1
|
Ren Q, Han W, Yue Y, Tang Y, Yue Q, Comai S, Sun J. Melatonin Regulates Neuronal Synaptic Plasticity in the Supramammillary Nucleus and Attenuates Methamphetamine-Induced Conditioned Place Preference and Sensitization in Mice. J Pineal Res 2024; 76:e13006. [PMID: 39221552 DOI: 10.1111/jpi.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Methamphetamine (METH) is an addictive drug that threatens human health. The supramammillary nucleus (SuM) and its neural circuits play key roles in the regulation of spatial memory retrieval, and hippocampal contextual or social memory. Melatonin (MLT), a pineal hormone, can regulate hypothalamic-neurohypophysial activity. Our previous study showed that MLT attenuates METH-induced locomotor sensitization. However, whether MLT regulates SuM function and participates in METH-induced contextual memory retrieval remains unclear. Using a mouse model of METH-conditioned place preference (CPP) and sensitization, we found that METH activated c-Fos expression and elevated calcium (Ca²⁺) levels in SuM neurons. Chemogenetic inhibition of SuM attenuates CPP and sensitization. Pretreatment with MLT decreased c-Fos expression and Ca2+ levels in the SuM and reversed METH-induced addictive behavior, effects that were blocked with the selective MT2 receptors antagonist 4P-PDOT and the MT1 receptors antagonist S26131. Furthermore, MLT reduced SuM synaptic plasticity, glutamate (Glu) release, and neuronal oscillations caused by METH, which were blocked by 4P-PDOT. In conclusion, our data revealed that MLT regulates neuronal synaptic plasticity in the SuM, likely through the MLT receptors (MTs), and plays a role in modulating METH-addictive behavior.
Collapse
Affiliation(s)
- Qingyu Ren
- Department of Anatomy and Neurobiology, Shandong University School of Basic Medicine, Jinan, Shandong, China
| | - Weikai Han
- Department of Anatomy and Neurobiology, Shandong University School of Basic Medicine, Jinan, Shandong, China
| | - Yanan Yue
- Department of Anatomy and Neurobiology, Shandong University School of Basic Medicine, Jinan, Shandong, China
| | - Yaqi Tang
- Department of Anatomy and Neurobiology, Shandong University School of Basic Medicine, Jinan, Shandong, China
| | - Qingwei Yue
- Department of Anatomy and Neurobiology, Shandong University School of Basic Medicine, Jinan, Shandong, China
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Jinhao Sun
- Department of Anatomy and Neurobiology, Shandong University School of Basic Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Boutros SW, Krenik D, Holden S, Unni VK, Raber J. Common cancer treatments targeting DNA double strand breaks affect long-term memory and relate to immediate early gene expression in a sex-dependent manner. Oncotarget 2022; 13:198-213. [PMID: 35106123 PMCID: PMC8794536 DOI: 10.18632/oncotarget.28180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
DNA double strand breaks (DSBs) have been highly studied in the context of cancers, as DSBs can lead to apoptosis or tumorigenesis. Several pharmaceuticals are widely used to target DSBs during cancer therapy. Amifostine (WR-2721) and etoposide are two commonly used drugs: amifostine reduces DSBs, whereas etoposide increases DSBs. Recently, a novel role for DSBs in immediate early gene expression, learning, and memory has been suggested. Neither amifostine nor etoposide have been assessed for their effects on learning and memory without confounding factors. Moreover, sex-dependent effects of these drugs have not been reported. We administered amifostine or etoposide to 3-4-month-old male and female C57Bl/6J mice before or after training in fear conditioning and assessed learning, memory, and immediate early genes. We observed sex-dependent baseline and drug-induced differences, with females expressing higher cFos and FosB levels than males. These were affected by both amifostine and etoposide. Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory. These data support the hypothesis that DSBs contribute to learning and memory, and that these could play a part in cognitive side effects during common treatment regimens. The sex-dependent effects also highlight an important factor when considering treatment plans.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Destine Krenik
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Vivek K. Unni
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
- OHSU Parkinson Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Psychiatry, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, The Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Jacobskind JS, Rosinger ZJ, Brooks ML, Zuloaga DG. Stress-induced neural activation is altered during early withdrawal from chronic methamphetamine. Behav Brain Res 2019; 366:67-76. [PMID: 30902659 DOI: 10.1016/j.bbr.2019.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Chronic methamphetamine (MA) use can lead to increased symptoms of depression and anxiety during abstinence. Less is known about the specific brain regions that are altered following repeated MA that may be associated with these behavioral perturbations. Furthermore, MA has been reported to recruit and activate microglia in the brain, which may exacerbate stress-associated behavioral changes. In the present study, male and female mice were injected with MA (5 mg/kg) or saline once daily for 10 days, and during early withdrawal were assessed for alterations in immediate early gene (c-Fos) responses to a forced swim stressor. Chronic MA exposure increased floating and decreased swim time in the forced swim test in male and female mice tested 48 h after the final dose, indicating elevated depressive-like behavior. Furthermore, assessment of nest building, a measure of distress or despair-like behavior, revealed a sex-specific effect with only MA-treated females showing impairments. The c-Fos response to forced swim was attenuated by prior MA exposure in the central amygdala, CA3 hippocampal region, prefrontal cortex, and bed nucleus of the stria terminalis (BST). In the BST this attenuation occurred only in males. Neither the total number of microglia or activated microglia were altered by chronic MA exposure in regions examined. The primary findings indicate that chronic MA exposure attenuates activation of select stress-associated brain regions, a dysregulation that might contribute to alterations in mood-related behaviors.
