1
|
Abdullah A, Kumar A, Beg AZ, Chawla A, Kar S, Ganguly S, Khan AU. Peripherally-restricted recurrent infection by engineered E. coli strain modulates hippocampal proteome promoting memory impairments in a rat model. Gene 2024; 933:148969. [PMID: 39341518 DOI: 10.1016/j.gene.2024.148969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Commensal bacteria that breach endothelial barrier has been reported to induce low grade chronic inflammation producing disease symptoms in major peripheral tissues. In this study, we investigated the role of genetically modified cellular invasive form of commensal E. coli K12 (SK3842) in cognitive impairment. Low-grade systemic infection model was developed using recurring peripheral inoculation of live bacteria in Wistar rats. To examine memory parameters, Novel object recognition test and Radial arm maze test were performed. Differential protein expression profiling of rat hippocampus was carried out using LC-MS/MS and subsequently quantified using SWATH. HBA1/2, NEFH, PFN1 and ATP5d were chosen for validation using quantitative RT-PCR. Results showed drastic decline in Recognition memory of the SK3842 infected rats. Reference and Working Memory of the infected group were also significantly reduced in comparison to control group. Proteome analysis using LC-MS/MS coupled with SWATH revealed differential expression of key proteins that are crucial for the maintenance of various neurological functions. Moreover, expression of NEFH and PFN1transcripts were found to be in line with the proteomics data. Protein interaction network of these validated proteins generated by STRING database converged to RhoA protein. Thus, the present study establishes an association between peripheral infection of a hippocampal protein network dysregulation and overall memory decline.
Collapse
Affiliation(s)
- Anam Abdullah
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Anuranjani Kumar
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Zainab Beg
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Anupam Chawla
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sudeshna Kar
- Oncology and Neuroscience Research Laboratory, Artemis Hospital, Sector 51, Gurgaon, Haryana 122001,India
| | - Surajit Ganguly
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Liu P, Dai S, Mi T, Tang G, Wang Z, Wang H, Du H, Tang Y, Teng Z, Liu C. Acetate supplementation restores cognitive deficits caused by ARID1A haploinsufficiency in excitatory neurons. EMBO Mol Med 2022; 14:e15795. [PMID: 36385502 PMCID: PMC9728054 DOI: 10.15252/emmm.202215795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Mutations in AT-rich interactive domain-containing protein 1A (ARID1A) cause Coffin-Siris syndrome (CSS), a rare genetic disorder that results in mild to severe intellectual disabilities. However, the biological role of ARID1A in the brain remains unclear. In this study, we report that the haploinsufficiency of ARID1A in excitatory neurons causes cognitive impairment and defects in hippocampal synaptic transmission and dendritic morphology in mice. Similarly, human embryonic stem cell-derived excitatory neurons with deleted ARID1A exhibit fewer dendritic branches and spines, and abnormal electrophysiological activity. Importantly, supplementation of acetate, an epigenetic metabolite, can ameliorate the morphological and electrophysiological deficits observed in mice with Arid1a haploinsufficiency, as well as in ARID1A-null human excitatory neurons. Mechanistically, transcriptomic and ChIP-seq analyses demonstrate that acetate supplementation can increase the levels of H3K27 acetylation at the promoters of key regulatory genes associated with neural development and synaptic transmission. Collectively, these findings support the essential roles of ARID1A in the excitatory neurons and cognition and suggest that acetate supplementation could be a potential therapeutic intervention for CSS.
