1
|
Scicluna RL, Wilson BB, Thelaus SH, Arnold JC, McGregor IS, Bowen MT. Cannabidiol Reduced the Severity of Gastrointestinal Symptoms of Opioid Withdrawal in Male and Female Mice. Cannabis Cannabinoid Res 2024; 9:547-560. [PMID: 36577048 DOI: 10.1089/can.2022.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Introduction: Opioid withdrawal is a powerful driver of drug-seeking behavior as relief from this aversive state through drug-taking is a strong negative reinforcer. There are currently limited treatment options available for opioid withdrawal and cannabidiol (CBD) has been identified as a potential novel therapeutic. This study explored the efficacy and dose dependency of CBD for reducing the severity of naloxone-precipitated and spontaneous oxycodone withdrawal (PW and SW, respectively) in male and female mice. Methods: Mice were administered saline or escalating doses of oxycodone, whereby 9, 17.8, 23.7, and 33 mg/kg oxycodone IP was administered twice daily on days 1-2, 3-4, 5-6, and 7-8, respectively. On the 9th day, a single 33 mg/kg dose of oxycodone (or saline) was administered. To precipitate withdrawal, on day 9, mice in the withdrawal conditions were administered an IP injection of 10 mg/kg naloxone 2 h after the final oxycodone injection and immediately before withdrawal testing. To elicit SW, a separate group of mice underwent withdrawal testing 24 h after their final oxycodone injection. Mice were treated with an IP injection of 0, 10, 30 or 100 mg/kg of CBD 60 min before testing. Withdrawal symptoms examined included gastrointestinal symptoms (fecal boli, diarrhea, and body weight loss), somatic symptoms (paw tremors), and negative affect (jumping). Results: A robust PW syndrome was observed in both male and female mice, whereas only male mice displayed an SW syndrome. CBD dose dependently reduced gastrointestinal symptoms during both PW and SW in male mice and during PW in female mice. CBD had no effect on PW- or SW-induced jumping in male mice. However, in female mice, the PW-induced increase in jumps was less pronounced in CBD-treated mice. The highest dose of CBD inhibited paw tremors during PW, but not SW, in male mice. Neither PW- nor SW-induced paw tremors were observed in female mice. Conclusions: The magnitude of effects on the gastrointestinal symptoms, their consistency across PW and SW, and both sexes, alongside the availability of CBD for clinical use, suggest further exploration of the potential for CBD to treat these symptoms could be justified.
Collapse
Affiliation(s)
- Rhianne L Scicluna
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Bianca B Wilson
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Samuel H Thelaus
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Pharmacy, Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael T Bowen
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Rock EM, Limebeer CL, Smoum R, Mechoulam R, Parker LA. Evaluation of Sex Differences in the Potential of Δ 9-Tetrahydrocannabinol, Cannabidiol, Cannabidiolic Acid, and Oleoyl Alanine to Reduce Nausea-Induced Conditioned Gaping Reactions in Sprague-Dawley Rats. Cannabis Cannabinoid Res 2023; 8:1060-1068. [PMID: 35984924 DOI: 10.1089/can.2022.0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Cancer patients report nausea as a side effect of their chemotherapy treatment. Using the pre-clinical rodent model of acute nausea-lithium chloride (LiCl)-induced conditioned gaping-our group has demonstrated that exogenous cannabinoids may have antinausea potential. Materials and Methods: With the goal of evaluating the role of sex as a factor in pre-clinical research, we first compared the conditioned gaping reactions produced by varying doses of LiCl in male and female rats using the taste reactivity test (Experiment 1). Results: LiCl produced dose-dependent conditioned gaping similarly in male and female rats with the highest dose (127.2 mg/kg) producing robust conditioned gaping, with this dose used in subsequent experiments. Next, we examined the antinausea potential of THC (Experiment 2), CBD (Experiment 3), cannabidiolic acid (CBDA; Experiment 4) and oleoyl alanine (OlAla; Experiment 5) in both male and female rats. THC, CBD, CBDA, and OlAla dose dependently reduced conditioned gaping in both male and female rats in a similar manner. Conclusions: These results suggest that cannabinoids may be equally effective in treating nausea in both males and females.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| | - Reem Smoum
