1
|
Zhu H, Yang X, Zhao Y. Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6787-6802. [PMID: 38512048 DOI: 10.1021/acs.jafc.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tryptophan (Trp) is an essential amino acid which is unable to be synthesized in the body. Main sources of Trp are uptake of foods such as oats and bananas. In this review, we describe the status of current dietary consumption, metabolic pathways and nutritional characteristics of Trp, as well as its ingestion and downstream metabolites for maintaining body health and safety. This review also summarizes the recent advances in Trp metabolism, particularly the 5-HT, KYN, and AhR activation pathways, revealing that its endogenous host metabolites are not only differentially affected in the body but also are closely linked to health. More attention should be paid to targeting its specific metabolic pathways and utilizing food molecules and probiotics for manipulating Trp metabolism. However, the complexity of microbiota-host interactions requires further exploration to precisely refine targets for innovating the gut microbiota-targeted diagnostic approaches and informing subsequent studies and targeted treatments of diseases.
Collapse
Affiliation(s)
- Haoyan Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
2
|
Martín-González E, Olmedo-Córdoba M, Prados-Pardo Á, Cruz-Garzón DJ, Flores P, Mora S, Moreno-Montoya M. Behavioral domains in compulsive rats: implications for understanding compulsive spectrum disorders. Front Behav Neurosci 2023; 17:1175137. [PMID: 37273281 PMCID: PMC10234153 DOI: 10.3389/fnbeh.2023.1175137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Compulsive behavior has been proposed as a transdiagnostic trait observed in different neuropsychiatric disorders, such as obsessive-compulsive disorder, autism, and schizophrenia. Research Domain Criteria (RDoC) strategy could help to disentangle the neuropsychological basis of compulsivity for developing new therapeutic and preventive approaches. In preclinical research, the selection of high-drinker (HD) vs. low-drinker (LD) animals by schedule-induced polydipsia (SIP) is considered a putative model of compulsivity, which includes a well-differentiated behavioral pattern. Methods The purpose of this research was to assess the cognitive control and the negative valence system domains in a phenotype of compulsive HD rats. After the selection of animals as HD or LD, we assessed behavioral inflexibility by probabilistic spatial reversal learning (PSRL), motor and cognitive impulsivity by variable delay-to-signal (VDS), and risky decision-making by rodent gambling task (rGT). Results HD rats performed fewer reversals and showed less probability of pressing the same lever that was previously reinforced on PSRL, more premature responses after the exposure to longer delays on VDS, and more disadvantageous risky choices on rGT. Moreover, HD animals performed more perseverative responses under the punishment period on rGT. Discussion These results highlight that HD compulsive phenotype exhibits behavioral inflexibility, insensitivity to positive feedback, waiting impulsivity, risky decision-making, and frustrative non-reward responsiveness. Moreover, these findings demonstrate the importance of mapping different behavioral domains to prevent, treat, and diagnose compulsive spectrum disorders correctly.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Manuela Olmedo-Córdoba
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Ángeles Prados-Pardo
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Daniel J. Cruz-Garzón
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Pilar Flores
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Santiago Mora
- Department of Neuroscience and Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Centre (CEINSA), University of Almería, Almería, Spain
| |
Collapse
|
3
|
Martín-González E, Olmedo-Córdoba M, Flores P, Moreno-Montoya M. Differential Neurobiological Markers in Phenotype-stratified Rats Modeling High or Low Vulnerability to Compulsive Behavior: A Narrative Review. Curr Neuropharmacol 2023; 21:1924-1933. [PMID: 36411566 PMCID: PMC10514532 DOI: 10.2174/1570159x21666221121091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Compulsivity is a key manifestation of inhibitory control deficit and a cardinal symptom in different neuropsychopathological disorders such as obsessive-compulsive disorder, schizophrenia, addiction, and attention-deficit hyperactivity disorder. Schedule-induced polydipsia (SIP), is an animal model to study compulsivity. In this procedure, rodents develop excessive and persistent drinking behavior under different food-reinforcement schedules, that are not related to homeostatic or regulatory requirements. However, there are important individual differences that support the role of high-drinker HD rats as a compulsive phenotype, characterized in different paradigms by inhibitory response deficit, cognitive inflexibility, and resistant to extinction behavior; with significant differences in response to pharmacological challenges, and relevant neurobiological alterations in comparison with the control group, the non-compulsive low drinker LD group on SIP. The purpose of this review is to collate and update the main findings on the neurobiological bases of compulsivity using the SIP model. Specifically, we reviewed preclinical studies on SIP, that have assessed the effects of serotonergic, dopaminergic, and glutamatergic drugs; leading to the description of the neurobiological markers, such as the key role of the serotonin 5-HT2A receptor and glutamatergic signaling in a phenotype vulnerable to compulsivity as high drinker HD rats selected by SIP. The review of the main findings of HD rats on SIP helps in the characterization of the preclinical compulsive phenotype, disentangles the underlying neurobiological, and points toward genetic hallmarks concerning the vulnerability to compulsivity.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Manuela Olmedo-Córdoba
