1
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
External Electric Field Effect on the Strength of σ-Hole Interactions: A Theoretical Perspective in Like⋯Like Carbon-Containing Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092963. [PMID: 35566307 PMCID: PMC9104924 DOI: 10.3390/molecules27092963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
For the first time, σ-hole interactions within like⋯like carbon-containing complexes were investigated, in both the absence and presence of the external electric field (EEF). The effects of the directionality and strength of the utilized EEF were thoroughly unveiled in the (F-C-F3)2, (F-C-H3)2, and (H-C-F3)2 complexes. In the absence of the EEF, favorable interaction energies, with negative values, are denoted for the (F-C-F3)2 and (H-C-F3)2 complexes, whereas the (F-C-H3)2 complex exhibits unfavorable interactions. Remarkably, the strength of the applied EEF exhibits a prominent role in turning the repulsive forces within the latter complex into attractive ones. The symmetrical nature of the considered like⋯like carbon-containing complexes eradicated the effect of directionality of the EEF. The quantum theory of atoms in molecules (QTAIM), and the noncovalent interaction (NCI) index, ensured the occurrence of the attractive forces, and also outlined the substantial contributions of the three coplanar atoms to the total strength of the studied complexes. Symmetry-adapted perturbation theory (SAPT) results show the dispersion-driven nature of the interactions.
Collapse
|
3
|
Ibrahim MAA, Moussa NAM, Saad SMA, Ahmed MN, Shawky AM, Soliman MES, Mekhemer GAH, Rady ASSM. σ-Hole and LP-Hole Interactions of Pnicogen···Pnicogen Homodimers under the External Electric Field Effect: A Quantum Mechanical Study. ACS OMEGA 2022; 7:11264-11275. [PMID: 35415328 PMCID: PMC8992284 DOI: 10.1021/acsomega.2c00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
σ-Hole and lone-pair (lp)-hole interactions within σ-hole···σ-hole, σ-hole···lp-hole, and lp-hole···lp-hole configurations were comparatively investigated on the pnicogen···pnicogen homodimers (PCl3)2, for the first time, under field-free conditions and the influence of the external electric field (EEF). The electrostatic potential calculations emphasized the impressive versatility of the examined PCl3 monomers to participate in σ-hole and lp-hole pnicogen interactions. Crucially, the sizes of σ-hole and lp-hole were enlarged under the influence of the positively directed EEF and decreased in the case of reverse direction. Interestingly, the energetic quantities unveiled more favorability of the σ-hole···lp-hole configuration of the pnicogen···pnicogen homodimers, with significant negative interaction energies, than σ-hole···σ-hole and lp-hole···lp-hole configurations. Quantum theory of atoms in molecules and noncovalent interaction index analyses were adopted to elucidate the nature and origin of the considered interactions, ensuring their closed shell nature and the occurrence of attractive forces within the studied homodimers. Symmetry-adapted perturbation theory-based energy decomposition analysis alluded to the dispersion force as the main physical component beyond the occurrence of the examined interactions. The obtained findings would be considered as a fundamental underpinning for forthcoming studies pertinent to chemistry, materials science, and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Sherif M. A. Saad
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Muhammad Naeem Ahmed
- Department
of Chemistry, The University of Azad Jammu
and Kashmir, Muzaffarabad 13100, Pakistan
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Gamal A. H. Mekhemer
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Al-shimaa S. M. Rady
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
4
|
Ibrahim MAA, Saeed RRA, Shehata MNI, Ahmed MN, Shawky AM, Khowdiary MM, Elkaeed EB, Soliman MES, Moussa NAM. Type I-IV Halogen⋯Halogen Interactions: A Comparative Theoretical Study in Halobenzene⋯Halobenzene Homodimers. Int J Mol Sci 2022; 23:3114. [PMID: 35328534 PMCID: PMC8953242 DOI: 10.3390/ijms23063114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
In the current study, unexplored type IV halogen⋯halogen interaction was thoroughly elucidated, for the first time, and compared to the well-established types I−III interactions by means of the second-order Møller−Plesset (MP2) method. For this aim, the halobenzene⋯halobenzene homodimers (where halogen = Cl, Br, and I) were designed into four different types, parodying the considered interactions. From the energetic perspective, the preference of scouted homodimers was ascribed to type II interactions (i.e., highest binding energy), whereas the lowest binding energies were discerned in type III interactions. Generally, binding energies of the studied interactions were observed to decline with the decrease in the σ-hole size in the order, C6H5I⋯IC6H5 > C6H5Br⋯BrC6H5 > C6H5Cl⋯ClC6H5 homodimers and the reverse was noticed in the case of type IV interactions. Such peculiar observations were relevant to the ample contributions of negative-belt⋯negative-belt interactions within the C6H5Cl⋯ClC6H5 homodimer. Further, type IV torsional trans → cis interconversion of C6H5X⋯XC6H5 homodimers was investigated to quantify the π⋯π contributions into the total binding energies. Evidently, the energetic features illustrated the amelioration of the considered homodimers (i.e., more negative binding energy) along the prolonged scope of torsional trans → cis interconversion. In turn, these findings outlined the efficiency of the cis configuration over the trans analog. Generally, symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) demonstrated the predominance of all the scouted homodimers by the dispersion forces. The obtained results would be beneficial for the omnipresent studies relevant to the applications of halogen bonds in the fields of materials science and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Rehab R. A. Saeed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Mohammed N. I. Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Manal M. Khowdiary
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Al-Lith Branch, Makkah 24211, Saudi Arabia;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Mahmoud E. S. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| |
Collapse
|
5
|
Ibrahim MAA, Mohamed YAM, Abd Elhafez HSM, Shehata MNI, Soliman MES, Ahmed MN, Abd El-Mageed HR, Moussa NAM. R •-hole interactions of group IV-VII radical-containing molecules: A comparative study. J Mol Graph Model 2021; 111:108097. [PMID: 34890896 DOI: 10.1016/j.jmgm.2021.108097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
For the first time, the potentiality of the sp2-hybridized group IV-VII radical (R•)-containing molecules to participate in R•-hole interactions was comparatively assessed using •SiF3,•POF2, •SO2F, and •ClO3 models in the trigonal pyramidal geometry. In that spirit, a plethora of quantum mechanical calculations was performed at the MP2/aug-cc-pVTZ level of theory. According to the results, all the investigated R•-containing molecules exhibited potent versatility to engage in R•-hole … Lewis base interactions with significant negative binding energies for the NCH-based complexes. The strength of R•-hole interactions was perceived to obey the •ClO3 … > •SO2F … > •POF2 … > •SiF3 … Lewis base order, outlining an inverse correlation between the binding energy and the atomic size of the R•-hole donor. Benchmarking of the binding energy at the CCSD/CBS(T) computational level was executed for all the explored interactions and addressed an obvious similarity between the MP2 and CCSD energetic findings. QTAIM analysis critically unveiled the closed-shell nature of the explored R•-hole interactions. SAPT-EDA proclaimed the reciprocal contributions of electrostatic and dispersion forces to the total binding energy. These observations demonstrate in better detail the nature of R•-hole interactions, leading to a convincing amelioration for versatile fields relevant to materials science and drug design.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
| | - Yasmeen A M Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Heba S M Abd Elhafez
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohammed N I Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - H R Abd El-Mageed
- Micro-Analysis, Environmental Research nd Community Affairs Center (MAESC), Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| |
Collapse
|
6
|
Ibrahim MAA, Mohamed YAM, Abuelliel HAA, Rady ASM, Soliman MES, Ahmed MN, Mohamed LA, Moussa NAM. σ‐Hole Interactions of Tetrahedral Group IV–VIII Lewis Acid Centers with Lewis Bases: A Comparative Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202103092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Yasmeen A. M. Mohamed
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Hassan A. A. Abuelliel
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Al‐shimaa S. M. Rady
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Lab School of Health Sciences University of KwaZulu-Natal Westville, Durban 4000 South Africa
| | - Muhammad Naeem Ahmed
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Lamiaa A. Mohamed
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| |
Collapse
|
7
|
Ibrahim MAA, Kamel AAK, Soliman MES, Moustafa MF, El-Mageed HRA, Taha F, Mohamed LA, Moussa NAM. Effect of External Electric Field on Tetrel Bonding Interactions in (FTF 3···FH) Complexes (T = C, Si, Ge, and Sn). ACS OMEGA 2021; 6:25476-25485. [PMID: 34632205 PMCID: PMC8495869 DOI: 10.1021/acsomega.1c03461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 05/13/2023]
Abstract
A quantum chemical study was accomplished on the σ-hole interactions of the barely explored group IV elements, for the first time, in the absence and presence of the positively and negatively directed external electric field (EEF). The analyses of molecular electrostatic potential addressed the occurrence of the σ-hole on all the inspected tetrel atoms, confirming their salient versatility to engage in σ-hole interactions. MP2 energetic findings disclosed the occurrence of favorable σ-hole interactions within the tetrel bonding complexes. The tetrel bonding interactions became stronger in the order of C < Si < Ge < Sn for F-T-F3···FH complexes with the largest interaction energy amounting to -19.43 kcal/mol for the optimized F-Sn-F3···FH complex under the influence of +0.020 au EEF. The interaction energy conspicuously evolved by boosting the magnitude of the positively directed EEF value and declining the negatively directed EEF one. The decomposition analysis for the interaction energies was also executed in terms of symmetry-adapted perturbation theory, illuminating the dominant electrostatic contribution to all the studied complexes' interactions except carbon-based interactions controlled by dispersion forces. The outcomes that emerged from the current work reported significantly how the direction and strength of the EEF affect the tetrel-bonding interactions, leading to further improvements in the forthcoming studies of supramolecular chemistry and materials science.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Afnan A. K. Kamel
