1
|
Estrada-Reyes Y, Cervantes-Alfaro JM, López-Vázquez MÁ, Olvera-Cortés ME. Prefrontal serotonin depletion delays reversal learning and increases theta synchronization of the infralimbic-prelimbic-orbitofrontal prefrontal cortex circuit. Front Pharmacol 2024; 15:1501896. [PMID: 39691394 PMCID: PMC11649410 DOI: 10.3389/fphar.2024.1501896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Prefrontal serotonin plays a role in the expression of flexible behavior during reversal learning tasks as its depletion delays reversal learning. However, the mechanisms by which serotonin modulates the prefrontal cortex functions during reversal learning remain unclear. Nevertheless, serotonin has been shown to modulate theta activity during spatial learning and memory. Methods We evaluated the effects of prefrontal serotonin depletion on theta activity in the prefrontal infralimbic, prelimbic, and orbitofrontal (IL, PL, and OFC) subregions of male rats during a spatial reversal learning task in an aquatic T-maze. Results Prefrontal serotonin depletion delayed spatial reversal learning and increased theta activity power in the PL and OFC. Furthermore, animals with serotonin depletion had increased functional coupling between the OFC and the IL and PL cortices compared with the control group. Discussion These results indicate that serotonin regulates reversal learning through modulation of prefrontal theta activity by tuning both the power and functional synchronization of the prefrontal subregions.
Collapse
Affiliation(s)
- Yoana Estrada-Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, Departamento de Posgrado, Facultad de Ciencias Médicas Y biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| |
Collapse
|
2
|
Rogers SA, Heller EA, Corder G. Psilocybin-enhanced fear extinction linked to bidirectional modulation of cortical ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578811. [PMID: 38352491 PMCID: PMC10862786 DOI: 10.1101/2024.02.04.578811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The serotonin 2 receptor (5HT2R) agonist psilocybin displays rapid and persistent therapeutic efficacy across neuropsychiatric disorders characterized by cognitive inflexibility. However, the impact of psilocybin on patterns of neural activity underlying sustained changes in behavioral flexibility has not been characterized. To test the hypothesis that psilocybin enhances behavioral flexibility by altering activity in cortical neural ensembles, we performed longitudinal single-cell calcium imaging in the retrosplenial cortex across a five-day trace fear learning and extinction assay. A single dose of psilocybin induced ensemble turnover between fear learning and extinction days while oppositely modulating activity in fear- and extinction- active neurons. The acute suppression of fear-active neurons and delayed recruitment of extinction-active neurons were predictive of psilocybin-enhanced fear extinction. A computational model revealed that acute inhibition of fear-active neurons by psilocybin is sufficient to explain its neural and behavioral effects days later. These results align with our hypothesis and introduce a new mechanism involving the suppression of fear-active populations in the retrosplenial cortex.
Collapse
Affiliation(s)
- Sophie A. Rogers
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A. Heller
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
KLOCKE B, MOORE C, OTT H, PITYCHOUTIS PM. Chronic pharmacological activation of SERCA with CDN1163 affects spatial cognitive flexibility but not attention and impulsivity in mice. Behav Pharmacol 2023; 34:477-487. [PMID: 37917567 PMCID: PMC10624114 DOI: 10.1097/fbp.0000000000000756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Intracellular calcium (Ca2+) homeostasis is critical for many neural processes, including learning, memory and synaptic plasticity. The sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) is among the key regulators that preserve Ca2+ homeostasis in neurons. SERCAs comprise a set of ubiquitously expressed Ca2+ pumps that primarily function to sequester cytosolic Ca2+ into endoplasmic reticular stores. As SERCA has been implicated in the neurobiology of several neuropsychiatric and neurodegenerative diseases, pharmacological harnessing of its function is critical in understanding SERCA's role in brain physiology and pathophysiology. In the current study, we employed the Morris water maze and 5-choice serial reaction time task (5-CSRTT) to investigate the effects of chronic pharmacological activation of SERCA, using the small allosteric SERCA activator CDN1163, on spatial learning and memory, and executive functioning in naive C57BL/6J mice. Our data show that chronic pharmacological SERCA activation with CDN1163 (20 mg/kg) selectively impairs spatial cognitive flexibility and reversal learning in the Morris water maze while leaving executive functions such as attention and impulsivity intact. Present findings contribute to the growing field of the role of SERCA function in the brain and behavior and expand current knowledge on the use of the small allosteric activator CDN1163 as an investigational tool to study the role of SERCA in regulating neurobehavioral processes and as a potential therapeutic candidate for debilitating brain disorders.
