1
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
2
|
Sasamori H, Asakura T, Sugiura C, Bouchekioua Y, Nishitani N, Sato M, Yoshida T, Yamasaki M, Terao A, Watanabe M, Ohmura Y, Yoshioka M. Behavioral characteristics of dopamine D 5 receptor knockout mice. Sci Rep 2022; 12:6014. [PMID: 35399112 PMCID: PMC8995362 DOI: 10.1038/s41598-022-10013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Major psychiatric disorders such as attention-deficit/hyperactivity disorder and schizophrenia are often accompanied by elevated impulsivity. However, anti-impulsive drug treatments are still limited. To explore a novel molecular target, we examined the role of dopamine D5 receptors in impulse control using mice that completely lack D5 receptors (D5KO mice). We also measured spontaneous activity and learning/memory ability because these deficits could confound the assessment of impulsivity. We found small but significant effects of D5 receptor knockout on home cage activity only at specific times of the day. In addition, an analysis using the q-learning model revealed that D5KO mice displayed lower behavioral adjustment after impulsive actions. However, our results also showed that baseline impulsive actions and the effects of an anti-impulsive drug in D5KO mice were comparable to those in wild-type littermates. Moreover, unlike previous studies that used other D5 receptor-deficient mouse lines, we did not observe reductions in locomotor activity, working memory deficits, or severe learning deficits in our line of D5KO mice. These findings demonstrate that D5 receptors are dispensable for impulse control. Our results also indicate that time series analysis and detailed analysis of the learning process are necessary to clarify the behavioral functions of D5 receptors.
Collapse
Affiliation(s)
- Hitomi Sasamori
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Chiaki Sugiura
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Youcef Bouchekioua
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoya Nishitani
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan.,Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaaki Sato
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takayuki Yoshida
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan.,Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Akira Terao
- Department of Biology, School of Biological Sciences, Tokai University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan.
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Zelli S, Brancato A, Mattioli F, Pepe M, Alleva E, Carbone C, Cannizzaro C, Adriani W. A new "sudden fright paradigm" to explore the role of (epi)genetic modulations of the DAT gene in fear-induced avoidance behavior. GENES BRAIN AND BEHAVIOR 2020; 20:e12709. [PMID: 33070435 DOI: 10.1111/gbb.12709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Alterations in dopamine (DA) reuptake are involved in several psychiatric disorders whose symptoms can be investigated in knock out rats for the DA transporter (DAT-KO). Recent studies evidenced the role of epigenetic DAT modulation in depressive-like behavior. Accordingly, we used heterozygous (HET) rats born from both HET parents (termed MIX-HET), compared to HET rats born from WT-mother and KO-father (MAT-HET), implementing the role of maternal care on DAT modulation. We developed a "sudden fright" paradigm (based on dark-light test) to study reaction to fearful inputs in the DAT-KO, MAT-HET, MIX-HET, and WT groups. Rats could freely explore the whole 3-chambers apparatus; then, they were gently confined in one room where they experienced the fright; finally, they could freely move again. As expected, after the fearful stimulus only MAT-HET rats showed a different behavior consisting of avoidance towards the fear-associated chamber, compared to WT rats. Furthermore, ex-vivo immuno-fluorescence reveals higher prefrontal DAT levels in MAT-HET compared to MIX-HET and WT rats. Immuno-fluorescence shows also a different histone deacetylase (HDAC) enzymes concentration. Since HDAC concentration could modulate gene expression, within MAT-HET fore brain, the enhanced expression of DAT could well impair the corticostriatal-thalamic circuit, thus causing aberrant avoidance behavior (observed only in MAT-HET rats). DAT expression seems to be linked to a simply different breeding condition, which points to a reduced care by HET dams for epigenetic regulation. This could imply significant prefronto-cortical influences onto the emotional processes: hence an excessively frightful response, even to mild stressful agents, may draw developmental trajectories toward anxious and depressed-like behavior.