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mahmoud E. S. Soliman
- Molecular
Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F. Moustafa
- Department
of Biology, College of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Department
of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - H. R. Abd El-Mageed
- Micro-Analysis,
Environmental Research and Community Affairs Center (MAESC), Faculty
of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fouad Taha
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Lamiaa A. Mohamed
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
8
|
π-hole interactions of group III–VI elements with π-systems and Lewis bases: a comparative study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01817-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Ibrahim MAA, Moussa NAM, Soliman MES, Moustafa MF, Al-Fahemi JH, El-Mageed HRA. On the Potentiality of X-T-X 3 Compounds (T = C, Si, and Ge, and X = F, Cl, and Br) as Tetrel- and Halogen-Bond Donors. ACS OMEGA 2021; 6:19330-19341. [PMID: 34337270 PMCID: PMC8320108 DOI: 10.1021/acsomega.1c03183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 05/08/2023]
Abstract
The versatility of the X-T-X3 compounds (where T = C, Si, and Ge, and X = F, Cl, and Br) to participate in tetrel- and halogen-bonding interactions was settled out, at the MP2/aug-cc-pVTZ level of theory, within a series of configurations for (X-T-X3)2 homodimers. The electrostatic potential computations ensured the remarkable ability of the investigated X-T-X3 monomers to participate in σ-hole halogen and tetrel interactions. The energetic findings significantly unveil the favorability of the tetrel···tetrel directional configuration with considerable negative binding energies over tetrel···halogen, type III halogen···halogen, and type II halogen···halogen analogs. Quantum theory of atoms in molecules and noncovalent interaction analyses were accomplished to disclose the nature of the tetrel- and halogen-bonding interactions within designed configurations, giving good correlations between the total electron densities and binding energies. Further insight into the binding energy physical meanings was invoked through using symmetry-adapted perturbation theory-based energy decomposition analysis, featuring the dispersion term as the most prominent force beyond the examined interactions. The theoretical results were supported by versatile crystal structures which were characterized by the same type of interactions. Presumably, the obtained findings would be considered as a solid underpinning for future supramolecular chemistry, materials science, and crystal engineering studies, as well as a fundamental linchpin for a better understanding of the biological activities of chemicals.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F. Moustafa
- Department
of Biology, College of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Department
of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - H. R. Abd El-Mageed
- Micro-Analysis,
Environmental Research and Community Affairs Center (MAESC), Faculty
of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
10
|
Fortuna A, Costa PJ. Optimized Halogen Atomic Radii for PBSA Calculations Using Off-Center Point Charges. J Chem Inf Model 2021; 61:3361-3375. [PMID: 34185532 DOI: 10.1021/acs.jcim.1c00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In force-field methods, the usage of off-center point charges, also called extra points (EPs), is a common strategy to tackle the anisotropy of the electrostatic potential of covalently bonded halogens (X), thus allowing the description of halogen bonds (XBs) at the molecular mechanics/molecular dynamics (MM/MD) level. Diverse EP implementations exist in the literature differing on the charge sets and/or the X-EP distances. Poisson-Boltzmann and surface area (PBSA) calculations can be used to obtain solvation free energies (ΔGsolv) of small molecules, often to compute binding free energies (ΔGbind) at the MM-PBSA level. This method depends, among other parameters, on the empirical assignment of atomic radii (PB radii). Given the multiplicity of off-center point-charge models and the lack of specific PB radii for halogens compatible with such implementations, in this work, we assessed the performance of PBSA calculations for the estimation of ΔGsolv values in water (ΔGhyd), also conducting an optimization of the halogen PB radii (Cl, Br, and I) for each EP model. We not only expand the usage of EP models in the scope of the general AMBER force field (GAFF) but also provide the first optimized halogen PB radii in the context of the CHARMM general force field (CGenFF), thus contributing to improving the description of halogenated compounds in PBSA calculations.