Collapse
Affiliation(s)
- Pei‐Pei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Shang‐Kun Dai
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,School of Life Sciences and MedicineShandong University of TechnologyZiboChina
| | - Ting‐Wei Mi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Gang‐Bin Tang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhuo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina
| | - Hong‐Zhen Du
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Zhao‐Qian Teng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina,University of Chinese Academy of SciencesBeijingChina,Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina,Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
3
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
4
|
Huang W, Hu W, Cai L, Zeng G, Fang W, Dai X, Ye Q, Chen X, Zhang J. Acetate supplementation produces antidepressant-like effect via enhanced histone acetylation. J Affect Disord 2021; 281:51-60. [PMID: 33290927 DOI: 10.1016/j.jad.2020.11.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abnormal energy metabolism is often documented in the brain of patients and rodents with depression. In metabolic stress, acetate serves as an important source of acetyl coenzyme A (Ac-CoA). However, its exact role and underlying mechanism remain to be investigated. METHOD We used chronic social failure stress (CSDS) to induce depression-like phenotype of C57BL/6J mice. The drugs were administered by gavage. We evaluated the depressive symptoms by sucrose preference test, social interaction, tail suspension test and forced swimming test. The dendritic branches and spine density were detected by Golgi staining, mRNA level was analyzed by real-time quantitative RT-PCR, protein expression level was detected by western blot, and the content of Ac-CoA was detected by ELISA kit. RESULT The present study found that acetate supplementation significantly improved the depression-like behaviors of mice either in acute forced swimming test (FST) or in CSDS model and that acetate administration enhanced the dendritic branches and spine density of the CA1 pyramidal neurons. Moreover, the down-regulated levels of BDNF and TrkB were rescued in the acetate-treated mice. Of note, chronic acetate treatment obviously lowered the transcription level of HDAC2, HDAC5, HDAC7, HDAC8, increased the transcription level of HAT and P300, and boosted the content of Ac-CoA in the nucleus, which facilitated the acetylation levels of histone H3 and H4. LIMITATIONS The effect of acetate supplementation on other brain regions is not further elucidated. CONCLUSION These findings indicate that acetate supplementation can produce antidepressant-like effects by increasing histone acetylation and improving synaptic plasticity in hippocampus.
Collapse
Affiliation(s)
- Weibin Huang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wenming Hu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Lili Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Guirong Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wenting Fang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China.
| |
Collapse
|
5
|
Weston RG, Fitzgerald PJ, Watson BO. Repeated Dosing of Ketamine in the Forced Swim Test: Are Multiple Shots Better Than One? Front Psychiatry 2021; 12:659052. [PMID: 34045982 PMCID: PMC8144297 DOI: 10.3389/fpsyt.2021.659052] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
The anesthetic drug ketamine has been successfully repurposed as an antidepressant in human subjects. This represents a breakthrough for clinical psychopharmacology, because unlike monoaminergic antidepressants, ketamine has rapid onset, including in Major Depressive Disorder (MDD) that is resistant to conventional pharmacotherapy. This rapid therapeutic onset suggests a unique mechanism of action, which continues to be investigated in reverse translational studies in rodents. A large fraction of rodent and human studies of ketamine have focused on the effects of only a single administration of ketamine, which presents a problem because MDD is typically a persistent illness that may require ongoing treatment with this drug to prevent relapse. Here we review behavioral studies in rodents that used repeated dosing of ketamine in the forced swim test (FST), with an eye toward eventual mechanistic studies. A subset of these studies carried out additional experiments with only a single injection of ketamine for comparison, and several studies used chronic psychosocial stress, where stress is a known causative factor in some cases of MDD. We find that repeated ketamine can in some cases paradoxically produce increases in immobility in the FST, especially at high doses such as 50 or 100 mg/kg. Several studies however provide evidence that repeated dosing is more effective than a single dose at decreasing immobility, including behavioral effects that last longer. Collectively, this growing literature suggests that repeated dosing of ketamine has prominent depression-related effects in rodents, and further investigation may help optimize the use of this drug in humans experiencing MDD.