Collapse
Affiliation(s)
- Silvia Zelli
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Francesca Mattioli
- Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| | - Martina Pepe
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Alleva
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Carbone
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Walter Adriani
- Center Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.,Faculty of Psychology, Università Telematica Internazionale "Uninettuno", Rome, Italy
| |
Collapse
|
4
|
Chiba H, Kitta T, Ohmura Y, Higuchi M, Kon M, Nakamura M, Yoshioka M, Shinohara N. Serotonin in the rat prefrontal cortex controls the micturition reflex through 5-hydroxytryptamine 2A and 5-hydroxytryptamine 7 receptors. Int J Urol 2020; 27:684-689. [PMID: 32533581 PMCID: PMC7496571 DOI: 10.1111/iju.14267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Objectives To identify the types of serotonin (5‐hydroxytryptamine) receptors of the prefrontal cortex related to the micturition reflex. Methods Female Sprague–Dawley rats and a microinjection method were used for this study. Stainless steel guide cannulas were implanted bilaterally into the prefrontal cortex, and a polyethylene catheter was inserted into the bladder. Cystometric parameters (intercontraction interval and maximum voiding pressure) were measured before and after injection of any one of six specific antagonists of 5‐hydroxytriptamine receptors (5‐hydroxytryptamine 1A, 5‐hydroxytryptamine 2A, 5‐hydroxytryptamine 2C, 5‐hydroxytryptamine 3, 5‐hydroxytryptamine 4 and 5‐hydroxytryptamine 7) into the prefrontal cortex. The prefrontal cortex was divided into two regions, namely the prelimbic cortex and the infralimbic cortex. The experiments were carried out in conscious and free‐moving rats. Results The intercontraction interval value increased significantly after injection of the 5‐hydroxytriptamine 2A receptor antagonist, MDL11939, into the prelimbic cortex of the rat prefrontal cortex (7.68 ± 1.28 vs 9.02 ± 1.41 min, P < 0.05), whereas the intercontraction interval value decreased significantly after injection of the 5‐hydroxytriptamine 7 antagonist SB269970 into the prelimbic cortex (9.42 ± 0.39 vs 8.14 ± 0.71 min, P < 0.05). The intercontraction interval was unaffected by injection of either of these two antagonists into the infralimbic cortex. The other four antagonists (5‐hydroxytryptamine 1A, 5‐hydroxytryptamine 2C, 5‐hydroxytryptamine 3 and 5‐hydroxytryptamine 4) had no effect on the intercontraction interval after injection into the prelimbic cortex and the infralimbic cortex. The maximum voiding pressure was unaffected by injection of any one of the six 5‐hydroxytriptamine antagonists into the prelimbic cortex and infralimbic cortex. Conclusions In the rat prefrontal cortex5‐hydroxytryptamine 2A receptors excite the micturition reflex, whereas 5‐hydroxytryptamine 7 receptors inhibit this reflex.
