQ, Peroza LR, Röpke J, de Moraes Reis E, de Freitas CM, Libardoni M, de Vargas Barbosa NB, Fachinetto R. Resveratrol Protects Against Vacuous Chewing Movements Induced by Chronic Treatment with Fluphenazine. Neurochem Res 2017; 42:3033-3040. [DOI: 10.1007/s11064-017-2335-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 12/24/2022]
|
6
|
Lister J, Andreazza AC, Navaid B, Wilson VS, Teo C, Nesarajah Y, Wilson AA, Nobrega JN, Fletcher PJ, Remington G. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:23-29. [PMID: 27565433 DOI: 10.1016/j.pnpbp.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Tardive dyskinesia (TD), a potentially irreversible antipsychotic (AP)-related movement disorder, is a risk with all currently available antipsychotics. AP-induced vacuous chewing movements (VCMs) in rats, a preclinical model of TD, can be attenuated by antioxidant-based treatments although there is a shortage of well-designed studies. Lipoic acid (LA) represents a candidate antioxidant for the treatment of oxidative stress-related nervous system disorders; accordingly, its effects on AP-induced VCMs and striatal oxidative stress were examined. Rats treated with haloperidol decanoate (HAL; 21mg/kg every 3weeks, IM) for 12weeks were concurrently treated with LA (10 or 20mg/kg, PO). VCMs were assessed weekly by a blinded rater, and locomotor activity was evaluated as were striatal lipid peroxidation markers and serum HAL levels. VCMs were decreased by the lower dose (nonsignificant), whereas a significant increase was recorded with the higher dose of LA. HAL decreased locomotor activity and this was unaffected by LA. Striatal malondialdehyde (MDA) levels in HAL-treated rats were reduced by both LA doses, while 4-hydroxynonenal (4-HNE) levels were predictive of final VCM scores (averaged across weeks 10-12). Study limitations include differences between antipsychotics in terms of oxidative stress, LA dosing, choice of biomarkers for lipid peroxidation, and generalizability to TD in humans. Collectively, current preclinical evidence does not support a "protective" role for antioxidants in preventing TD or its progression, although clinical evidence offers limited evidence supporting such an approach.
Collapse
Affiliation(s)
- Joshua Lister
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Bushra Navaid
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Celine Teo
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - José N Nobrega
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Sampaio TB, Pinton S, da Rocha JT, Gai BM, Nogueira CW. Involvement of BDNF/TrkB signaling in the effect of diphenyl diselenide on motor function in a Parkinson's disease rat model. Eur J Pharmacol 2016; 795:28-35. [PMID: 27915043 DOI: 10.1016/j.ejphar.2016.11.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by degeneration of nigrostriatal dopaminergic neurons. Diphenyl diselenide [(PhSe)2] is a compound with pharmacological proprieties, such as antidepressant and neuroprotective. Therefore, this study investigated whether (PhSe)2 reverses motor impairment and neurochemical alterations in a model of Parkinson's disease induced by 6-hydroxydopamine (6-OHDA) in rats. For this, male Wistar rats received 20μg/3μl of 6-OHDA or vehicle into the right striatum. Three weeks later, animals were subjected to rotational behavioral test induced by D-amphetamine and randomly divided into four groups: Sham; (PhSe)2; 6-OHDA and 6-OHDA+(PhSe)2. The rats received (PhSe)2 (1mg/kg/day; i.g.) or vehicle (canola oil) during 30 days. After treatment, behavioral tests were performed in order to evaluate the motor function and the ipsilateral striatal tissue was collected for immunoblotting assay. (PhSe)2 treatment restored the normal motor behavior of 6-OHDA-infused rats in the cylinder, stepping and bridge tests, but not in the rotarod test. The 6-OHDA infusion and/or (PhSe)2 treatment did not alter the muscle strength and spontaneous locomotion in the forelimb support and open-field tests, respectively. Additionally, striatal brain-derived neurotrophic factor (BDNF), proBDNF and tyrosine hydroxylase (TH) levels of 6-OHDA-lesioned rats were decreased, while the tropomyosin-related kinase B (TrkB) levels were increased. (PhSe)2 treatment restored striatal proBDNF, TrkB and TH levels. Thus, (PhSe)2 treatment reversed some motor impairment and TH levels in a 6-OHDA model of Parkinson's disease in rats, demonstrating a potential neurorestorative role. Additionally, the BDNF/TrkB signaling recovery can be involved in its neurorestorative effect.
