1
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
2
|
Olson KM, Devereaux AL, Chatterjee P, Saldaña-Shumaker SL, Shafer A, Plotkin A, Kandasamy R, MacKerell AD, Traynor JR, Cunningham CW. Nitro-benzylideneoxymorphone, a bifunctional mu and delta opioid receptor ligand with high mu opioid receptor efficacy. Front Pharmacol 2023; 14:1230053. [PMID: 37469877 PMCID: PMC10352325 DOI: 10.3389/fphar.2023.1230053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction: There is a major societal need for analgesics with less tolerance, dependence, and abuse liability. Preclinical rodent studies suggest that bifunctional ligands with both mu (MOPr) and delta (DOPr) opioid peptide receptor activity may produce analgesia with reduced tolerance and other side effects. This study explores the structure-activity relationships (SAR) of our previously reported MOPr/DOPr lead, benzylideneoxymorphone (BOM) with C7-methylene-substituted analogs. Methods: Analogs were synthesized and tested in vitro for opioid receptor binding and efficacy. One compound, nitro-BOM (NBOM, 12) was evaluated for antinociceptive effects in the warm water tail withdrawal assay in C57BL/6 mice. Acute and chronic antinociception was determined, as was toxicologic effects on chronic administration. Molecular modeling experiments were performed using the Site Identification by Ligand Competitive Saturation (SILCS) method. Results: NBOM was found to be a potent MOPr agonist/DOPr partial agonist that produces high-efficacy antinociception. Antinociceptive tolerance was observed, as was weight loss; this toxicity was only observed with NBOM and not with BOM. Modeling supports the hypothesis that the increased MOPr efficacy of NBOM is due to the substituted benzylidene ring occupying a nonpolar region within the MOPr agonist state. Discussion: Though antinociceptive tolerance and non-specific toxicity was observed on repeated administration, NBOM provides an important new tool for understanding MOPr/DOPr pharmacology.
Collapse
Affiliation(s)
- Keith M. Olson
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea L. Devereaux
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Payal Chatterjee
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Savanah L. Saldaña-Shumaker
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Amanda Shafer
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adam Plotkin
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| | - Ram Kandasamy
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - John R. Traynor
- Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, Concordia University Wisconsin School of Pharmacy, Mequon, WI, United States
| |
Collapse
|
3
|
Synthesis, biological, and structural explorations of a series of μ-opioid receptor (MOR) agonists with high G protein signaling bias. Eur J Med Chem 2022; 228:113986. [PMID: 34802839 DOI: 10.1016/j.ejmech.2021.113986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Biased agonism refers to the ability of compounds to drive preferred signaling pathways and avoid adverse signaling pathways in a ligand-dependent manner for some G-protein-coupled receptors. It is thought that the separation of therapeutic efficacy (e.g., analgesia) from adverse effects (e.g., respiration depression) can be achieved through the design of biased MOR agonists and one example is the recently approved MOR biased agonist oliceridine (TRV130). However, oliceridine only demonstrates modest beneficial effects as compared to other opioids in terms of therapeutic/adverse effect balance. One possibility attributable to the modest success of oliceridine is its limited bias, and as such developing MOR ligands with a more biased agonism profile could in theory further improve the beneficial effects of the ligands. Here, we rationally designed and synthesized a series of derivatives as potent highly biased MOR agonists (19a-v) through the modification and structure-activity relationship study of TRV130. This novel synthetic molecule, LPM3480392 (19m), demonstrated improved in vitro biased agonism (EC50 = 0.35 nM, Emax = 91.4%) with no measured β-arrestin recruitment (EC50 > 30000 nM, Emax = 1.6%), good brain penetration (B/P ratio = 4.61, 0.25 h post-IV dosing 2.0 mg/kg), a favorable pharmacokinetic profile (distribution volume = 10766 mL/kg, t1/2 = 1.9 h) and produced potent antinociceptive effect with reduced respiratory suppression (sO2(%) = 92.17, 0.32 mg/kg, SC) as compared to TRV130. LPM3480392 has completed preclinical studies and is currently under clinical development (CTR20210370) as an analgesic for the treatment of moderate to severe pain.
Collapse
|
4
|
Peripheral antinociceptive effects of a bifunctional μ and δ opioid receptor ligand in rat model of inflammatory bladder pain. Neuropharmacology 2021; 196:108701. [PMID: 34256047 DOI: 10.1016/j.neuropharm.2021.108701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
There is a need to develop a novel analgesic for pain associated with interstitial cystitis/painful bladder syndrome (IC/PBS). The use of the conventional μ-opioid receptor agonists to manage IC/PBS pain is controversial due to adverse CNS effects. These effects are attenuated in benzylideneoxymorphone (BOM), a low-efficacy μ-opioid receptor agonist/δ-opioid receptor antagonist that attenuates thermal pain and is devoid of reinforcing effects. We hypothesize that BOM will inhibit bladder pain by attenuating responses of urinary bladder distension (UBD)-sensitive afferent fibers. Therefore, the effect of BOM was tested on responses of UBD-sensitive afferent fibers in L6 dorsal root from inflamed and non-inflamed bladder of rats. Immunohistochemical (IHC) examination reveals that following the induction of inflammation there were significant high expressions of μ, δ, and μ-δ heteromer receptors in DRG. BOM dose-dependently (1-10 mg/kg, i.v) attenuated mechanotransduction properties of these afferent fibers from inflamed but not from non-inflamed rats. In behavioral model of bladder pain, BOM significantly attenuated visceromotor responses (VMRs) to UBD only in inflamed group of rats when injected either systemically (10 mg/kg, i.v.) or locally into the bladder (0.1 ml of 10 mg/ml). Furthermore, oxymorphone (OXM), a high-efficacy μ-opioid receptor agonist, attenuated responses of mechanosensitive bladder afferent fibers and VMRs to UBD. Naloxone (10 mg/kg, i.v.) significantly reversed the inhibitory effects of BOM and OXM on responses of bladder afferent fibers and VMRs suggesting μ-opioid receptor-related analgesic effects of these compounds. The results reveal that a low-efficacy, bifunctional opioid-based compound can produce analgesia by attenuating mechanotransduction functions of afferent fibers innervating the urinary bladder.
Collapse
|