Collapse
Affiliation(s)
- Andreia Fortuna
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Paulo J Costa
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
11
|
Ibrahim MAA, Ahmed OAM, El-Taher S, Al-Fahemi JH, Moussa NAM, Moustafa H. Cospatial σ-Hole and Lone Pair Interactions of Square-Pyramidal Pentavalent Halogen Compounds with π-Systems: A Quantum Mechanical Study. ACS OMEGA 2021; 6:3319-3329. [PMID: 33553949 PMCID: PMC7860235 DOI: 10.1021/acsomega.0c05795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
In the spirit of the mounting interest in noncovalent interactions, the present study was conducted to scrutinize a special type that simultaneously involved both σ-hole and lone pair (lp) interactions with aromatic π-systems. Square-pyramidal pentavalent halogen-containing molecules, including X-Cl-F4, F-Y-F4, and F-I-X4 compounds (where X = F, Cl, Br, and I and Y = Cl, Br, and I) were employed as σ-hole/lp donors. On the other hand, benzene (BZN) and hexafluorobenzene (HFB) were chosen as electron-rich and electron-deficient aromatic π-systems, respectively. The investigation relied upon a variety of quantum chemical calculations that complement each other. The results showed that (i) the binding energy of the X-Y-F4···BZN complexes increased (i.e., more negative) as the Y atom had a larger magnitude of σ-hole, contrary to the pattern of X-Y-F4···HFB complexes; (ii) the interaction energies of X-Y-F4···BZN complexes were dominated by both dispersion and electrostatic contributions, while dispersive interactions dominated X-Y-F4···HFB complexes; and (iii) the X4 atoms in F-I-X4···π-system complexes governed the interaction energy pattern: the larger the X4 atoms were, the greater the interaction energies were, for the same π-system. The results had illuminating facets in regard to the rarely addressed cases of the σ-hole/lp contradictory scene.
Collapse
Affiliation(s)
| | - Ossama A. M. Ahmed
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Sabry El-Taher
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nayra A. M. Moussa
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hussein Moustafa
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
12
|
Ibrahim MAA, Telb EMZ. Comparison of ±σ-hole and ±R˙-hole interactions formed by tetrel-containing complexes: a computational study. RSC Adv 2021; 11:4011-4021. [PMID: 35424365 PMCID: PMC8694216 DOI: 10.1039/d0ra09564h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
For the first time, unconventional ±R˙-hole interactions were unveiled in tetrel-containing complexes. The nature and characteristics of ±R˙-hole interactions were explored relative to their ±σ-hole counterparts for ˙TF3⋯ and W-T-F3⋯B/R˙/A complexes (where T = C, Si, and Ge, W = H and F, B = Lewis bases, R˙ = free radicals, and A = Lewis acids). In an effort to thoroughly investigate such interactions, a plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), maximum positive electrostatic potential (V s,max), point-of-charge (PoC), interaction energy, symmetry adapted perturbation theory (SAPT), and reduced density gradient-noncovalent interaction (RDG-NCI) calculations, were applied. The most notable findings to emerge from this study are that (i) from the electrostatic perspective, the molecular stabilization energies of ˙TF3 and W-T-F3 monomers became more negative as the Lewis basicity increased, (ii) the most stable complexes were observed for the ones containing Lewis bases, forming -σ-hole and -R˙-hole interactions, and the interaction energies systematically increased in the order H-T-F3⋯B < ˙TF3⋯B < F-T-F3⋯B, (iii) contrariwise, the +σ-hole and +R˙-hole interactions with Lewis acids are more energetically favorable in the order F-T-F3⋯A < ˙TF3⋯A < H-T-F3⋯A, and (iv) generally, the dispersion force plays a key role in stabilizing the tetrel-containing complexes, jointly with the electrostatic and induction forces for the interactions with Lewis bases and acids, respectively. Concretely, the findings presented in this paper add to our understanding of the characteristics and nature of such intriguing interactions.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Ebtisam M Z Telb
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
13
|
Ibrahim MAA, Saad SMA, Al-Fahemi JH, Mekhemer GAH, Ahmed SA, Shawky AM, Moussa NAM. External electric field effects on the σ-hole and lone-pair hole interactions of group V elements: a comparative investigation. RSC Adv 2021; 11:4022-4034. [PMID: 35424345 PMCID: PMC8694126 DOI: 10.1039/d0ra09765a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