Collapse
Affiliation(s)
- Benjamin KLOCKE
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | - Carter MOORE
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | - Hayden OTT
- Department of Biology, University of Dayton, Dayton, Ohio 45469, USA
| | | |
Collapse
|
4
|
Chikamoto N, Fujimoto K, Nakai J, Namiki K, Hatakeyama D, Ito E. Genes Upregulated by Operant Conditioning of Escape Behavior in the Pond Snail Lymnaea stagnalis. Zoolog Sci 2023; 40:375-381. [PMID: 37818886 DOI: 10.2108/zs230032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023]
Abstract
The pond snail Lymnaea stagnalis is capable of learning by both classical conditioning and operant conditioning. Although operant conditioning related to escape behavior with punishment has been examined by some research groups, the molecular mechanisms are not known. In the present study, we examined changes in the expression levels of cAMP-response element binding protein 1 (CREB1), CREB2, CREB-binding protein (CBP), and monoamine oxidase (MAO) in the Lymnaea central nervous system (CNS) using real-time PCR following operant conditioning of escape behavior. CREB1 and CREB2 are transcription factors involved in long-term memory in Lymnaea; CBP is a coactivator with CREB1; and MAO is a degrading enzyme for monoamines (e.g., serotonin) with important roles in learning and memory in Lymnaea. In operant conditioning, the punishment cohort, in which snails escaping from the container encountered aversive KCl, exhibited significantly fewer escape attempts than the control cohort, in which snails escaping from the container encountered distilled water, during both the training and memory test periods. After the operant conditioning, CREB1 and CREB2 were upregulated, and the ratio of CREB1/CREB2 was also increased, suggesting that the operant conditioning of escape behavior involves these factors. MAO was also upregulated, suggesting that the content of monoamines such as serotonin in the CNS decreased. The upregulated genes identified in the present study will help to further elucidate learning and memory mechanisms in Lymnaea.
Collapse
Affiliation(s)
- Nozomi Chikamoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Kanta Fujimoto
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Junko Nakai
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Kengo Namiki
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan,
| |
Collapse
|
5
|
Impact of specific serotonin receptor modulation on behavioral flexibility. Pharmacol Biochem Behav 2021; 209:173243. [PMID: 34314738 DOI: 10.1016/j.pbb.2021.173243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Serotonin (5-HT) is known to play a critical role in regulation of essential neural processes, whereas more recent research highlights serotonin's modulatory effects on cognition and executive functioning. Current examinations have identified specific serotonin receptors for their direct impact on behavioral flexibility. Providing definitive evidence for the impact of specific receptor targets on behavioral flexibility is difficult, due to the range of behavioral tests used. Due to limited studies and the sheer amount of different serotonin receptor targets, beginning to bring these studies together is important for the field. Our current review of the literature aims to differentiate how modulation of specific 5-HT receptors affects behavioral flexibility. Although more studies have examined 5-HT2A, 5-HT2C, and 5-HT6 receptors, it is unclear why this is the case. Above all, there are some paradoxical results pertaining to these receptor targets. There is a clear distinction between 5-HT2A and 5-HT2C, which conveys that these two receptor subtypes have inverse effects when compared to each other. In addition, some findings support one another, such as upregulation of 5-HT6 receptors impairs flexibility, while blockade alleviates this impairment in both drug-induced and disease model rodent studies. Further understanding how modulatory effects of specific 5-HT receptors impact behavioral flexibility is imperative to advance the development of new therapeutics for neuropsychiatric disorders afflicted by behavioral inflexibility.