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Pilar Flores
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| |
Collapse
|
4
|
Zhang X, Yoshihara K, Miyata N, Hata T, Altaisaikhan A, Takakura S, Asano Y, Izuno S, Sudo N. Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice. Physiol Behav 2022; 244:113653. [PMID: 34800493 DOI: 10.1016/j.physbeh.2021.113653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Important precursors of monoaminergic neurotransmitters, dietary tryptophan (TRP), tyrosine, and phenylalanine (all referred to as TTP), play crucial roles in a wide range of behavioral and emotional functions. In the current study, we investigated whether diets devoid of TTP or diets deficient in TRP alone can affect body weight, behavioral characteristics, and gut microbiota, by comparing mice fed on these amino acids-depleted diets to mice fed on diets containing regular levels of amino acids. Both dietary TTP- and TRP-deprived animals showed a reduction in food intake and body weight. In behavioral analyses, the mice fed TTP-deprived diets were more active than mice fed diets containing regular levels of amino acids. The TRP-deprived group exhibited a reduction in serum TRP levels, concomitant with a decrease in serotonin and 5-hydroxyindoleacetic acid levels in some regions of the brain. The TTP-deprived group showed a reduction in TTP levels in the serum, concomitant with decreases in both phenylalanine and tyrosine levels in the hippocampus, as well as serotonin, norepinephrine, and dopamine concentrations in some regions of the brain. Regarding the effects of TRP or TTP deprivation on gut microbial ecology, the relative abundance of genus Roseburia was significantly reduced in the TTP-deprived group than in the dietary restriction control group. Interestingly, TTP was found even in the feces of mice fed TTP- and TRP-deficient diets, suggesting that TTP is produced by microbial or enzymatic digestion of the host-derived proteins. However, microbe generated TTP did not compensate for the systemic TTP deficiency induced by the lack of dietary TTP intake. Collectively, these results indicate that chronic dietary TTP deprivation induces decreased monoamines and their metabolites in a brain region-specific manner. The altered activities of the monoaminergic systems may contribute to increased locomotor activity.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Izuno
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
5
|
Merchán A, Pérez-Fernández C, López MJ, Moreno J, Moreno M, Sánchez-Santed F, Flores P. Dietary tryptophan depletion alters the faecal bacterial community structure of compulsive drinker rats in schedule-induced polydipsia. Physiol Behav 2021; 233:113356. [PMID: 33577871 DOI: 10.1016/j.physbeh.2021.113356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Compulsive behaviour, present in different psychiatric disorders such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of serotonin (5-hydroxytryptamine, 5-HT). The gut microbiota regulates tryptophan (TRP) metabolism and may affect global 5-H synthesis in the enteric and central nervous systems, suggesting a possible involvement of gut microbiota in compulsive spectrum disorders. OBJECTIVES The present study investigated whether chronic TRP depletion by diet alters the faecal bacterial community profiles of compulsive versus non-compulsive rats in schedule-induced polydipsia (SIP). Peripheral plasma 5-HT and brain-derived neurotrophic factor (BDNF) levels were evaluated. METHODS Wistar rats were selected as High Drinkers (HD) or Low Drinkers (LD) according to their SIP behaviour and were fed for 14 days with either a TRP-free diet (T-) or a TRP-supplemented diet (T+). The faecal bacterial community structure was investigated with 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis. RESULTS Compulsive HD rats showed a lower bacterial diversity than LD rats, irrespectively of the diet. The TRP-depleted HD rats, the only group increasing compulsive licking in SIP, showed a reduction of bacterial evenness and a highly functionally organized community compared with the other groups, indicating that this bacterial community is more fragile to external changes due to the dominance of a low number of species. The chronic TRP depletion by diet effectively reduced peripheral plasma 5-HT levels in both HD and LD rats, while plasma BDNF levels were not altered. CONCLUSIONS These results highlight the possible implication of reduced microbial diversity in compulsive behaviour and the involvement of the serotonergic system in modulating the gut brain-axis in compulsive spectrum disorders.