Collapse
Affiliation(s)
- Ridge G Weston
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Paul J Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Sarkar A, Harty S, Johnson KVA, Moeller AH, Carmody RN, Lehto SM, Erdman SE, Dunbar RIM, Burnet PWJ. The role of the microbiome in the neurobiology of social behaviour. Biol Rev Camb Philos Soc 2020; 95:1131-1166. [PMID: 32383208 PMCID: PMC10040264 DOI: 10.1111/brv.12603] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Microbes colonise all multicellular life, and the gut microbiome has been shown to influence a range of host physiological and behavioural phenotypes. One of the most intriguing and least understood of these influences lies in the domain of the microbiome's interactions with host social behaviour, with new evidence revealing that the gut microbiome makes important contributions to animal sociality. However, little is known about the biological processes through which the microbiome might influence host social behaviour. Here, we synthesise evidence of the gut microbiome's interactions with various aspects of host sociality, including sociability, social cognition, social stress, and autism. We discuss evidence of microbial associations with the most likely physiological mediators of animal social interaction. These include the structure and function of regions of the 'social' brain (the amygdala, the prefrontal cortex, and the hippocampus) and the regulation of 'social' signalling molecules (glucocorticoids including corticosterone and cortisol, sex hormones including testosterone, oestrogens, and progestogens, neuropeptide hormones such as oxytocin and arginine vasopressin, and monoamine neurotransmitters such as serotonin and dopamine). We also discuss microbiome-associated host genetic and epigenetic processes relevant to social behaviour. We then review research on microbial interactions with olfaction in insects and mammals, which contribute to social signalling and communication. Following these discussions, we examine evidence of microbial associations with emotion and social behaviour in humans, focussing on psychobiotic studies, microbe-depression correlations, early human development, autism, and issues of statistical power, replication, and causality. We analyse how the putative physiological mediators of the microbiome-sociality connection may be investigated, and discuss issues relating to the interpretation of results. We also suggest that other candidate molecules should be studied, insofar as they exert effects on social behaviour and are known to interact with the microbiome. Finally, we consider different models of the sequence of microbial effects on host physiological development, and how these may contribute to host social behaviour.
Collapse
Affiliation(s)
- Amar Sarkar
- Trinity College, Trinity Street, University of Cambridge, Cambridge, CB2 1TQ, U.K.,Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, Fitzwilliam Street, University of Cambridge, Cambridge, CB2 1QH, U.K
| | - Siobhán Harty
- Institute of Neuroscience, Trinity College Dublin, Dublin 2, Dublin, Ireland.,School of Psychology, Trinity College Dublin, Dublin 2, Dublin, Ireland
| | - Katerina V-A Johnson
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K.,Pembroke College, University of Oxford, Oxford, OX1 1DW, U.K.,Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Corson Hall, Tower Road, Cornell University, Ithaca, NY, 14853, U.S.A
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, 11 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - Soili M Lehto
- Psychiatry, University of Helsinki and Helsinki University Hospital, PL 590, FI-00029, Helsinki, Finland.,Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, P.O. Box 6, FI-00014, Helsinki, Finland.,Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Susan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Building 16-825, 77 Massachusetts Avenue, Cambridge, MA, 02139, U.S.A
| | - Robin I M Dunbar
- Department of Experimental Psychology, Radcliffe Observatory Quarter, University of Oxford, Oxford, OX2 6GG, U.K
| | - Philip W J Burnet
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, U.K
| |
Collapse
|
7
|
Persistent peripheral presence of Staphylococcus aureus promotes histone H3 hypoacetylation and decreases tyrosine hydroxylase protein level in rat brain tissues. Neuroreport 2019; 30:1087-1094. [PMID: 31503205 DOI: 10.1097/wnr.0000000000001322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Growing evidences suggest systemic pathogen-induced neuroimmune interaction is a major risk factor for several neurological disorders. Our goal was to investigate whether asymptomatic peripheral carriage of Staphylococcus aureus, a widespread opportunistic pathogen, could modulate selective molecular features in brain tissues. METHODS To address this, a peripheral infection model was developed by challenging Wistar rats repeatedly with a clinical strain of S. aureus. Animals infected with S. aureus (10 CFU for three times in 10 days) showed significant changes in acetylation profile of selective lysine (K) residues K9 (H3K9), K14 (H3K14) and K27 (H3K27) of histone H3 in the hippocampus and prefrontal cortex (PFC). RESULTS Although S. aureus was restricted peripherally, the infection induced hypoacetylation of H3K9, H3K14 and H3K27 in the hippocampus and H3K27 in the PFC. Histone H3 hypoacetylation in the hippocampus and PFC was also detected when rats were challenged with an engineered invasive strain of E. coli K12, SK3842. This confirmed that modulation of epigenetic landscape in distal brain tissues may not be specific to S. aureus. Moreover, the tyrosine hydroxylase protein, the rate limiting enzyme in dopamine synthesis pathway whose gene-expression is regulated by H3 acetylation at the promoter, was remarkably reduced in the brain tissues of the infected hosts. CONCLUSION The results indicate that commensals like S. aureus, in spite of being largely restricted to the peripheral tissues, could modulate the homeostasis of molecular features in brain tissues whose maintenance is critical for preserving normal neurological functions.