σ-hole and lone-pair (lp) hole interactions of trivalent pnicogen-bearing (ZF3) compounds were comparatively scrutinized, for the first time, under field-free and external electric field (EEF) conditions. Conspicuously, the sizes of the σ-hole and lp-hole were increased by applying an EEF along the positive direction, while the sizes of both holes decreased through the reverse EEF direction. The MP2 energetic calculations of ZF3⋯FH/NCH complexes revealed that σ-holes exhibited more impressive interaction energies compared to the lp-holes. Remarkably, the strengths of σ-hole and lp-hole interactions evolved with the increment of the positive value of the considered EEF; i.e., the interaction energy increased as the utilized EEF value increased. Unexpectedly, under field-free conditions, nitrogen-bearing complexes showed superior strength for their lp-hole interactions than phosphorus-bearing complexes. However, the reverse picture was exhibited for the interaction energies of nitrogen- and phosphorus-bearing complexes interacting within lp-holes by applying the high values of a positively directed EEF. These results significantly demonstrate the crucial influence of EEF on the strength of σ-hole and lp-hole interactions, which in turn leads to an omnipresent enhancement for variable fields, including biological simulations and material science.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Sherif M A Saad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Jabir H Al-Fahemi
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Gamal A H Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University Makkah 21955 Saudi Arabia
- Central Laboratory for Micro-analysis, Minia University Minia 61519 Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
14
|
Ibrahim MAA, Rady ASM, Al‐Fahemi JH, Telb EMZ, Ahmed SA, Shawky AM, Moussa NAM. ±
π‐Hole Interactions: A Comparative Investigation Based on Boron‐Containing Molecules. ChemistrySelect 2020. [DOI: 10.1002/slct.202003231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Al‐shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Jabir H. Al‐Fahemi
- Chemistry Department, Faculty of Applied Sciences Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ebtisam M. Z. Telb
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Saleh A. Ahmed
- Chemistry Department, Faculty of Applied Sciences Umm Al-Qura University Makkah 21955 Saudi Arabia
- Chemistry Department, Faculty of Science Assiut University Assiut 71519 Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU) Umm Al-Qura University Makkah 21955 Saudi Arabia
- Central Laboratory for Micro-analysis Minia University Minia 61519 Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| |
Collapse
|
15
|
Ibrahim MAA, Moussa NAM. Unconventional Type III Halogen···Halogen Interactions: A Quantum Mechanical Elucidation of σ-Hole···σ-Hole and Di-σ-Hole Interactions. ACS OMEGA 2020; 5:21824-21835. [PMID: 32905309 PMCID: PMC7469378 DOI: 10.1021/acsomega.0c02887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Herein, two unconventional type III halogen···halogen interactions, namely, σ-hole···σ-hole and di-σ-hole interactions, were reported in a series of halogenated complexes. In type III, the A-halogen···halogen angles are typically equal to 180°, and the occurrence of σ-hole on halogen atoms is mandatory. Using diverse quantum mechanical calculations, it was demonstrated that the occurrence of such interactions with binding energies varied from -0.35 to -1.30 kcal/mol. Symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) revealed that type III interactions are dominated by dispersion forces, while electrostatic forces are unfavorable. Cambridge Structure Database (CSD) survey unveiled the experimental evidence for the manifestation of σ-hole···σ-hole interactions in crystal structures. This work might be deemed as a foundation for a vast number of forthcoming crystal engineering and materials science studies.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
16
|
Ibrahim MAA, Telb EMZ. σ-Hole and Lone-Pair Hole Interactions in Chalcogen-Containing Complexes: A Comparative Study. ACS OMEGA 2020; 5:21631-21640. [PMID: 32905338 PMCID: PMC7469375 DOI: 10.1021/acsomega.0c02362] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 05/07/2023]
Abstract
The potentiality of sp3-hybridized chalcogen-containing molecules to participate in lone-pair (lp) hole interactions was reported for the first time. lp hole interactions were characterized and compared to σ-hole ones for OF2 and SF2 molecules as a case study. Various quantum mechanical calculations, including molecular electrostatic potential (MEP), maximum positive electrostatic potential (V s,max), point of charge (PoC), symmetry-adapted perturbation theory (SAPT), quantum theory of atoms in molecule (QTAIM), and reduced density gradient-noncovalent interaction (RDG-NCI) calculations, were carried out. The more significant findings to emerge from this study are the following: (i) the V s,max calculation was proved to be an unreliable method to determine the precise σ-hole and lp hole locations. (ii) The maximum positive electrostatic potential of the σ hole and lp hole was found to be at the F-Chal···PoC angle (θ) of 180° and at the centroid of XYlp plane, respectively. (iii) Lewis basicity has a significant effect on the strength of σ-hole and lp hole interactions. (iv) The studied molecules more favorably interact with Lewis bases via the σ hole compared to the lp hole, and (v) stabilization of the σ-hole and lp hole interactions stems from the electrostatic and dispersion forces, respectively.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory,
Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ebtisam M. Z. Telb
- Computational Chemistry Laboratory,
Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
17
|
Ibrahim MAA, Mahmoud AHM, Moussa NAM. Comparative investigation of ±σ–hole interactions of carbon-containing molecules with Lewis bases, acids and di-halogens. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01187-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Marzec E, Poznański J, Paprocki D. Thermodynamic contribution of iodine atom to the binding of heterogeneously polyhalogenated benzotriazoles by the catalytic subunit of human protein kinase CK2. IUBMB Life 2020; 72:1203-1210. [PMID: 32083806 DOI: 10.1002/iub.2257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/09/2020] [Indexed: 12/29/2022]
Abstract
A series of novel benzotriazole derivatives containing iodine atom(s) were synthesized. The binding of these compounds to the catalytic subunit of human protein kinase CK2 was evaluated using differential scanning fluorimetry. The obtained thermodynamic data were compared with those determined previously for the brominated and chlorinated benzotriazole analogues to get a deeper insight into the thermodynamic contribution of iodine substitution to the free energy of ligand binding. We have shown that iodine atom(s) attached to the benzene ring of benzotriazole enhance(s) its binding by the target protein. This effect is the strongest when two iodine atoms are attached at positions peripheral to the triazole ring, which according to the structures deposited in protein data bank may be indicative for the formation of the halogen bond between iodine and carbonyl groups of residues located in the hinge region of the protein. Finally, quantitative structure-activity relationship analysis pointed the solute hydrophobicity as the main factor contributing to the binding affinity.
Collapse
Affiliation(s)
- Ewa Marzec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Paprocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Nunes R, Vila-Viçosa D, Costa PJ. Tackling Halogenated Species with PBSA: Effect of Emulating the σ-Hole. J Chem Theory Comput 2019; 15:4241-4251. [PMID: 31142112 DOI: 10.1021/acs.jctc.9b00106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To model halogen-bond phenomena using classical force fields, an extra point (EP) of charge is frequently introduced at a given distance from the halogen (X) to emulate the σ-hole. The resulting molecular dynamics (MD) trajectories can be used in subsequent molecular mechanics (MM) combined with Poisson-Boltzmann and surface area calculations (PBSA) to estimate protein-ligand binding free energies (Δ Gbind). While EP addition improves the MM/MD description of halogen-containing systems, its effect on the calculation of solvation free energies (Δ Gsolv) using the PBSA approach is yet to be assessed. As the PBSA calculations depend, among other parameters, on the empirical assignment of radii (PB radii), a problematic issue arises, since standard halogen radii are smaller than the typical X···EP distances, thus placing the EP within the solvent dielectric. Herein, we took a common literature EP parametrization scheme, which uses X···EP = Rmin and RESP charges in the context of GAFF, and performed a comprehensive study on the performance of PBSA (using three different setups) in the calculation of Δ Gsolv values for 142 halogenated compounds (bearing Cl, Br, or I) for which the experimental values are known. By conducting an optimization (minimizing the error against experimental values), we provide a new optimized set of halogen PB radii, for each PBSA setup, that should be used in the context of the aforementioned scenario. A simultaneous optimization of PB radii and X···EP distances shows that a wide range of distance/radius pairs can be used without significant loss of accuracy, therefore laying the basis for expanding this halogen radii optimization strategy to other force fields and EP implementations. As ligand Δ Gsolv estimation is an important term in the determination of protein-ligand Δ Gbind, this work is particularly relevant in the framework of structure-based virtual screening and related computer-aided drug design routines.