Collapse
Affiliation(s)
- A Merchán
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - C Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - M J López
- Department of Biology and Geology and CIAMBITAL, University of Almería & CeiA3, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - J Moreno
- Department of Biology and Geology and CIAMBITAL, University of Almería & CeiA3, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - M Moreno
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - F Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - P Flores
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
6
|
Jogamoto T, Utsunomiya R, Sato A, Kihara N, Choudhury ME, Miyanishi K, Kubo M, Nagai M, Nomoto M, Yano H, Shimizu YI, Fukuda M, Ishii E, Eguchi M, Tanaka J. Lister hooded rats as a novel animal model of attention-deficit/hyperactivity disorder. Neurochem Int 2020; 141:104857. [DOI: 10.1016/j.neuint.2020.104857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/17/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
|
7
|
Mora S, Merchán A, Aznar S, Flores P, Moreno M. Increased amygdala and decreased hippocampus volume after schedule-induced polydipsia in high drinker compulsive rats. Behav Brain Res 2020; 390:112592. [PMID: 32417273 DOI: 10.1016/j.bbr.2020.112592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
Fronto-limbic structures and serotonin 2A receptors (5-HT2A) have been implicated in the pathophysiology and treatment of compulsive spectrum disorders. Schedule-Induced Polydipsia (SIP), characterized by the development of excessive drinking under intermittent food reinforcement schedules, is a valid preclinical model for studying the compulsive phenotype. In the present study, we explored the individual differences and effect of SIP in brain volume and 5-HT2A receptor binding in fronto-limbic structures in rats selected according to their compulsive drinking behavior. Rats were divided into high (HD) and low drinkers (LD) by SIP (20 sessions); later, we analyzed the brains of HD and LD selected rats, in two different conditions: non-re-exposure (NRE) or re-exposure to SIP (RE), with four groups: LD-NRE, LD-RE, HD-NRE and HD-RE. Histological analyses were carried out for volumetric (stereology) and receptor binding (autoradiography) in the prelimbic and infralimbic cortex, dorsal hippocampus and basolateral amygdala. After SIP re-exposure, HD-RE showed an increased basolateral amygdala and a reduced hippocampus volume compared to HD-NRE rats, and also compared to LD-RE rats. No differences were found between HD and LD in NRE condition. Moreover, HD rats exhibit a lower 5-HT2A receptor binding in the basolateral amygdala, independently of SIP re-exposure, compared to LD rats. However, LD-RE showed a decreased 5-HT2A receptor binding in basolateral amygdala compared to LD-NRE. No differences were found in the remaining structures. These findings suggest that SIP might be differentially impacting HD and LD brains, pointing towards a possible explanation of how the latent vulnerability to compulsivity is triggered.
