1
|
Soto-Montenegro ML, García-Vázquez V, Lamanna-Rama N, López-Montoya G, Desco M, Ambrosio E. Neuroimaging reveals distinct brain glucose metabolism patterns associated with morphine consumption in Lewis and Fischer 344 rat strains. Sci Rep 2022; 12:4643. [PMID: 35301397 PMCID: PMC8931060 DOI: 10.1038/s41598-022-08698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/08/2022] [Indexed: 11/14/2022] Open
Abstract
Vulnerability to addiction may be given by the individual's risk of developing an addiction during their lifetime. A challenge in the neurobiology of drug addiction is understanding why some people become addicted to drugs. Here, we used positron emission tomography (PET) and statistical parametric mapping (SPM) to evaluate changes in brain glucose metabolism in response to chronic morphine self-administration (MSA) in two rat strains with different vulnerability to drug abuse, Lewis (LEW) and Fischer 344 (F344). Four groups of animals were trained to self-administer morphine or saline for 15 days. 2-deoxy-2-[18F]-fluoro-d-glucose (FDG)-PET studies were performed on the last day of MSA (acquisition phase) and after 15 days of withdrawal. PET data were analyzed using SPM12. LEW-animals self-administered more morphine injections per session than F344-animals. We found significant brain metabolic differences between LEW and F344 strains in the cortex, hypothalamus, brainstem, and cerebellum. In addition, the different brain metabolic patterns observed after the MSA study between these rat strains indicate differences in the efficiency of neural substrates to translate the drug effects, which could explain the differences in predisposition to morphine abuse between one individual and another. These findings have important implications for the use of these rat strains in translational morphine and opiate research.
Collapse
Affiliation(s)
- Mª Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER de Salud Mental (CIBERSAM), Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| | | | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Gonzalo López-Montoya
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Psicobiología, Facultad de Psicología, Universidad de Educación Nacional a Distancia (UNED), Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,CIBER de Salud Mental (CIBERSAM), Madrid, Spain. .,Departamento de Bioingeniería E Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain. .,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| | - Emilio Ambrosio
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Educación Nacional a Distancia (UNED), Madrid, Spain. .,Laboratorio de Imagen, Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
| |
Collapse
|
2
|
Ciccocioppo R, de Guglielmo G, Li HW, Melis M, Caffino L, Shen Q, Domi A, Fumagalli F, Demopulos GA, Gaitanaris GA. Selective Inhibition of Phosphodiesterase 7 Enzymes Reduces Motivation for Nicotine Use through Modulation of Mesolimbic Dopaminergic Transmission. J Neurosci 2021; 41:6128-6143. [PMID: 34083258 PMCID: PMC8276738 DOI: 10.1523/jneurosci.3180-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Approximately 5 million people die from diseases related to nicotine addiction and tobacco use each year. The nicotine-induced increase of corticomesolimbic dopaminergic (DAergic) transmission and hypodopaminergic conditions occurring during abstinence are important for maintaining drug-use habits. We examined the notion of reequilibrating DAergic transmission by inhibiting phosphodiesterase 7 (PDE7), an intracellular enzyme highly expressed in the corticomesolimbic circuitry and responsible for the degradation of cyclic adenosine monophosphate (cAMP), the main second messenger modulated by DA receptor activation. Using selective PDE7 inhibitors, we demonstrated in male rats that systemic PDE7 enzyme inhibition reduced nicotine self-administration and prevented reinstatement to nicotine seeking evoked by cues or by the pharmacological stressor yohimbine. The effect was also observed by direct application of the PDE7 inhibitors into the nucleus accumbens (NAc) shell but not into the core. Inhibition of PDE7 resulted in increased DA- and cAMP-regulated neuronal phosphoprotein and cAMP response element-binding protein and their phosphorylated forms in the NAc. It also enhanced the DA D1 receptor agonism-mediated effects, indicating potentiation of protein kinase A-dependent transmission downstream of D1 receptor activation. In electrophysiological recordings from DA neurons in the lateral posterior ventral tegmental area, the PDE7 inhibitors attenuated the spontaneous activity of DA neurons. This effect was exerted through the potentiation of D1 receptor signaling and the subsequent facilitation of γ-aminobutyric acid transmission. The PDE7 inhibitors did not elicit conditioned place preference and did not induce intravenous self-administration, indicating lack of reinforcing properties. Thus, PDE7 inhibitors have the potential to treat nicotine abuse.SIGNIFICANCE STATEMENT The World Health Organization estimates that there are 1.25 billion smokers worldwide, representing one-third of the global population over the age of 15. Nicotine-induced increase of corticomesolimbic DAergic transmission and hypodopaminergic conditions occurring during abstinence are critical for maintaining drug-use habits. Here, we demonstrate that nicotine consumption and relapse to nicotine seeking are attenuated by reequilibrating DAergic transmission through inhibition of PDE7, an intracellular enzyme responsible for the degradation of cAMP, the main second messenger modulated by DA receptor activation. PDE7 inhibition may represent a novel treatment approach to aid smoking cessation.