Collapse
Affiliation(s)
- Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Morgan L Brooks
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States.
| |
Collapse
|
4
|
Jacobskind JS, Rosinger ZJ, Gonzalez T, Zuloaga KL, Zuloaga DG. Chronic Methamphetamine Exposure Attenuates Neural Activation in Hypothalamic-Pituitary-Adrenal Axis-Associated Brain Regions in a Sex-specific Manner. Neuroscience 2018; 380:132-145. [PMID: 29679646 DOI: 10.1016/j.neuroscience.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/16/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
Sex differences in methamphetamine (MA) abuse and consequences of MA have been reported with females showing an increased addiction phenotype and withdrawal symptoms. One mechanism through which these effects might occur is via sex-specific alterations in the hypothalamic-pituitary-adrenal (HPA) axis and its associated brain regions. In this study, mice were administered MA (5 mg/kg) or saline for 10 consecutive days. During early withdrawal, anxiety-like behaviors were assessed in the open field, light/dark box, and elevated plus maze. At ten days of withdrawal, mice were injected with a final dose of MA (5 mg/kg) or saline. Chronic MA did not alter anxiety-like behaviors or corticosterone responses to a final dose of MA, although females showed elevated corticosterone responses compared to males. Chronic MA attenuated final MA-induced c-Fos in both sexes in the paraventricular hypothalamus (PVH), bed nucleus of the stria terminalis (BNST), cingulate cortex, central and basolateral amygdala. In CA1 and CA3 hippocampal areas, c-Fos attenuation by chronic MA occurred only in females. Within the PVH, final MA injection increased c-Fos to a greater extent in females compared to males regardless of prior MA exposure. Dual-labeling of c-Fos with glucocorticoid receptor revealed a specific attenuation of neural activation within this cell type in the PVH, central and basolateral amygdala, and BNST. Together these findings demonstrate that chronic MA can suppress subsequent activation of HPA axis-associated brain regions and cell phenotypes. Further, in select regions this reduction is sex-specific. These changes may contribute to reported sex differences in MA abuse patterns.
Collapse
Affiliation(s)
- Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Tiffany Gonzalez
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Kristen L Zuloaga
- Albany Medical College, Department of Neuroscience & Experimental Therapeutics, Albany, NY 12208, United States
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States.