Collapse
Affiliation(s)
- Tuane Bazanella Sampaio
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa - Campus Uruguaiana, Uruguaiana, CEP 97500-970 RS, Brazil.
| | | | - Bibiana Mozzaquatro Gai
- Instituto de Ciências Exatas e da Terra - ICET, Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, CEP 78060-900 MT, Brazil
| | - Cristina Wayne Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900 RS, Brazil
| |
Collapse
|
8
|
de Freitas CM, Busanello A, Schaffer LF, Peroza LR, Krum BN, Leal CQ, Ceretta APC, da Rocha JBT, Fachinetto R. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl) 2016; 233:457-67. [PMID: 26514557 DOI: 10.1007/s00213-015-4118-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 10/15/2015] [Indexed: 01/11/2023]
Abstract
RATIONALE Reserpine, a monoamine-depleting agent, which irreversibly and non-selectively blocks the vesicular monoamine transporter, has been used as an animal model to study several neurological disorders, including tardive dyskinesia and Parkinson's disease. OBJECTIVE The purpose of this study was to examine if motor deficits induced by reserpine in mice could be related to alterations in the expression of dopaminergic system proteins such as tyrosine hydroxylase (TH) and dopamine transporter (DAT) and in the activity of monoamine oxidase (MAO). METHODS Mice received either vehicle or reserpine (0.1, 0.5, or 1 mg/kg, s.c.) for four consecutive days. Two, 20, or 60 days after reserpine withdrawal, behavioral, and neurochemical changes were evaluated. RESULTS Reserpine at a dose of 0.5 and 1 mg/kg increased vacuous chewing movements (VCMs) and reduced locomotion. Behavioral changes were accompanied by reduction in TH immunoreactivity in the striatum evaluated on days 2 and 20 after the last injection of 1 mg/kg reserpine. Furthermore, negative correlations were found between VCM and MAO-A or MAO-B on day 2 and TH striatal immunoreactivity on day 20 after the last injection of 1 mg/kg reserpine. A positive correlation was observed between VCMs and DAT immunoreactivity in the substantia nigra on day 2 after the last injection of 0.5 mg/kg reserpine. CONCLUSIONS These findings suggest that the pharmacological blockage of vesicular monoamine transporter (VMAT) by reserpine caused neurochemical and behavioral alterations in mice.
Collapse
Affiliation(s)
- Catiuscia Molz de Freitas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alcindo Busanello
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Larissa Finger Schaffer
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luis Ricardo Peroza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. .,Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
9
|
Schaffer LF, de Freitas CM, Chiapinotto Ceretta AP, Peroza LR, de Moraes Reis E, Krum BN, Busanello A, Boligon AA, Sudati JH, Fachinetto R, Wagner C. Harpagophytum Procumbens Ethyl Acetate Fraction Reduces Fluphenazine-Induced Vacuous Chewing Movements and Oxidative Stress in Rat Brain. Neurochem Res 2016; 41:1170-84. [DOI: 10.1007/s11064-015-1811-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/18/2022]
|
10
|
Extracellular dopamine and alterations on dopamine transporter are related to reserpine toxicity in Caenorhabditis elegans. Arch Toxicol 2015; 90:633-45. [PMID: 25579234 DOI: 10.1007/s00204-015-1451-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
Abstract
Reserpine is used as an animal model of parkinsonism. We hypothesized that the involuntary movements induced by reserpine in rodents are induced by dopaminergic toxicity caused by extracellular dopamine accumulation. The present study tested the effects of reserpine on the dopaminergic system in Caenorhabditis elegans. Reserpine was toxic to worms (decreased the survival, food intake, development and changed egg laying and defecation cycles). In addition, reserpine increased the worms' locomotor rate on food and decreased dopamine levels. Morphological evaluations of dopaminergic CEP neurons confirmed neurodegeneration characterized by decreased fluorescence intensity and the number of worms with intact CEP neurons, and increased number of shrunken somas per worm. These effects were unrelated to reserpine's effect on decreased expression of the dopamine transporter, dat-1. Interestingly, the locomotor rate on food and the neurodegenerative parameters fully recovered to basal conditions upon reserpine withdrawal. Furthermore, reserpine decreased survival in vesicular monoamine transporter and dat-1 loss-of-function mutant worms. In addition, worms pre-exposed to dopamine followed by exposure to reserpine had decreased survival. Reserpine activated gst-4, which controls a phase II detoxification enzymes downstream of nuclear factor (erythroid-derived-2)-like 2. Our findings establish that the dopamine transporter, dat-1, plays an important role in reserpine toxicity, likely by increasing extracellular dopamine concentrations.