Collapse
|
8
|
Kao ACC, Chan KW, Anthony DC, Lennox BR, Burnet PWJ. Prebiotic reduction of brain histone deacetylase (HDAC) activity and olanzapine-mediated weight gain in rats, are acetate independent. Neuropharmacology 2019; 150:184-191. [DOI: 10.1016/j.neuropharm.2019.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
|
9
|
Chapp AD, Schum S, Behnke JE, Hahka T, Huber MJ, Jiang E, Larson RA, Shan Z, Chen QH. Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiol Rep 2019; 6:e13666. [PMID: 29654634 PMCID: PMC5899179 DOI: 10.14814/phy2.13666] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
Accurate quantification of cations and anions remains a major diagnostic tool in understanding diseased states. The current technologies used for these analyses are either unable to quantify all ions due to sample size/volume, instrument setup/method, or are only able to measure ion concentrations from one physiological sample (liquid or solid). Herein, we adapted a common analytical chemistry technique, ion chromatography and applied it to measure the concentration of cations; sodium, potassium, calcium, and magnesium (Na+, K+, Ca2+, and Mg2+) and anions; chloride, and acetate (Cl−, −OAc) from physiological samples. Specifically, cations and anions were measured in liquid samples: serum, urine, and cerebrospinal fluid, as well as tissue samples: liver, cortex, hypothalamus, and amygdala. Serum concentrations of Na+, K+, Ca2+, Mg2+, Cl−, and −OAc (mmol/L): 138.8 ± 4.56, 4.05 ± 0.21, 4.07 ± 0.26, 0.98 ± 0.05, 97.7 ± 3.42, and 0.23 ± 0.04, respectively. Cerebrospinal fluid concentrations of Na+, K+, Ca2+, Mg2+, Cl−, and −OAc (mmol/L): 145.1 ± 2.81, 2.41 ± 0.26, 2.18 ± 0.38, 1.04 ± 0.11, 120.2 ± 3.75, 0.21 ± 0.05, respectively. Tissue Na+, K+, Ca2+, Mg2+, Cl−, and −OAc were also measured. Validation of the ion chromatography method was established by comparing chloride concentration between ion chromatography with a known method using an ion selective chloride electrode. These results indicate that ion chromatography is a suitable method for the measurement of cations and anions, including acetate from various physiological samples.