Collapse
Affiliation(s)
- Santiago Mora
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Ana Merchán
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Pilar Flores
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain
| | - Margarita Moreno
- Department of Psychology & Health Research Centre (CEINSA), University of Almería, Almería, Spain.
| |
Collapse
|
8
|
Banasikowski TJ, Hawken ER. The Bed Nucleus of the Stria Terminalis, Homeostatic Satiety, and Compulsions: What Can We Learn From Polydipsia? Front Behav Neurosci 2019; 13:170. [PMID: 31417376 PMCID: PMC6686835 DOI: 10.3389/fnbeh.2019.00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022] Open
Abstract
A compulsive phenotype characterizes several neuropsychiatric illnesses - including but not limited to - schizophrenia and obsessive compulsive disorder. Because of its perceived etiological heterogeneity, it is challenging to disentangle the specific neurophysiology that precipitates compulsive behaving. Using polydipsia (or non-regulatory water drinking), we describe candidate neural substrates of compulsivity. We further postulate that aberrant neuroplasticity within cortically projecting structures [i.e., the bed nucleus of the stria terminalis (BNST)] and circuits that encode homeostatic emotions (thirst, hunger, satiety, etc.) underlie compulsive drinking. By transducing an inaccurate signal that fails to represent true homeostatic state, cortical structures cannot select appropriate and adaptive actions. Additionally, augmented dopamine (DA) reactivity in striatal projections to and from the frontal cortex contribute to aberrant homeostatic signal propagation that ultimately biases cortex-dependent behavioral selection. Responding becomes rigid and corresponds with both erroneous, inflexible encoding in both bottom-up structures and in top-down pathways. How aberrant neuroplasticity in circuits that encode homeostatic emotion result in the genesis and maintenance of compulsive behaviors needs further investigation.
Collapse
Affiliation(s)
- Tomek J Banasikowski
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Emily R Hawken
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
9
|
Merchán A, Sánchez-Kuhn A, Prados-Pardo A, Gago B, Sánchez-Santed F, Moreno M, Flores P. Behavioral and biological markers for predicting compulsive-like drinking in schedule-induced polydipsia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:149-160. [PMID: 30940483 DOI: 10.1016/j.pnpbp.2019.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023]
Abstract
Schedule-induced polydipsia (SIP), characterized by the development of persistent and excessive drinking under intermittent food-reinforcement schedules, is an animal model of compulsive behavior that can differentiate two populations: high drinkers (HD) and low drinkers (LD). The aim of the present study was to identify behavioral and biological markers to predict the vulnerability to developing compulsive-like drinking in SIP. Adult male Wistar rats were first trained in a spatial-discrimination serial reversal-learning task and in a reinforcer devaluation task to measure behavioral flexibility and habit formation, respectively. Subsequently, the rats were tested using the SIP protocol and identified as HD or LD based on their drinking rates. The performance of HD and LD rats in the two previous tasks was then analyzed. Before and after SIP exposure, blood glucose and plasma corticosterone (CORT) levels were measured. Additionally, serum electrolyte levels, including sodium, potassium, and chloride, were analyzed after SIP. HD rats showed higher behavioral inflexibility by exhibiting increased perseverative responses in the reversal-learning task and insensitivity to reinforcer devaluation during extinction under selective satiation. After SIP exposure, HD rats exhibited increased basal plasma CORT levels, indicating that this vulnerable group might have a dysregulation of the HPA axis. Although HD and LD rats had blood glucose levels within normal range, the HD group showed lower levels. The HD group did not exhibit hyponatremia (i.e., reduced serum sodium levels) when compared to LD rats after 20 daily SIP sessions. The results of the present study demonstrated that HD rats exhibit behavioral inflexibility and greater habitual-like behavior before SIP. Moreover, these results highlight the importance of measuring different behavioral and biological markers for predicting the vulnerability to developing compulsivity, and for enhancing the understanding of the pathophysiology of compulsive spectrum disorders.