Collapse
|
6
|
Hamadjida A, Nuara SG, Frouni I, Kwan C, Bédard D, Gourdon JC, Huot P. Monoamine oxidase A inhibition as monotherapy reverses parkinsonism in the MPTP-lesioned marmoset. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2139-2144. [DOI: 10.1007/s00210-020-01927-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
|
7
|
Alsiö J, Lehmann O, McKenzie C, Theobald DE, Searle L, Xia J, Dalley JW, Robbins TW. Serotonergic Innervations of the Orbitofrontal and Medial-prefrontal Cortices are Differentially Involved in Visual Discrimination and Reversal Learning in Rats. Cereb Cortex 2020; 31:1090-1105. [PMID: 33043981 PMCID: PMC7906782 DOI: 10.1093/cercor/bhaa277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cross-species studies have identified an evolutionarily conserved role for serotonin in flexible behavior including reversal learning. The aim of the current study was to investigate the contribution of serotonin within the orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) to visual discrimination and reversal learning. Male Lister Hooded rats were trained to discriminate between a rewarded (A+) and a nonrewarded (B−) visual stimulus to receive sucrose rewards in touchscreen operant chambers. Serotonin was depleted using surgical infusions of 5,7-dihydroxytryptamine (5,7-DHT), either globally by intracebroventricular (i.c.v.) infusions or locally by microinfusions into the OFC or mPFC. Rats that received i.c.v. infusions of 5,7-DHT before initial training were significantly impaired during both visual discrimination and subsequent reversal learning during which the stimulus–reward contingencies were changed (A− vs. B+). Local serotonin depletion from the OFC impaired reversal learning without affecting initial discrimination. After mPFC depletion, rats were unimpaired during reversal learning but slower to respond at the stimuli during all the stages; the mPFC group was also slower to learn during discrimination than the OFC group. These findings extend our understanding of serotonin in cognitive flexibility by revealing differential effects within two subregions of the prefrontal cortex in visual discrimination and reversal learning.
Collapse
Affiliation(s)
- Johan Alsiö
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivia Lehmann
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Colin McKenzie
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - David E Theobald
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Lydia Searle
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK.,Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
8
|
Hervig ME, Piilgaard L, Božič T, Alsiö J, Robbins TW. Glutamatergic and Serotonergic Modulation of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. ACTA ACUST UNITED AC 2020; 13:438-458. [PMID: 33613854 PMCID: PMC7872199 DOI: 10.1037/pne0000221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
Adapting behavior to a dynamic environment requires both steadiness when the environment is stable and behavioral flexibility in response to changes. Much evidence suggests that cognitive flexibility, which can be operationalized in reversal learning tasks, is mediated by cortico-striatal circuitries, with the orbitofrontal cortex (OFC) playing a prominent role. The OFC is a functionally heterogeneous region, and we have previously reported differential roles of lateral (lOFC) and medial (mOFC) regions in a touchscreen serial visual reversal learning task for rats using pharmacological inactivation. Here, we investigated the effects of pharmacological overactivation of these regions using a glutamate transporter 1 (GLT-1) inhibitor, dihydrokainate (DHK), which increases extracellular glutamate by blocking its reuptake. We also tested the impact of antagonism of the serotonin 2A receptor (5-HT2AR), which modulates glutamate action, in the mOFC and lOFC on the same task. Overactivation induced by DHK produced dissociable effects in the mOFC and lOFC, with more prominent effects in the mOFC, specifically improving performance in the early, perseveration phase. Intra-lOFC DHK increased the number of omitted responses without affecting errors. In contrast, blocking the 5-HT2AR in the lOFC impaired reversal learning overall, while mOFC 5-HT2AR blockade had no effect. These results further support dissociable roles of the rodent mOFC and lOFC in deterministic visual reversal learning and indicate that modulating glutamate transmission through blocking the GLT-1 and the 5-HT2AR have different roles in these two structures. This study further supports dissociable roles of specific orbitofrontal subregions, as well as glutamatergic and serotonergic transmission in these subregions, in cognitive flexibility. This knowledge will add to the understanding of specific neural mechanisms underlying inflexible behaviour across psychiatric disorders.