Collapse
Affiliation(s)
- Hiroki Chiba
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeya Kitta
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yu Ohmura
- Department of, Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Madoka Higuchi
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masafumi Kon
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michiko Nakamura
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuhiro Yoshioka
- Department of, Neuropharmacology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Departments of, Department of, Renal and Genitourinary Surgery, and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Sasamori H, Ohmura Y, Yoshida T, Yoshioka M. Noradrenaline reuptake inhibition increases control of impulsive action by activating D1-like receptors in the infralimbic cortex. Eur J Pharmacol 2019; 844:17-25. [DOI: 10.1016/j.ejphar.2018.11.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
|
6
|
Sasamori H, Ohmura Y, Kubo T, Yoshida T, Yoshioka M. Assessment of impulsivity in adolescent mice: A new training procedure for a 3-choice serial reaction time task. Behav Brain Res 2018; 343:61-70. [DOI: 10.1016/j.bbr.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
7
|
Tsutsui-Kimura I, Ohmura Y, Yoshida T, Yoshioka M. Milnacipran affects mouse impulsive, aggressive, and depressive-like behaviors in a distinct dose-dependent manner. J Pharmacol Sci 2017; 134:181-189. [PMID: 28694090 DOI: 10.1016/j.jphs.2017.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/12/2022] Open
Abstract
Serotonin/noradrenaline reuptake inhibitors (SNRIs) are widely used for the treatment for major depressive disorder, but these drugs induce several side effects including increased aggression and impulsivity, which are risk factors for substance abuse, criminal involvement, and suicide. To address this issue, milnacipran (0, 3, 10, or 30 mg/kg), an SNRI and antidepressant, was intraperitoneally administered to mice prior to the 3-choice serial reaction time task, resident-intruder test, and forced swimming test to measure impulsive, aggressive, and depressive-like behaviors, respectively. A milnacipran dose of 10 mg/kg suppressed all behaviors, which was accompanied by increased dopamine and serotonin levels in the medial prefrontal cortex (mPFC) but not in the nucleus accumbens (NAc). Although the most effective dose for depressive-like behavior was 30 mg/kg, the highest dose increased aggressive behavior and unaffected impulsive behavior. Increased dopamine levels in the NAc could be responsible for the effects. In addition, the mice basal impulsivity was negatively correlated with the latency to the first agonistic behavior. Thus, the optimal dose range of milnacipran is narrower than previously thought. Finding drugs that increase serotonin and dopamine levels in the mPFC without affecting dopamine levels in the NAc is a potential strategy for developing novel antidepressants.
Collapse
Affiliation(s)
- Iku Tsutsui-Kimura
- Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo 160-8582, Japan; Japan Society for the Promotion of Science, Japan; Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Yu Ohmura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Takayuki Yoshida
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
8
|
Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Front Behav Neurosci 2016; 10:63. [PMID: 27065827 PMCID: PMC4813092 DOI: 10.3389/fnbeh.2016.00063] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/16/2016] [Indexed: 01/09/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Philip S Lambeth
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Matteo Ottolini
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Bryan Scot Barker
- Department of Anesthesiology, University of Virginia Charlottesville, VA, USA
| | - Ronald P Gaykema
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Brandon A Newmyer
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Jonathan Joy-Gaba
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| | - Ali D Güler
- Department of Biology, University of Virginia Charlottesville, VA, USA
| | - Manoj K Patel
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine Sapporo, Japan
| | - Michael M Scott
- Department of Pharmacology, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
9
|
Tsutsui-Kimura I, Ohmura Y, Izumi T, Matsushima T, Amita H, Yamaguchi T, Yoshida T, Yoshioka M. Neuronal codes for the inhibitory control of impulsive actions in the rat infralimbic cortex. Behav Brain Res 2016; 296:361-372. [DOI: 10.1016/j.bbr.2015.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/29/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
|
10
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Chiba H, Mitsui T, Kitta T, Ohmura Y, Moriya K, Kanno Y, Yoshioka M, Shinohara N. The role of serotonergic mechanism in the rat prefrontal cortex for controlling the micturition reflex: An in vivo microdialysis study. Neurourol Urodyn 2015; 35:902-907. [DOI: 10.1002/nau.22843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/13/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Chiba
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Takahiko Mitsui
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Takeya Kitta