Collapse
Affiliation(s)
- Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Simeon Schum
- Department of Chemistry, Michigan Technological University, Houghton, Michigan
| | - Jessica E Behnke
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Taija Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
10
|
Ganguly S, Seth S. A translational perspective on histone acetylation modulators in psychiatric disorders. Psychopharmacology (Berl) 2018; 235:1867-1873. [PMID: 29915963 DOI: 10.1007/s00213-018-4947-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022]
Abstract
A large volume of research now provides evidence correlating aberrant histone deacetylase (HDAC) activities and hypoacetylation of histones to disruptions in synaptic plasticity, neuronal survival/regeneration, memory formation and consolidation. Hence, maintaining the acetyl-histone homeostasis as a component of neuronal mechanisms by targeting HDACs has emerged as an exciting intervention strategy for several neuropsychiatric disorders. Though extensive preclinical animal studies have elevated the translational potential of HDAC inhibitors (HDACis) in psychiatric disorders, so far, the translational gain remains low. This is perhaps attributed to the anticipated specificity issues and off-target effects which might negate the risk-reward advantage over the approved antipsychotics in use. So, to harness the therapeutic potential of HDACis in psychiatric disorders, a combination therapeutic strategy involving co-administration of an approved HDAC inhibitor (HDACi) along with a marketed antipsychotic drug has emerged in parallel. This takes advantage of the ability of HDACi, like SAHA, to reverse the potentially detrimental hypoacetylated state of chromatin and facilitate to augment the efficacy of atypical antipsychotics like clozapine. Apart from these efforts, as an alternative therapeutic strategy, highly tolerable oral metabolic acetate supplements with an ability to reverse the hypoacetylation states of histone were initiated in animal models. Exogenous acetate carrier enriches the cellular acetyl-CoA pool restoring acetyl-histone homeostasis, reminiscent of HDACi effect, without the associated toxicity. Though the path towards therapeutic intervention in psychiatric disorders using histone acetylation modulators is riddled with challenges, the growing number of tool compounds along with innovative research strategies, however, bodes well for the future.
Collapse
Affiliation(s)
- Surajit Ganguly
- Laboratory of Neurobiology and Drug Discovery, School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Subhendu Seth
- Laboratory of Neurobiology and Drug Discovery, School of Interdisciplinary Studies, Jamia Hamdard-Institute of Molecular Medicine (JH-IMM), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
11
|
Prebiotic attenuation of olanzapine-induced weight gain in rats: analysis of central and peripheral biomarkers and gut microbiota. Transl Psychiatry 2018; 8:66. [PMID: 29540664 PMCID: PMC5852210 DOI: 10.1038/s41398-018-0116-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olanzapine is an effective antipsychotic drug but since it causes significant weight gain, it is not well tolerated by psychosis patients. The prebiotic, B-GOS®, attenuates metabolic dysfunction in obese subjects, and in rodents, alters central NMDA receptors and may affect serotonin receptors that are relevant in psychosis. We have determined whether B-GOS® influenced olanzapine-associated weight gain and central NMDA and serotonin receptors. Circulating acetate, IL-1β, IL-8 and TNFα, liver acetyl-CoA carboxylase (ACC), white adipose tissue (WAT) acetate receptor GPR43, and specific faecal bacteria genera were also measured to provide mechanistic information. Adult female Sprague-Dawley rats were administered a B-GOS® (0.5 g/kg/day) solution or water for 21 days, and received a single, daily, intraperitoneal injection of olanzapine or saline on days 8-21. The intake of B-GOS® significantly attenuated olanzapine-induced weight gain without altering frontal cortex 5-HT2AR blockade. Cortical GluN1 levels were elevated by olanzapine in the presence of B-GOS®. Plasma acetate concentrations increased following B-GOS® or olanzapine administration alone, but reduced when prebiotic and drug were administered in combination. This pattern was paralleled by hepatic ACC mRNA expression. The abundance of WAT GPR43 mRNA was reduced by olanzapine, only in the absence of B-GOS®. Co-administration of B-GOS® and olanzapine also elevated plasma TNFα, which is reported to influence lipid metabolism. Finally, B-GOS® elevated faecal Bifidobacterium spp. and reduced some bacteria in the Firmicutes phylum, whilst olanzapine treatment either alone or with B-GOS®, was without effect. These data suggest that inclusion of B-GOS® as an adjunct to olanzapine treatment in schizophrenia may prevent weight gain and have benefits on cognitive function in psychosis. The role of acetate in these effects requires further investigation.