Collapse
Affiliation(s)
- A Merchán
- Department of Psychology & Health Research Centre, University of Almería, Almería, Spain
| | - A Sánchez-Kuhn
- Department of Psychology & Health Research Centre, University of Almería, Almería, Spain
| | - A Prados-Pardo
- Department of Psychology & Health Research Centre, University of Almería, Almería, Spain
| | - B Gago
- Department of Cell Biology, School of Science, University of Málaga, Málaga, Spain
| | - F Sánchez-Santed
- Department of Psychology & Health Research Centre, University of Almería, Almería, Spain
| | - M Moreno
- Department of Psychology & Health Research Centre, University of Almería, Almería, Spain
| | - P Flores
- Department of Psychology & Health Research Centre, University of Almería, Almería, Spain.
| |
Collapse
|
10
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
11
|
Measuring endogenous changes in serotonergic neurotransmission with [ 11C]Cimbi-36 positron emission tomography in humans. Transl Psychiatry 2019; 9:134. [PMID: 30975977 PMCID: PMC6459901 DOI: 10.1038/s41398-019-0468-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/24/2019] [Indexed: 12/28/2022] Open
Abstract
Developing positron emission tomography (PET) radioligands for the detection of endogenous serotonin release will enable the investigation of serotonergic deficits in many neuropsychiatric disorders. The present study investigates how acute challenges that aim to increase or decrease cerebral serotonin levels affect binding of the serotonin 2A receptor (5-HT2AR) agonist radioligand [11C]Cimbi-36. In a randomized, double-blind, placebo-controlled, three-arm design, 23 healthy volunteers were PET scanned twice with [11C]Cimbi-36: at baseline and following double-blind assignment to one of three interventions (1) infusion of the selective serotonin reuptake inhibitor (SSRI) citalopram preceded by oral dosing of the 5-HT1AR antagonist pindolol, (n = 8) (2) acute tryptophan depletion (ATD) (n = 7) and (3) placebo (n = 8). Two-sample t-tests revealed no significant group differences in percent change of neocortical [11C]Cimbi-36 binding from baseline to intervention between placebo and citalopram/pindolol (p = 0.4) or between placebo and ATD (p = 0.5). Notably, there was a significantly larger within-group variation in 5-HT2AR binding after intervention with citalopram/pindolol, as compared with placebo (p = 0.007). These findings suggest that neither ATD nor a combination of citalopram and pindolol elicit acute unidirectional changes in serotonin levels sufficient to be detected with [11C]Cimbi-36 PET in neocortex. We suggest that the large interindividual variation in 5-HT2AR binding after citalopram/pindolol reflects that after an acute SSRI intervention, individuals respond substantially different in terms of their brain serotonin levels. Our observation has a potential impact for the understanding of patient responses to SSRI.
Collapse
|
12
|
Merchán A, Mora S, Gago B, Rodriguez-Ortega E, Fernández-Teruel A, Puga JL, Sánchez-Santed F, Moreno M, Flores P. Excessive habit formation in schedule-induced polydipsia: Microstructural analysis of licking among rat strains and involvement of the orbitofrontal cortex. GENES BRAIN AND BEHAVIOR 2018; 18:e12489. [DOI: 10.1111/gbb.12489] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Affiliation(s)
- A. Merchán
- Department of Psychology and CIAMBITAL; University of Almería & CeiA3; Almería Spain
| | - S. Mora
- Department of Psychology and CIAMBITAL; University of Almería & CeiA3; Almería Spain
| | - B. Gago
- Department of Cell Biology, School of Science; University of Málaga; Málaga Spain
| | - E. Rodriguez-Ortega
- Department of Psychology and CIAMBITAL; University of Almería & CeiA3; Almería Spain
| | - A. Fernández-Teruel
- Department of Psychiatry and Forensic Medicine; Institute of Neurosciences, School of Medicine, Universitat Autònoma de Barcelona; Barcelona Spain
| | - J. L. Puga
- UCAM Universidad Católica de Murcia; Murcia Spain
| | - F. Sánchez-Santed
- Department of Psychology and CIAMBITAL; University of Almería & CeiA3; Almería Spain
| | - M. Moreno
- Department of Psychology and CIAMBITAL; University of Almería & CeiA3; Almería Spain