Collapse
|
20
|
Costa PJ, Nunes R, Vila-Viçosa D. Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert Opin Drug Discov 2019; 14:805-820. [PMID: 31131651 DOI: 10.1080/17460441.2019.1619692] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Halogens have a prominent role in drug design. Often used as a mean to improve ADME properties, they are also becoming a tool in protein-ligand recognition given their ability to form a non-covalent interaction, termed halogen bond, where halogens act as electrophilic species interacting with electron-rich partners. Rational drug design of halogen-bonding lead molecules requires an accurate description of halocarbon-protein complexes by computational tools though not all methods are able to tackle this non-covalent interaction. Areas covered: The authors present a review of computational methodologies that can be used to properly describe halogen bonds in the context of protein-ligand complexes, providing also insights on how these methods can be used in the context of computer-aided drug design. Expert opinion: Although in the last few years many computational tools, ranging from fast screening methods to the more expensive QM calculations, have been developed to tackle the halogen bonding phenomenon, they are not yet standard in the literature. This will eventually change as official software distributions are including support for halogen bonding in their methods. Tackling desolvation of halogenated species seems to be a good strategy to improve the accuracy of computational methods, that will be more commonly used prior to laboratory work in the future.
Collapse
Affiliation(s)
- Paulo J Costa
- a Centro de Quı́mica e Bioquı́mica, Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências da Universidade de Lisboa, Campo Grande , Lisboa , Portugal.,b University of Lisboa, Faculty of Sciences , BioISI - Biosystems & Integrative Sciences Institute , Lisboa , Portugal
| | - Rafael Nunes
- a Centro de Quı́mica e Bioquı́mica, Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências da Universidade de Lisboa, Campo Grande , Lisboa , Portugal.,b University of Lisboa, Faculty of Sciences , BioISI - Biosystems & Integrative Sciences Institute , Lisboa , Portugal
| | - Diogo Vila-Viçosa
- a Centro de Quı́mica e Bioquı́mica, Departamento de Quı́mica e Bioquı́mica , Faculdade de Ciências da Universidade de Lisboa, Campo Grande , Lisboa , Portugal.,b University of Lisboa, Faculty of Sciences , BioISI - Biosystems & Integrative Sciences Institute , Lisboa , Portugal
| |
Collapse
|
21
|
Ibrahim MAA, Telb EMZ. A Computational Investigation of Unconventional Lone‐Pair Hole Interactions of Group V–VIII Elements. ChemistrySelect 2019. [DOI: 10.1002/slct.201900603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry LaboratoryChemistry DepartmentFaculty of ScienceMinia University Minia 61519 Egypt
| | - Ebtisam M. Z. Telb
- Computational Chemistry LaboratoryChemistry DepartmentFaculty of ScienceMinia University Minia 61519 Egypt
| |
Collapse
|
22
|
Ibrahim MAA, Ahmed OAM, Moussa NAM, El-Taher S, Moustafa H. Comparative investigation of interactions of hydrogen, halogen and tetrel bond donors with electron-rich and electron-deficient π-systems. RSC Adv 2019; 9:32811-32820. [PMID: 35529736 PMCID: PMC9073150 DOI: 10.1039/c9ra08007d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, noncovalent interactions in complexes and crystals have attracted considerable interest. The current study was thus designed to gain a better understanding of three seminal types of noncovalent interactions, namely: hydrogen, halogen and tetrel interactions with π-systems. This study was performed on three models of Lewis acids: X3–C–H, F3–C–X and F–T–F3 (where X = F, Cl, Br and I; and T = C, Si, Ge and Sn) and three π-systems as Lewis bases: benzene (BZN), 1,3,5-trifluorobenzene (TFB) and hexafluorobenzene (HFB). Quantum mechanical calculations, including geometrical optimization, molecular electrostatic potential (MEP), maximum positive electrostatic potential (Vs,max), Point-of-Charge (PoC), potential energy surface (PES), quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) calculations, were carried out at the MP2/aug cc-pVDZ level of theory. The binding energies were additionally benchmarked at the CCSD(T)/CBS level. The results showed that: (i) the binding energies of the X3–C–H⋯π-system complexes were unexpectedly inversely correlated with the Vs,max values on the hydrogen atom but directly correlated with the X atomic sizes; (ii) the binding energies for the F3–C–X⋯π-system and F–T–F3⋯π-system complexes were correlated with the σ-hole magnitudes of the X and T atoms, respectively; and (iii) for the F3–C–F⋯π-system complexes, the binding energy was as strong as the π-system was electron-deficient, indicating the dominating nucleophilic