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
3
|
Forte N, Roussel C, Marfella B, Lauritano A, Villano R, De Leonibus E, Salviati E, Khalilzadehsabet T, Giorgini G, Silvestri C, Piscitelli F, Mollica MP, Di Marzo V, Cristino L. Olive oil-derived endocannabinoid-like mediators inhibit palatable food-induced reward and obesity. Commun Biol 2023; 6:959. [PMID: 37735539 PMCID: PMC10514336 DOI: 10.1038/s42003-023-05295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
N-oleoylglycine (OlGly), a lipid derived from the basic component of olive oil, oleic acid, and N-oleoylalanine (OlAla) are endocannabinoid-like mediators. We report that OlGly and OlAla, by activating the peroxisome proliferator-activated receptor alpha (PPARα), reduce the rewarding properties of a highly palatable food, dopamine neuron firing in the ventral tegmental area, and the obesogenic effect of a high-fat diet rich in lard (HFD-L). An isocaloric olive oil HFD (HFD-O) reduced body weight gain compared to the HFD-L, in a manner reversed by PPARα antagonism, and enhanced brain and intestinal OlGly levels and gut microbial diversity. OlGly or OlAla treatment of HFD-L mice resulted in gut microbiota taxonomic changes partly similar to those induced by HFD-O. We suggest that OlGly and OlAla control body weight by counteracting highly palatable food overconsumption, and possibly rebalancing the gut microbiota, and provide a potential new mechanism of action for the obeso-preventive effects of olive oil-rich diets.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Charlène Roussel
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Anna Lauritano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Rosaria Villano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Monterotondo Scalo, Rome, Italy
| | | | - Tina Khalilzadehsabet
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Giada Giorgini
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Cristoforo Silvestri
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada.
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, 61V0AG, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| |
Collapse
|
4
|
Herlihy B, Roy S. Gut-Microbiome Implications in Opioid Use Disorder and Related Behaviors. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10311. [PMID: 38390617 PMCID: PMC10880781 DOI: 10.3389/adar.2022.10311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 02/24/2024]
Abstract
Substance use disorder (SUD) is a prevalent disease that has caused hundreds of thousands of deaths and affected the lives of even more. Despite its global impact, there is still no known cure for SUD, or the psychological symptoms associated with drug use. Many of the behavioral consequences of drug use prevent people from breaking the cycle of addiction or cause them to relapse back into the cycle due to the physical and psychological consequences of withdrawal. Current research is aimed at understanding the cause of these drug related behaviors and therapeutically targeting them as a mechanism to break the addiction cycle. Research on opioids suggests that the changes in the microbiome during drug use modulated drug related behaviors and preventing these microbial changes could attenuate behavioral symptoms. This review aims to highlight the relationship between the changes in the microbiome and behavior during opioid treatment, as well as highlight the additional research needed to understand the mechanism in which the microbiome modulates behavior to determine the best therapeutic course of action.