| | - P. Flores
- Department of Psychology and CIAMBITAL; University of Almería & CeiA3; Almería Spain
| |
Collapse
|
13
|
Systemic and Intra-Habenular Activation of the Orphan G Protein-Coupled Receptor GPR139 Decreases Compulsive-Like Alcohol Drinking and Hyperalgesia in Alcohol-Dependent Rats. eNeuro 2018; 5:eN-NWR-0153-18. [PMID: 29971251 PMCID: PMC6027959 DOI: 10.1523/eneuro.0153-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
GPR139 is an orphan G protein-coupled receptor (GPCR) that is expressed mainly in the brain, with the highest expression in the medial habenula. The modulation of GPR139 receptor function has been hypothesized to be beneficial in the treatment of some mental disorders, but behavioral studies have not yet provided causal evidence of the role of GPR139 in brain dysfunction. Because of the high expression of GPR139 in the habenula, a critical brain region in addiction, we hypothesized that GPR139 may play role in alcohol dependence. Thus, we tested the effect of GPR139 receptor activation using the selective, brain-penetrant receptor agonist JNJ-63533054 on addiction-like behaviors in alcohol-dependent male rats. Systemic administration of JNJ-63533054 (30 mg/kg but not 10 mg/kg, p.o.) reversed the escalation of alcohol self-administration in alcohol-dependent rats, without affecting water or saccharin intake in dependent rats or alcohol intake in nondependent rats. Moreover, systemic JNJ-63533054 administration decreased withdrawal-induced hyperalgesia, without affecting somatic signs of alcohol withdrawal. Further analysis demonstrated that JNJ-63533054 was effective only in a subgroup of dependent rats that exhibited compulsive-like alcohol drinking. Finally, site-specific microinjection of JNJ-63533054 in the habenula but not interpeduncular nucleus (IPN) reduced both alcohol self-administration and withdrawal-induced hyperalgesia in dependent rats. These results provide robust preclinical evidence that GPR139 receptor activation reverses key addiction-like behaviors in dependent animals, suggest that GPR139 may be a novel target for the treatment of alcohol use disorder, and demonstrate that GPR139 is functionally relevant in regulating mammalian behavior.
Collapse
|
14
|
Do psychoactive drugs have a therapeutic role in compulsivity? Studies on schedule-induced polydipsia. Psychopharmacology (Berl) 2018; 235:419-432. [PMID: 29313138 DOI: 10.1007/s00213-017-4819-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Clinical studies have shown that some psychoactive recreational drugs have therapeutic applications in anxiety, depression, and schizophrenia. However, to date, there are few studies on the therapeutic potential efficacy of recreational drugs in compulsive neuropsychiatric disorders. OBJECTIVES We explored the therapeutic potential of different psychoactive and psychedelic drugs in a preclinical model of compulsive behavior. METHODS Outbred male Wistar rats were selected as either high (HD) or low (LD) drinkers according to their behavior in schedule-induced polydipsia (SIP). Subsequently, we assessed the effects of acute administration of scopolamine (0.125, 0.25, and 0.5 mg/kg), methamphetamine (0.25, 0.5, 1.25, and 2.5 mg/kg), ketamine (1.25, 2.5, 5, and 10 mg/kg), cannabidiol (1 and 3 mg/kg), WIN21255-2 (0.5, 075, and 1 mg/kg), and AM404 (0.25 and 0.5 mg/kg) on compulsive drinking in SIP. RESULTS Scopolamine reduced dose-dependent compulsive drinking in HD compared with LD rats in SIP. Methamphetamine induced a dose-dependent inverted U-curve effect in both groups, in which lower doses increased and higher doses reduced compulsive drinking in SIP. Ketamine, cannabidiol, WIN21255-2, and AM404 did not have any relevant effects in SIP. CONCLUSIONS These data provide new evidence that low doses of scopolamine and intermediate doses of methamphetamine might therapeutically reduce compulsive behaviors and suggest that there is not a direct participation of the endocannabinoid system in compulsive behavior on SIP. The research in the underlying neurochemical mechanisms of these psychoactive drugs might provide an additional insight on new therapeutic targets in compulsive neuropsychiatric disorders.
Collapse
|