Collapse
|
11
|
Röpke J, Busanello A, Leal CQ, de Moraes Reis E, de Freitas CM, Villarinho JG, Figueira FH, Mello CF, Ferreira J, Fachinetto R. Anandamide attenuates haloperidol-induced vacuous chewing movements in rats. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:195-9. [PMID: 24747871 DOI: 10.1016/j.pnpbp.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Abstract
Antipsychotics may cause tardive dyskinesia in humans and orofacial dyskinesia in rodents. Although the dopaminergic system has been implicated in these movement disorders, which involve the basal ganglia, their underlying pathomechanisms remain unclear. CB1 cannabinoid receptors are highly expressed in the basal ganglia, and a potential role for endocannabinoids in the control of basal ganglia-related movement disorders has been proposed. Therefore, this study investigated whether CB1 receptors are involved in haloperidol-induced orofacial dyskinesia in rats. Adult male rats were treated for four weeks with haloperidol decanoate (38mg/kg, intramuscularly - i.m.). The effect of anandamide (6nmol, intracerebroventricularly - i.c.v.) and/or the CB1 receptor antagonist SR141716A (30μg, i.c.v.) on haloperidol-induced vacuous chewing movements (VCMs) was assessed 28days after the start of the haloperidol treatment. Anandamide reversed haloperidol-induced VCMs; SR141716A (30μg, i.c.v.) did not alter haloperidol-induced VCM per se but prevented the effect of anandamide on VCM in rats. These results suggest that CB1 receptors may prevent haloperidol-induced VCMs in rats, implicating CB1 receptor-mediated cannabinoid signaling in orofacial dyskinesia.
Collapse
Affiliation(s)
- Jivago Röpke
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Alcindo Busanello
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | - Elizete de Moraes Reis
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Carlos Fernando Mello
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | - Juliano Ferreira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Effects of diphenyl diselenide on behavioral and biochemical changes induced by amphetamine in mice. J Neural Transm (Vienna) 2014; 122:201-9. [DOI: 10.1007/s00702-014-1257-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022]
|
13
|
Lister J, Nobrega JN, Fletcher PJ, Remington G. Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies. Psychopharmacology (Berl) 2014; 231:2237-49. [PMID: 24752659 DOI: 10.1007/s00213-014-3582-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022]
Abstract
RATIONALE Despite decades of research, tardive dyskinesia (TD) remains a poorly understood iatrogenic movement disorder with few effective treatments and no known cure. Accordingly, the development of an innocuous strategy to prevent or mitigate antipsychotic (AP)-associated TD would represent an important clinical advance. Supporting evidence for antioxidant (AX)-based treatment regimens can be found in the preclinical literature, where AP-induced vacuous chewing movements (VCMs) in rats are attenuated by the concurrent administration of direct and indirect AXs. OBJECTIVES Our aim was to review the preclinical literature examining the role of AX-promoting treatments in the prevention of AP-induced VCMs in rats. METHODS A literature search using Google Scholar and PubMed was performed. Relevant results were qualitatively reviewed. RESULTS Studies featuring a variety of naturally occurring and synthetic AX treatments were identified and included in the review. The majority of studies used haloperidol (HAL), a typical AP, to induce VCMs. Studies revealed reduced VCMs in co-treated rats, with favorable changes seen in markers of oxidative stress (OS) and AX status, but were limited by their short durations. CONCLUSIONS Some preclinical evidence suggests that the inclusion of a naturally occurring and benign AX compound as an adjunct to AP treatment may help guard patients against TD, but additional long-duration studies are needed. This AX-based strategy is further substantiated by accumulating evidence of preexisting OS abnormalities in schizophrenia (SZ).
Collapse
Affiliation(s)
- Josh Lister
- Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada,
| | | | | | | |
Collapse
|
14
|
Peroza LR, Busanello A, Leal CQ, Röpke J, Boligon AA, Meinerz D, Libardoni M, Athayde ML, Fachinetto R. Bauhinia forficata Prevents Vacuous Chewing Movements Induced by Haloperidol in Rats and Has Antioxidant Potential In Vitro. Neurochem Res 2013; 38:789-96. [DOI: 10.1007/s11064-013-0981-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/23/2022]
|
15
|
Gallic acid decreases vacuous chewing movements induced by reserpine in rats. Pharmacol Biochem Behav 2013; 104:132-7. [PMID: 23313549 DOI: 10.1016/j.pbb.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/26/2012] [Accepted: 01/03/2013] [Indexed: 11/23/2022]
Abstract
Involuntary oral movements are present in several diseases and pharmacological conditions; however, their etiology and efficient treatments remain unclear. Gallic acid is a natural polyphenolic acid found in gall nuts, sumac, oak bark, tea leaves, grapes and wine, with potent antioxidant and antiapoptotic activity. Thus, the present study investigated the effects of gallic acid on vacuous chewing movements (VCMs) in an animal model induced by reserpine. Rats received either vehicle or reserpine (1mg/kg/day, s.c.) during three days, followed by treatment with water or different doses of gallic acid (4.5, 13.5 or 40.5mg/kg/day, p.o.) for three more days. As result, reserpine increased the number of VCMs in rats, and this effect was maintained for at least three days after its withdrawal. Gallic acid at two different doses (13.5 and 40.5mg/kg/day) has reduced VCMs in rats previously treated with reserpine. Furthermore, we investigated oxidative stress parameters (DCFH-DA oxidation, TBARS and thiol levels) and Na(+),K(+)-ATPase activity in striatum and cerebral cortex, however, no changes were observed. These findings show that gallic acid may have promissory use in the treatment of involuntary oral movements.