Collapse
Affiliation(s)
- Mona E Hervig
- Department of Psychology, University of Cambridge, and Department of Neuroscience, University of Copenhagen
| | - Louise Piilgaard
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Tadej Božič
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, and Behavioral and Clinical Neuroscience Institute, University of Cambridge
| |
Collapse
|
9
|
Zhukovsky P, Puaud M, Jupp B, Sala-Bayo J, Alsiö J, Xia J, Searle L, Morris Z, Sabir A, Giuliano C, Everitt BJ, Belin D, Robbins TW, Dalley JW. Withdrawal from escalated cocaine self-administration impairs reversal learning by disrupting the effects of negative feedback on reward exploitation: a behavioral and computational analysis. Neuropsychopharmacology 2019; 44:2163-2173. [PMID: 30952156 PMCID: PMC6895115 DOI: 10.1038/s41386-019-0381-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
Addiction is regarded as a disorder of inflexible choice with behavior dominated by immediate positive rewards over longer-term negative outcomes. However, the psychological mechanisms underlying the effects of self-administered drugs on behavioral flexibility are not well understood. To investigate whether drug exposure causes asymmetric effects on positive and negative outcomes we used a reversal learning procedure to assess how reward contingencies are utilized to guide behavior in rats previously exposed to intravenous cocaine self-administration (SA). Twenty-four rats were screened for anxiety in an open field prior to acquisition of cocaine SA over six daily sessions with subsequent long-access cocaine SA for 7 days. Control rats (n = 24) were trained to lever-press for food under a yoked schedule of reinforcement. Higher rates of cocaine SA were predicted by increased anxiety and preceded impaired reversal learning, expressed by a decrease in lose-shift as opposed to win-stay probability. A model-free reinforcement learning algorithm revealed that rats with high, but not low cocaine escalation failed to exploit previous reward learning and were more likely to repeat the same response as the previous trial. Eight-day withdrawal from high cocaine escalation was associated, respectively, with increased and decreased dopamine receptor D2 (DRD2) and serotonin receptor 2C (HTR2C) expression in the ventral striatum compared with controls. Dopamine receptor D1 (DRD1) expression was also significantly reduced in the orbitofrontal cortex of high cocaine-escalating rats. These findings indicate that withdrawal from escalated cocaine SA disrupts how negative feedback is used to guide goal-directed behavior for natural reinforcers and that trait anxiety may be a latent variable underlying this interaction.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Mickael Puaud
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Bianca Jupp
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Júlia Sala-Bayo
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jing Xia
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Lydia Searle
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Zoe Morris
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Aryan Sabir
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Chiara Giuliano
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barry J Everitt
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
10
|
Tian JS, Meng Y, Wu YF, Zhao L, Xiang H, Jia JP, Qin XM. A novel insight into the underlying mechanism of Baihe Dihuang Tang improving the state of psychological suboptimal health subjects obtained from plasma metabolic profiles and network analysis. J Pharm Biomed Anal 2019; 169:99-110. [DOI: 10.1016/j.jpba.2019.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
|
11
|
Dhaliwal J, Singh D, Singh S, Pinnaka A, Boparai R, Bishnoi M, Kondepudi K, Chopra K. Lactobacillus plantarumMTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. J Appl Microbiol 2018; 125:257-269. [DOI: 10.1111/jam.13765] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/22/2022]
Affiliation(s)
- J. Dhaliwal
- Pharmacology Division; University Institute of Pharmaceutical Sciences (UIPS); Panjab University; Chandigarh Punjab India
| | - D.P. Singh
- Pharmacology Division; University Institute of Pharmaceutical Sciences (UIPS); Panjab University; Chandigarh Punjab India
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
- Toxicology Division; National Institute of Occupational Health; Meghani Nagar Ahmedabad Gujarat India
| | - S. Singh
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
| | - A.K. Pinnaka
- Microbial Type Culture Collection and Gene Bank; CSIR - Institute of Microbial Technology; Chandigarh Punjab India
| | - R.K. Boparai
- Department of Biotechnology; Government College for Girls; Chandigarh Punjab India
| | - M. Bishnoi
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
- Functional Foods Research Laboratory; University of Southern Queensland; Toowoomba-4350 Queensland Australia
| | - K.K. Kondepudi
- National Agri-food Biotechnology Institute (NABI); SAS Nagar; Mohali Punjab India
| | - K. Chopra
- Pharmacology Division; University Institute of Pharmaceutical Sciences (UIPS); Panjab University; Chandigarh Punjab India
| |
Collapse
|
12
|
Cryan JF, de Wit H. Special issue: recognizing the lifetime scientific contributions of Athina Markou. Psychopharmacology (Berl) 2017; 234:1311-1313. [PMID: 28421256 PMCID: PMC5473252 DOI: 10.1007/s00213-017-4624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| |
Collapse
|