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Yu Ohmura
- Department of Neuropharmacology; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Kimihiko Moriya
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Yukiko Kanno
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| |
Collapse
|
12
|
Tsutsui-Kimura I, Yoshida T, Ohmura Y, Izumi T, Yoshioka M. Milnacipran remediates impulsive deficits in rats with lesions of the ventromedial prefrontal cortex. Int J Neuropsychopharmacol 2015; 18:pyu083. [PMID: 25522418 PMCID: PMC4376543 DOI: 10.1093/ijnp/pyu083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Deficits in impulse control are often observed in psychiatric disorders in which abnormalities of the prefrontal cortex are observed, including attention-deficit/hyperactivity disorder and bipolar disorder. We recently found that milnacipran, a serotonin/noradrenaline reuptake inhibitor, could suppress impulsive action in normal rats. However, whether milnacipran could suppress elevated impulsive action in rats with lesions of the ventromedial prefrontal cortex, which is functionally comparable with the human prefrontal cortex, remains unknown. METHODS Selective lesions of the ventromedial prefrontal cortex were made using quinolinic acid in rats previously trained on a 3-choice serial reaction time task. Sham rats received phosphate buffered saline. Following a period of recovery, milnacipran (0 or 10mg/kg/d × 14 days) was orally administered 60 minutes prior to testing on the 3-choice task. After 7 days of drug cessation, Western blotting, immunohistochemistry, electrophysiological analysis, and morphological analysis were conducted. RESULTS Lesions of the ventromedial prefrontal cortex induced impulsive deficits, and repeated milnacipran ameliorated the impulsive deficit both during the dosing period and after the cessation of the drug. Repeated milnacipran remediated the protein levels of mature brain-derived neurotrophic factor and postsynaptic density-95, dendritic spine density, and excitatory currents in the few surviving neurons in the ventromedial prefrontal cortex of ventromedial prefrontal cortex-lesioned rats. CONCLUSIONS The findings of this study suggest that milnacipran treatment could be a novel strategy for the treatment of psychiatric disorders that are associated with a lack of impulse control.
Collapse
Affiliation(s)
| | | | - Yu Ohmura
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan (Drs Tsutsui-Kimura, Yoshida, Ohmura, Izumi, and Yoshioka); Japan Society for the Promotion of Science, Tokyo, Japan (Dr Tsutsui-Kimura); Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan (Dr Tsutsui-Kimura).
| | | | | |
Collapse
|
13
|
Mendoza J, Sanio C, Chaudhri N. Inactivating the infralimbic but not prelimbic medial prefrontal cortex facilitates the extinction of appetitive Pavlovian conditioning in Long-Evans rats. Neurobiol Learn Mem 2014; 118:198-208. [PMID: 25543024 DOI: 10.1016/j.nlm.2014.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/03/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022]
Abstract
The infralimbic medial prefrontal cortex (IL) has been posited as a common node in distinct neural circuits that mediate the extinction of appetitive and aversive conditioning. However, appetitive extinction is typically assessed using instrumental conditioning procedures, whereas the extinction of aversive conditioning is customarily studied using Pavlovian assays. The role of the IL in the extinction of appetitive Pavlovian conditioning remains underexplored. We investigated the involvement of the IL and prelimbic medial prefrontal cortex (PrL) in appetitive extinction in Pavlovian and instrumental conditioning assays in male, Long-Evans rats. Following acquisition, a gamma-aminobutyric acid agonist solution (0.03 nmol muscimol; 0.3 nmol baclofen; 0.3 μl/side) was bilaterally microinfused into the IL or PrL to pharmacologically inactivate each region before the first extinction session. Compared to saline, PrL inactivation did not affect the acquisition of extinction or the recall of extinction memory 24-h later. IL inactivation caused a more rapid extinction of Pavlovian conditioning, but had no effect on the extinction of instrumental conditioning or extinction recall. IL inactivation during a Pavlovian conditioning session in which conditioned stimulus (CS) trials were paired with sucrose did not affect CS-elicited behaviour, but increased responding during intervals that did not contain the CS. The same manipulation did not impact lever pressing for sucrose. These findings suggest that the IL may normally maintain Pavlovian conditioned responding when an anticipated appetitive CS is unexpectedly withheld, and that this region has distinct roles in the expression of Pavlovian conditioning when an appetitive unconditioned stimulus is either presented or omitted.
Collapse
Affiliation(s)
- J Mendoza
- Center for Studies in Behavioural Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - C Sanio
- Center for Studies in Behavioural Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - N Chaudhri
- Center for Studies in Behavioural Neurobiology/FRQS Groupe de recherche en neurobiologie comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|