1
|
Yang KN, Lin CY, Li WN, Tang CM, Pradhan J, Chao MW, Tseng CY. Ganoderma tsuage promotes pain sensitivity in aging mice. Sci Rep 2024; 14:11536. [PMID: 38773201 PMCID: PMC11109092 DOI: 10.1038/s41598-024-61499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Advances in modern medicine have extended human life expectancy, leading to a world with a gradually aging society. Aging refers to a natural decline in the physiological functions of a species over time, such as reduced pain sensitivity and reaction speed. Healthy-level physiological pain serves as a warning signal to the body, helping to avoid noxious stimuli. Physiological pain sensitivity gradually decreases in the elderly, increasing the risk of injury. Therefore, geriatric health care receives growing attention, potentially improving the health status and life quality of the elderly, further reducing medical burden. Health food is a geriatric healthcare choice for the elderly with Ganoderma tsuage (GT), a Reishi type, as the main product in the market. GT contains polysaccharides, triterpenoids, adenosine, immunoregulatory proteins, and other components, including anticancer, blood sugar regulating, antioxidation, antibacterial, antivirus, and liver and stomach damage protective agents. However, its pain perception-related effects remain elusive. This study thus aimed at addressing whether GT could prevent pain sensitivity reduction in the elderly. We used a galactose-induced animal model for aging to evaluate whether GT could maintain pain sensitivity in aging mice undergoing formalin pain test, hot water test, and tail flexes. Our results demonstrated that GT significantly improved the sensitivity and reaction speed to pain in the hot water, hot plate, and formalin tests compared with the control. Therefore, our animal study positions GT as a promising compound for pain sensitivity maintenance during aging.
Collapse
Affiliation(s)
- Kai-Ning Yang
- Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Chia-Ying Lin
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Wei-Nong Li
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chao-Ming Tang
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Jyotirmayee Pradhan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Bates JN, Getsy PM, Coffee GA, Baby SM, MacFarlane PM, Hsieh YH, Knauss ZT, Bubier JA, Mueller D, Lewis SJ. Lipophilic analogues of D-cysteine prevent and reverse physical dependence to fentanyl in male rats. Front Pharmacol 2024; 14:1336440. [PMID: 38645835 PMCID: PMC11026688 DOI: 10.3389/fphar.2023.1336440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 04/23/2024] Open
Abstract
We examined whether co-injections of the cell-permeant D-cysteine analogues, D-cysteine ethyl ester (D-CYSee) and D-cysteine ethyl amide (D-CYSea), prevent acquisition of physical dependence induced by twice-daily injections of fentanyl, and reverse acquired dependence to these injections in freely-moving male Sprague Dawley rats. Injection of the opioid receptor antagonist, naloxone HCl (NLX, 1.5 mg/kg, IV), elicited a series of withdrawal phenomena that included cardiorespiratory and behavioral responses, and falls in body weight and body temperature, in rats that received 5 or 10 injections of fentanyl (125 μg/kg, IV), and the same number of vehicle co-injections. Regarding the development of physical dependence, the NLX-precipitated withdrawal phenomena were markedly reduced in fentanyl-injected rats that had received co-injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine (250 μmol/kg, IV). Regarding reversal of established dependence to fentanyl, the NLX-precipitated withdrawal phenomena in rats that had received 10 injections of fentanyl (125 μg/kg, IV) was markedly reduced in rats that received co-injections of D-CYSee (250 μmol/kg, IV) or D-CYSea (100 μmol/kg, IV), but not D-cysteine (250 μmol/kg, IV), starting with injection 6 of fentanyl. This study provides evidence that co-injections of D-CYSee and D-CYSea prevent the acquisition of physical dependence, and reverse acquired dependence to fentanyl in male rats. The lack of effect of D-cysteine suggests that the enhanced cell-penetrability of D-CYSee and D-CYSea into cells, particularly within the brain, is key to their ability to interact with intracellular signaling events involved in acquisition to physical dependence to fentanyl.
Collapse
Affiliation(s)
- James N. Bates
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Santhosh M. Baby
- Section of Biology, Galleon Pharmaceuticals, Inc., Horsham, PA, United States
| | - Peter M. MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zackery T. Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | | | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Uddin O, Jenne C, Fox ME, Arakawa K, Keller A, Cramer N. Divergent profiles of fentanyl withdrawal and associated pain in mice and rats. Pharmacol Biochem Behav 2020; 200:173077. [PMID: 33316293 DOI: 10.1016/j.pbb.2020.173077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Opioid abuse has devastating effects on patients, their families, and society. Withdrawal symptoms are severely unpleasant, prolonged, and frequently hinder recovery or lead to relapse. The sharp increase in abuse and overdoses arising from the illicit use of potent and rapidly-acting synthetic opioids, such as fentanyl, highlights the urgency of understanding the withdrawal mechanisms related to these drugs. Progress is impeded by inconsistent reports on opioid withdrawal in different preclinical models. Here, using rats and mice of both sexes, we quantified withdrawal behaviors during spontaneous and naloxone-precipitated withdrawal, following two weeks of intermittent fentanyl exposure. We found that both mice and rats lost weight during exposure and showed increased signs of distress during spontaneous and naloxone precipitated withdrawal. However, these species differed in their expression of withdrawal associated pain, a key contributor to relapse in humans. Spontaneous or ongoing pain was preferentially expressed in rats in both withdrawal conditions, while no change was observed in mice. In contrast, withdrawal associated thermal hyperalgesia was found only in mice. These data suggest that rats and mice diverge in how they experience withdrawal and which aspects of the human condition they most accurately model. These differences highlight each species' strengths as model systems and can inform experimental design in studies of opioid withdrawal.
Collapse
Affiliation(s)
- Olivia Uddin
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Carleigh Jenne
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Megan E Fox
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Keiko Arakawa
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America
| | - Nathan Cramer
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States of America.
| |
Collapse
|
4
|
The effects of aging on hydromorphone-induced thermal antinociception in healthy female cats. Pain Rep 2019; 4:e722. [PMID: 31041422 PMCID: PMC6455684 DOI: 10.1097/pr9.0000000000000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022] Open
Abstract
Introduction: This study aimed to evaluate the effects of aging on hydromorphone-induced thermal antinociception in cats. Methods: In a prospective, randomized, blinded, controlled design, 10 healthy female cats received each of the following treatments intramuscularly: hydromorphone (0.1 mg/kg) and 0.9% saline (0.05 mL/kg) with a 1-week washout between treatments at 6, 9, and 12 months of age. Skin temperature and thermal thresholds (TTs) were recorded before and up to 12 hours after injection. Data were analyzed using a repeated-measures linear mixed model (α = 0.05). Results: After saline treatment, TT was not significantly different from baseline at any time point for any age group. After hydromorphone treatment, TT was significantly higher than baseline at 6 months for up to 1 hour, and at 9 and 12 months for up to 4 hours. Peak TT at 6, 9, and 12 months were 50.4 ± 2.7, 50.9 ± 2.0, and 53.6 ± 2.0°C at 0.5, 1, and 1 hours, respectively. Mean TT was significantly higher after hydromorphone treatment when compared with saline treatment at 9 and 12 months for up to 4 hours but not at 6 months. Magnitude of antinociception was consistently larger at 12 months when compared with 6 months of age. Hydromorphone provided a shorter duration and smaller magnitude of antinociception at 6 months when compared with 9 and 12 months. Conclusion: Pediatric cats may require more frequent dosing of hydromorphone than adults.
Collapse
|