Collapse
Affiliation(s)
- Bridget Herlihy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neuroscience, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Rock EM, Limebeer CL, Smoum R, Mechoulam R, Parker LA. Effect of oleoyl glycine and oleoyl alanine on lithium chloride induced nausea in rats and vomiting in shrews. Psychopharmacology (Berl) 2022; 239:377-383. [PMID: 34676441 DOI: 10.1007/s00213-021-06005-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE The fatty acid amide oleoyl glycine (OlGly) and its more stable methylated form oleoyl alanine (OlAla) reduce naloxone-precipitated morphine withdrawal (MWD)-induced conditioned gaping (nausea) responses in rats. In addition, OlGly has been shown to reduce lithium chloride (LiCl)-induced conditioned gaping in rats and vomiting in Suncus murinus (house musk shrews). OBJECTIVES Here, we compared the potential of these fatty acid amides to maintain their anti-nausea/anti-emetic effect over a delay. The following experiments examined the potential of a wider dose range of OlGly and OlAla to interfere with (1) LiCl-induced conditioned gaping in rats and (2) LiCl-induced vomiting in shrews, when administered 20 or 70 min prior to illness. RESULTS OlAla (1, 5, 20 mg/kg) reduced LiCl-induced conditioned gaping, with OlGly only effective at the high dose (20 mg/kg), with no effect of pretreatment delay time. At the high dose of 20 mg/kg, OlGly increased passive drips during conditioning suggesting a sedative effect. In shrews, both OlGly and OlAla (1, 5 mg/kg) suppressed LiCl-induced vomiting, with no effect of pretreatment delay. OlAla more effectively suppressed vomiting, with OlAla (5 mg/kg) also increasing the latency to the first vomiting reaction. CONCLUSIONS OlAla was more effective than OlGly in reducing both LiCl-induced gaping in rats and LiCl-induced vomiting in shrews. These findings provide further evidence that these fatty acid amides may be useful treatments for nausea and vomiting, with OlAla demonstrating superior efficacy.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Reem Smoum
- Institute of Drug Research, Medical Facility, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Institute of Drug Research, Medical Facility, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G2W1, Canada.
| |
Collapse
|
6
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
7
|
Ayoub SM, Piscitelli F, Silvestri C, Limebeer CL, Rock EM, Smoum R, Farag M, de Almeida H, Sullivan MT, Lacroix S, Boubertakh B, Nallabelli N, Lichtman AH, Leri F, Mechoulam R, Di Marzo V, Parker LA. Spontaneous and Naloxone-Precipitated Withdrawal Behaviors From Chronic Opiates are Accompanied by Changes in N-Oleoylglycine and N-Oleoylalanine Levels in the Brain and Ameliorated by Treatment With These Mediators. Front Pharmacol 2021; 12:706703. [PMID: 34603019 PMCID: PMC8479102 DOI: 10.3389/fphar.2021.706703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: The endocannabinoidome mediators, N-Oleoylglycine (OlGly) and N-Oleoylalanine (OlAla), have been shown to reduce acute naloxone-precipitated morphine withdrawal affective and somatic responses. Objectives: To determine the role and mechanism of action of OlGly and OlAla in withdrawal responses from chronic exposure to opiates in male Sprague-Dawley rats. Methods: Opiate withdrawal was produced: 1) spontaneously 24 h following chronic exposure to escalating doses of morphine over 14 days (Experiments 1 and 2) and steady-state exposure to heroin by minipumps for 12 days (Experiment 3), 2) by naloxone injection during steady-state heroin exposure (Experiment 4), 3) by naloxone injection during operant heroin self-administration (Experiment 5). Results: In Experiment 1, spontaneous morphine withdrawal produced somatic withdrawal reactions. The behavioral withdrawal reactions were accompanied by suppressed endogenous levels of OlGly in the nucleus accumbens, amygdala, and prefrontal cortex, N-Arachidonylglycerol and OlAla in the amygdala, 2-arachidonoylglycerol in the nucleus accumbens, amygdala and interoceptive insular cortex, and by changes in colonic microbiota composition. In Experiment 2, treatment with OlAla, but not OlGly, reduced spontaneous morphine withdrawal responses. In Experiment 3, OlAla attenuated spontaneous steady-state heroin withdrawal responses at both 5 and 20 mg/kg; OlGly only reduced withdrawal responses at the higher dose of 20 mg/kg. Experiment 4 demonstrated that naloxone-precipitated heroin withdrawal from steady-state exposure to heroin (7 mg/kg/day for 12 days) is accompanied by tissue-specific changes in brain or gut endocannabinoidome mediator, including OlGly and OlAla, levels and colonic microbiota composition, and that OlAla (5 mg/kg) attenuated behavioural withdrawal reactions, while also reversing some of the changes in brain and gut endocannabinoidome and gut microbiota induced by naloxone. Experiment 5 demonstrated that although OlAla (5 mg/kg) did not interfere with operant heroin self-administration on its own, it blocked naloxone-precipitated elevation of heroin self-administration behavior. Conclusion: These results suggest that OlAla and OlGly are two endogenous mediators whose brain concentrations respond to chronic opiate treatment and withdrawal concomitantly with changes in colon microbiota composition, and that OlAla may be more effective than OlGly in suppressing chronic opiate withdrawal responses.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group Consiglio Nazionale delle Richerche, Pozzuli, Italy
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Reem Smoum
- Institute of Drug Research, School of Pharmacy, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathew Farag
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Hannah de Almeida
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Sébastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Nayudu Nallabelli
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus Virginia Commonwealth University, Richmond, VA, United States
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, School of Pharmacy, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group Consiglio Nazionale delle Richerche, Pozzuli, Italy.,Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada.,Faculty of Agriculture and Food Science, INAF, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome/Endocannabinoidome Axis in Metabolic Health, Québec City, QC, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Function and therapeutic potential of N-acyl amino acids. Chem Phys Lipids 2021; 239:105114. [PMID: 34217720 DOI: 10.1016/j.chemphyslip.2021.105114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
N-acyl amino acids (NAAs) are amphiphilic molecules, with different potential fatty acid and head group moieties. NAAs are the largest family of anandamide congener lipids discovered to date. In recent years, several NAAs have been identified as potential ligands, engaging novel binding sites and mechanisms for modulation of membrane proteins such as G-protein coupled receptors (GPRs), nuclear receptors, ion channels, and transporters. NAAs play a key role in a variety of physiological functions as lipid signaling molecules. Understanding the structure, function roles, and pharmacological potential of these NAAs is still in its infancy, and the biochemical roles are also mostly unknown. This review will provide a summary of the literature on NAAs and emphasize their therapeutic potential.
Collapse
|
9
|
Rock EM, Limebeer CL, Sullivan MT, DeVuono MV, Lichtman AH, Di Marzo V, Mechoulam R, Parker LA. N-Oleoylglycine and N-Oleoylalanine Do Not Modify Tolerance to Nociception, Hyperthermia, and Suppression of Activity Produced by Morphine. Front Synaptic Neurosci 2021; 13:620145. [PMID: 33767617 PMCID: PMC7985545 DOI: 10.3389/fnsyn.2021.620145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
The endogenous amide N-Oleoylglycine (OlGly) and its analog N-Oleoylalanine (OlAla), have been shown to interfere with the affective and somatic responses to acute naloxone-precipitated MWD in male rats. Here we evaluated the potential of a single dose (5 mg/kg, ip) which alleviates withdrawal of these endogenous fatty acid amides to modify tolerance to anti-nociception, hyperthermia, and suppression of locomotion produced by morphine in male Sprague-Dawley rats. Although rats did develop tolerance to the hypolocomotor and analgesic effects of morphine, they did not develop tolerance to the hyperthermic effects of this substance. Administration of neither OlGly nor OlAla interfered with the establishment of morphine tolerance, nor did they modify behavioral responses elicited by morphine on any trial. These results suggest that the effects of OlGly and OlAla on opiate dependence may be limited to naloxone-precipitated withdrawal effects.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Marieka V DeVuono