| |
Collapse
|
5
|
Anderson E, McWaters M, McFadden L, Matuszewich L. Defensive burying as an ethological approach to studying anxiety: Influence of juvenile methamphetamine on adult defensive burying behavior in rats. LEARNING AND MOTIVATION 2018. [DOI: 10.1016/j.lmot.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Jacobskind JS, Rosinger ZJ, Zuloaga DG. Hypothalamic-pituitary-adrenal axis responsiveness to methamphetamine is modulated by gonadectomy in males. Brain Res 2017; 1677:74-85. [PMID: 28941573 DOI: 10.1016/j.brainres.2017.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/18/2017] [Accepted: 09/17/2017] [Indexed: 12/14/2022]
Abstract
Sex differences in patterns of methamphetamine (MA) abuse have been reported with females (humans and rodents) showing an elevated addiction phenotype. Previous findings indicate MA-induced hypothalamic-pituitary-adrenal (HPA) axis activation is also sexually dimorphic with females exhibiting an elevated glucocorticoid release and differential neural activation patterns within HPA axis-associated brain regions. These effects may contribute to sex differences in abuse. To determine the role of gonadal hormones in mediating sex differences in MA-induced glucocorticoids, male and female C57BL/6J mice were gonadectomized or sham-operated, and following recovery, injected with MA (5mg/kg) and sacrificed 60min or 120min later. Blood was collected for corticosterone radioimmunoassay, and brains were used to assess c-Fos, and c-Fos co-localization with glucocorticoid receptor (GR). At 120min after MA injection, corticosterone levels were elevated in females compared to males and gonadectomy in males increased corticosterone to female levels. C-Fos was greater in females than males in the medial preoptic area, bed nucleus of the stria terminalis, basolateral amygdala, and central amygdala. Female gonadectomy had little effect on either corticosterone or c-Fos, while male gonadectomy elevated c-Fos in the central amygdala. Relative to sham males, gonadectomized males also showed decreased c-Fos/GR cell number in the CA3 hippocampal area compared to sham males, indicating a central site for attenuated negative feedback. Together, these findings indicate that androgens regulate MA-induced activation of the HPA axis, potentially by enhancing negative feedback. These sex and gonadal hormone effects on the HPA axis may contribute to sex differences in MA abuse patterns.
Collapse
Affiliation(s)
- Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States.
| |
Collapse
|
7
|
Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J Chem Neuroanat 2017; 82:5-11. [PMID: 28323108 DOI: 10.1016/j.jchemneu.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
Abstract
Methamphetamine is a powerful psychostimulant drug and its use and abuse necessitates a better understanding of its neurobiobehavioral effects. The acute effects of binge dosing of methamphetamine on the neurons in the CNS are well studied. However, the long-term effects of chronic, low-dose methamphetamine are less well characterized, especially in other cell types and areas outside of the major dopamine pathways. Mice were administered 5mg/kg/day methamphetamine for ten days and brain tissue was analyzed using histochemistry and image analysis. Increased microglia activity in the striatum confirmed toxic effects of methamphetamine in this brain region using this dosing paradigm. A significant decrease in microglia activity in the arcuate nucleus of the hypothalamus was observed with no effect noted on dopamine neurons in the arcuate nucleus. Given the importance of this area in homeostatic and neuroendocrine regulation, the current study highlights the need to more fully understand the systemic effects of chronic, low-dose methamphetamine use. The novel finding of microglia downregulation after chronic methamphetamine could lead to advances in understanding neuroinflammatory responses towards addiction treatment and protection from psychostimulant-induced neurotoxicity.
Collapse
|
8
|
Zuloaga DG, Wang J, Weber S, Mark GP, Murphy SJ, Raber J. Chronic methamphetamine exposure prior to middle cerebral artery occlusion increases infarct volume and worsens cognitive injury in Male mice. Metab Brain Dis 2016; 31:975-81. [PMID: 27021292 PMCID: PMC5940345 DOI: 10.1007/s11011-016-9808-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
Abstract
Emerging evidence indicates that methamphetamine (MA) abuse can impact cardiovascular disease. In humans, MA abuse is associated with an increased risk of stroke as well as an earlier age at which the stroke occurs. However, little is known about how chronic daily MA exposure can impact ischemic outcome in either humans or animal models. In the present study, mice were injected with MA (10 mg/kg, i.p.) or saline once daily for 10 consecutive days. Twenty-four hours after the final injection, mice were subjected to transient middle cerebral artery occlusion (tMCAO) for one hour followed by reperfusion. Mice were tested for novel object memory at 96 h post-reperfusion, just prior to removal of brains for quantification of infarct volume using 2,3,5-Triphenyltetrazolium Chloride (TTC) staining. Mice treated with MA prior to tMCAO showed decreased object memory recognition and increased infarct volume compared to saline-treated mice. These findings indicate that chronic MA exposure can worsen both cognitive and morphological outcomes following cerebral ischemia.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW S Jackson Pk Rd, Portland, OR, 97239, USA.
- Department of Psychology, University at Albany, SUNY, 1400 Washington Ave, Albany, NY, 12222, USA.
| | - Jianming Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sydney Weber
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW S Jackson Pk Rd, Portland, OR, 97239, USA
| | - Gregory P Mark
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW S Jackson Pk Rd, Portland, OR, 97239, USA
| | - Stephanie J Murphy
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW S Jackson Pk Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW S Jackson Pk Rd, Portland, OR, 97239, USA.
- Departments of Neurology and Radiation Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|