Collapse
|
12
|
Gronier B, Savignac HM, Di Miceli M, Idriss SM, Tzortzis G, Anthony D, Burnet PWJ. Increased cortical neuronal responses to NMDA and improved attentional set-shifting performance in rats following prebiotic (B-GOS ®) ingestion. Eur Neuropsychopharmacol 2018; 28:211-224. [PMID: 29174530 PMCID: PMC5857269 DOI: 10.1016/j.euroneuro.2017.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/13/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
We have previously shown that prebiotics (dietary fibres that augment the growth of indigenous beneficial gut bacteria) such as Bimuno™ galacto-oligosaccharides (B-GOS®), increased N-methyl-D-aspartate (NMDA) receptor levels in the rat brain. The current investigation examined the functional correlates of these changes in B-GOS®-fed rats by measuring cortical neuronal responses to NMDA using in vivo NMDA micro-iontophoresis electrophysiology, and performance in the attentional set-shifting task. Adult male rats were supplemented with B-GOS® in the drinking water 3 weeks prior to in vivo iontophoresis or behavioural testing. Cortical neuronal responses to NMDA iontophoresis, were greater (+30%) in B-GOS® administered rats compared to non-supplemented controls. The intake of B-GOS® also partially hindered the reduction of NMDA responses by the glycine site antagonist, HA-966. In the attentional set-shifting task, B-GOS® -fed rats shifted from an intra-dimensional to an extra-dimensional set in fewer trials than controls, thereby indicating greater cognitive flexibility. An initial exploration into the mechanisms revealed that rats ingesting B-GOS® had increased levels of plasma acetate, and cortical GluN2B subunits and Acetyl Co-A Carboxylase mRNA. These changes were also observed in rats fed daily for 3 weeks with glyceryl triacetate, though unlike B-GOS®, cortical histone deacetylase (HDAC1, HDAC2) mRNAs were also increased which suggested an additional epigenetic action of direct acetate supplementation. Our data demonstrate that a pro-cognitive effect of B-GOS® intake in rats is associated with an increase in cortical NMDA receptor function, but the role of circulating acetate derived from gut bacterial fermentation of this prebiotic requires further investigation.
Collapse
Affiliation(s)
- Benjamin Gronier
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | | | - Mathieu Di Miceli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Sherif M Idriss
- Center of Brain, Behavior and Metabolism (CBBM), University of Lubeck, 23562 Lubeck, Germany
| | | | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Philip W J Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK.
| |
Collapse
|
13
|
Hauser MJ, Isbrandt D, Roeper J. Disturbances of novel object exploration and recognition in a chronic ketamine mouse model of schizophrenia. Behav Brain Res 2017. [PMID: 28634108 DOI: 10.1016/j.bbr.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Schizophrenia is a chronic and devastating disease with an overall lifetime risk of 1%. While positive symptoms of schizophrenia such as hallucinations and delusions are reduced by antipsychotic medication based on the inhibition of type 2 dopaminergic receptors (D2R), negative symptoms (e.g. reduced motivation) and cognitive symptoms (e.g. impaired working memory) of schizophrenia are not effectively treated by current medication. This dichotomy might arise in part because of our limited understanding of the pathophysiology of negative and cognitive symptoms in schizophrenia. In addition to genetic approaches, chronic systemic application of NMDA inhibitors such as ketamine have been used to generate rodent models, which displayed several relevant endophenotypes related to negative and cognitive symptoms and might thus facilitate mechanistic studies into the underlying pathophysiology. In this context, previous behavioral testing identified impairments in novel object recognition memory as a key feature in chronic NMDA-inhibitor schizophrenia rodent models. Using a chronic ketamine mouse model, we have however identified are more complex behavioral phenotype including deficits in novel space and novel object exploration in combination deficits in short-term novel object recognition memory. These impairments in novelty discrimination are in line with prefrontal and hippocampal reductions in parvalbumin-expression as well as reduced expression of the early immediate gene c-fos after novel-object exploration in hippocampal areas in our model. Our results indicate that adult C57Bl6N mice chronically treated with ketamine display combined impairments in novelty exploration and recognition, which might represent both motivational (negative) and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Maria Jelena Hauser
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Germany
| | - Dirk Isbrandt
- DZNE Research Team Experimental Neurophysiology, University Hospital Cologne, Germany
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe University Frankfurt, Germany.
| |
Collapse
|