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Richerche, Naples, Italy.,Canada Excellence Research Chair on the Gut Microbiome/Endocannabinoidome Axis in Metabolic Health, Faculty of Medicine and Faculty of Agriculture and Food Science, CRIYUCPQ, INAF and Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Raphael Mechoulam
- Medical Faculty, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Lago-Fernandez A, Zarzo-Arias S, Jagerovic N, Morales P. Relevance of Peroxisome Proliferator Activated Receptors in Multitarget Paradigm Associated with the Endocannabinoid System. Int J Mol Sci 2021; 22:1001. [PMID: 33498245 PMCID: PMC7863932 DOI: 10.3390/ijms22031001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids have shown to exert their therapeutic actions through a variety of targets. These include not only the canonical cannabinoid receptors CB1R and CB2R but also related orphan G protein-coupled receptors (GPCRs), ligand-gated ion channels, transient receptor potential (TRP) channels, metabolic enzymes, and nuclear receptors. In this review, we aim to summarize reported compounds exhibiting their therapeutic effects upon the modulation of CB1R and/or CB2R and the nuclear peroxisome proliferator-activated receptors (PPARs). Concomitant actions at CBRs and PPARα or PPARγ subtypes have shown to mediate antiobesity, analgesic, antitumoral, or neuroprotective properties of a variety of phytogenic, endogenous, and synthetic cannabinoids. The relevance of this multitargeting mechanism of action has been analyzed in the context of diverse pathologies. Synergistic effects triggered by combinatorial treatment with ligands that modulate the aforementioned targets have also been considered. This literature overview provides structural and pharmacological insights for the further development of dual cannabinoids for specific disorders.
Collapse
Affiliation(s)
| | | | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish Research Council, Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.-F.); (S.Z.-A.)
| |
Collapse
|
11
|
Ayoub SM, Smoum R, Farag M, Atwal H, Collins SA, Rock EM, Limebeer CL, Piscitelli F, Iannotti FA, Lichtman AH, Leri F, Di Marzo V, Mechoulam R, Parker LA. Oleoyl alanine (HU595): a stable monomethylated oleoyl glycine interferes with acute naloxone precipitated morphine withdrawal in male rats. Psychopharmacology (Berl) 2020; 237:2753-2765. [PMID: 32556401 DOI: 10.1007/s00213-020-05570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Oleoyl glycine, a little studied fatty acid amide similar in structure to anandamide, interferes with nicotine addiction in mice and acute naloxone-precipitated morphine withdrawal (MWD) in rats. Because endogenous oleoyl glycine is subject to rapid enzymatic deactivation, we evaluated the potential of more stable analogs to interfere with opiate withdrawal. OBJECTIVES The potential of monomethylated oleoyl glycine (oleoyl alanine, HU595) to interfere with somatic and aversive effects of acute naloxone-precipitated MWD, its duration, and mechanism of action was assessed in male Sprague Dawley rats. The potential of dimethylated oleoyl glycine (HU596) to interfere with the aversive effects of naloxone-precipitated MWD was also investigated. RESULTS Oleoyl alanine (HU595) interfered with somatic and aversive effects produced by naloxone-precipitated MWD at equivalent doses (1 and 5 mg/kg, i.p.) as we have reported for oleoyl glycine; however, oleoyl alanine produced a longer lasting (60 min) interference, yet did not produce rewarding or aversive effects on its own and did not modify locomotor activity. HU596 was not effective. The interference with aversive effects of naloxone-precipitated MWD by oleoyl alanine was prevented by both a PPARα antagonist and a CB1 receptor antagonist. Accordingly, the compound was found to inhibit FAAH and activate PPARα in vitro. Finally, oleoyl alanine also reduced acute naloxone-precipitated MWD anhedonia, as measured by decreased saccharin preference. CONCLUSIONS Oleoyl alanine (also an endogenous fatty acid) may be a more stable and effective treatment for opiate withdrawal than oleoyl glycine.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Reem Smoum
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathew Farag
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Harkirat Atwal
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Stephen A Collins
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy.,Canada Excellence Research Chair on the Microbiome/Endocannabinoid Axis in Metabolomic Health, Université Laval, Quebec City, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|