Collapse
Affiliation(s)
- Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Giordano de Guglielmo
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093
| | - Hong Wu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Quienwei Shen
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032 Camerino, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | | | | |
Collapse
|
3
|
Goodwin AK, Lantz-McPeak SM, Robinson BL, Law CD, Ali SF, Ferguson SA. Effects of adolescent treatment with nicotine, harmane, or norharmane in male Sprague–Dawley rats. Neurotoxicol Teratol 2015; 47:25-35. [DOI: 10.1016/j.ntt.2014.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022]
|
4
|
Jasinska AJ, Zorick T, Brody AL, Stein EA. Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 2014; 84:111-22. [PMID: 23474015 PMCID: PMC3710300 DOI: 10.1016/j.neuropharm.2013.02.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/28/2012] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
Substantial evidence demonstrates both nicotine's addiction liability and its cognition-enhancing effects. However, the neurobiological mechanisms underlying nicotine's impact on brain function and behavior remain incompletely understood. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation as well as for a number of cognitive disorders such as schizophrenia. Neuroimaging techniques such as positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), which make it possible to study the actions of nicotine in the human brain in vivo, play an increasingly important role in identifying these dual mechanisms of action. In this review, we summarize the current state of knowledge and discuss outstanding questions and future directions in human neuroimaging research on nicotine and tobacco. This research spans from receptor-level PET and SPECT studies demonstrating nicotine occupancy at nicotinic acetylcholine receptors (nAChRs) and upregulation of nAChRs induced by chronic smoking; through nicotine's interactions with the mesocorticolimbic dopamine system believed to mediate nicotine's reinforcing effects leading to dependence; to functional activity and connectivity fMRI studies documenting nicotine's complex behavioral and cognitive effects manifest by its actions on large-scale brain networks engaged both during task performance and at rest. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Agnes J Jasinska
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Todd Zorick
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States
| | - Arthur L Brody
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
5
|
Abstract
Cigarette smoking is a significant public health concern, often resulting in nicotine dependence, a chronic-relapsing psychiatric diagnosis that is responsible for up to 10% of the global cardiovascular disease burden. Due to its significantly deleterious effects on health, much research has been dedicated to elucidating the underlying neurobiology of smoking. This brief article is intended to provide a digestible synopsis of the considerable research being conducted on the underlying neural bases of cigarette smoking and nicotine dependence, especially for cardiologists who are often at the front lines of treating nicotine dependence. To this end, we first review some of the most common neuroimaging methodologies used in the study of smoking, as well as the most recent findings from this exciting area of research. Then, we focus on several fundamental topics including the acute pharmacological effects, acute neurocognitive effects, and the long-term neurobiological effects associated with smoking. We finally review recent findings regarding the neuropsychological processes associated with smoking cessation, including cue-induced craving and regulation of craving. Research in this field beginning to uncover how some of these neuropsychological processes are similar across clinical disorders which cardiologists also encounter frequently, such as craving for food resulting in overeating. We conclude with recommendations for future neuroimaging work on these topics.
Collapse
|