Collapse
|
16
|
Resveratrol reduces vacuous chewing movements induced by acute treatment with fluphenazine. Pharmacol Biochem Behav 2012; 101:307-10. [DOI: 10.1016/j.pbb.2012.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 01/08/2023]
|
17
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
18
|
Valeriana officinalis ameliorates vacuous chewing movements induced by reserpine in rats. J Neural Transm (Vienna) 2011; 118:1547-57. [DOI: 10.1007/s00702-011-0640-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 03/23/2011] [Indexed: 12/23/2022]
|
19
|
Teixeira A, Müller L, Reckziegel P, Boufleur N, Pase C, Villarinho J, Fachinetto R, Ferreira J, Rocha J, Bürger M. Beneficial effects of an innovative exercise model on motor and oxidative disorders induced by haloperidol in rats. Neuropharmacology 2011; 60:432-8. [DOI: 10.1016/j.neuropharm.2010.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/27/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
20
|
Avila DS, Colle D, Gubert P, Palma AS, Puntel G, Manarin F, Noremberg S, Nascimento PC, Aschner M, Rocha JBT, Soares FAA. A possible neuroprotective action of a vinylic telluride against Mn-induced neurotoxicity. Toxicol Sci 2010; 115:194-201. [PMID: 20133376 DOI: 10.1093/toxsci/kfq036] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Manganese (Mn) is a metal required by biological systems. However, environmental or occupational exposure to high levels of Mn can produce a neurological disorder called manganism, which has similarities to Parkinson's disease. Diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP) is an organotellurium compound with a high antioxidant activity, especially in the brain. The present study was designed to investigate the effects of long-term low-dose exposure to Mn in drinking water on behavioral and biochemical parameters in rats and to determine the effectiveness of vinylic telluride in attenuating the effects of Mn. After 4 months of treatment with MnCl(2) (13.7 mg/kg), rats exhibited clear signs of neurobehavioral toxicity, including a decrease in the number of rearings in the open field and altered motor performance in rotarod. The administration of DPTVP (0.150 micromol/kg, ip, 2 weeks) improved the motor performance of Mn-treated rats, indicating that the compound could be reverting Mn neurotoxicity. Ex vivo, we observed that Mn concentrations in the Mn-treated group were highest in the striatum, consistent with a statistically significant decrease in mitochondrial viability and [(3)H]glutamate uptake, and increased lipid peroxidation. Mn levels in the hippocampus and cortex were indistinguishable from controls, and no significant differences were noted in the ex vivo assays in these areas. Treatment with DPTVP fully reversed the biochemical parameters altered by Mn. Furthermore, DPTVP treatment was also associated with a reduction in striatal Mn levels. Our results demonstrate that DPTVP has neuroprotective activity against Mn-induced neurotoxicity, which may be attributed to its antioxidant activity and/or its effect on striatal Mn transport.
Collapse
Affiliation(s)
- Daiana S Avila
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ben Amara I, Fetoui H, Guermazi F, Zeghal N. Dietary selenium addition improves cerebrum and cerebellum impairments induced by methimazole in suckling rats. Int J Dev Neurosci 2009; 27:719-26. [DOI: 10.1016/j.ijdevneu.2009.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ibtissem Ben Amara
- Animal Physiology LaboratorySfax Faculty of ScienceBP 11713000SfaxTunisia
| | - Hamadi Fetoui
- Animal Physiology LaboratorySfax Faculty of ScienceBP 11713000SfaxTunisia
| | - Fadhel Guermazi
- Nuclear Medicine Service, CHU Habib Bourguiba3029SfaxTunisia
| | - Najiba Zeghal
- Animal Physiology LaboratorySfax Faculty of ScienceBP 11713000SfaxTunisia
| |
Collapse
|
22
|
Corte CLD, Fachinetto R, Puntel R, Wagner C, Nogueira CW, Soares FAA, Rocha JBT. Chronic Treatment with Fluphenazine Alters Parameters of Oxidative Stress in Liver and Kidney of Rats. Basic Clin Pharmacol Toxicol 2009; 105:51-7. [DOI: 10.1111/j.1742-7843.2009.00417.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|