character of the fluorine atom. NCI analysis showed that the unexpected trend of X3–C–H⋯π-system binding energies could be attributed to additional attractive interactions between the X atoms in the X3–C–H molecule and the carbon atoms of the π-system. Furthermore, the I3–Sn–H molecule was employed as a case study of hydrogen, halogen and tetrel interactions with π-systems. It was found that hydrogen and halogen interactions of the I3–Sn–H molecule correlated with the electron-richness of the π-system. In contrast, tetrel interactions correlated with the electron deficiency of the π-system. Three seminal types of noncovalent interaction, namely: hydrogen, halogen and tetrel interactions with π-systems, were investigated using quantum mechanical calculations.![]()
Collapse
Affiliation(s)
| | | | | | - Sabry El-Taher
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | - Hussien Moustafa
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| |
Collapse
|
23
|
Ibrahim MAA, Safy MEA. A new insight for chalcogen bonding based on Point-of-Charge approach. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1528255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mohamed E. A. Safy
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
24
|
Lin FY, MacKerell AD. Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields. J Chem Inf Model 2018; 59:215-228. [PMID: 30418023 DOI: 10.1021/acs.jcim.8b00616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogenated ligands can participate in nonbonding interactions with proteins via halogen bond (XB) or halogen-hydrogen bond donor (X-HBD) interactions. In the context of molecular dynamics (MD) simulations, the accuracy of the simulations depends strongly on the force field (FF) used. To ensure good reproduction of XB and X-HBD interactions with proteins, we optimized the previously developed additive CHARMM36/CHARMM General force field (CGenFF) and Drude polarizable force field by including atom pair-specific Lennard-Jones parameters for aromatic halogen-protein interactions. The optimization targeted quantum mechanical interaction energy surfaces with the developed parameters then examined for their ability to reproduce experimental halogen-containing ligand-protein interactions in MD simulations. The calculated halogenated ligand interaction geometries were in good overall agreement with the experimental crystal data for both the polarizable and additive FFs, showing that these models can accurately treat both XB and X-HBD interactions. Analysis of the ligand-protein interactions shows significant contributions of polarizability to binding occurring in the Drude FF, with self-polarization energy making both favorable and unfavorable contributions to binding. Further analysis of the dipole moments from aqueous solution to protein indicates the polarizable FF accounts for subtle changes of the environment of the ligands that can impact binding. The present work demonstrates the utility of the updated additive CHARMM36/CGenFF and polarizable Drude FFs for the study of halogenated ligand-protein interactions in computer-aided drug design.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Alexander D MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
25
|
Polarization plays the key role in halogen bonding: a point-of-charge-based quantum mechanical study. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2388-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Ibrahim MAA, Moussa NAM, Safy MEA. Quantum-mechanical investigation of tetrel bond characteristics based on the point-of-charge (PoC) approach. J Mol Model 2018; 24:219. [PMID: 30054722 DOI: 10.1007/s00894-018-3752-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
The point-of-charge (PoC) approach was employed to investigate the characteristics of the tetrel bond from an electrostatic perspective. W-T-XYZ···B nomenclature was suggested where T is a tetrel atom, W is the atom along the σ-hole extension, B is a Lewis base, and X, Y, and Z are three atoms on the same side of the σ-hole. Quantum-mechanical calculations were carried out on F-T-F3 systems (where T = C, Si, Ge, or Sn) at the MP2/aug-cc-pVTZ level of theory, with PP functions for Ge and Sn atoms. The tetrel bond strength was estimated via the molecular stabilization energy. Tetrel bond strength was found to increase with increasing PoC negativity (i.e., Lewis basicity) and the electronegativity of the W atom. Moreover, the effects of the T···PoC distance, the W-T···PoC angle, and the aqueous medium on the tetrel bond strength were also investigated. Correlations between tetrel bond strength and several atomic and molecular descriptors such as the natural charge on the tetrel atom, EHOMO, and the p-orbital contribution to W-T bond hybridization were observed. Contrary to expectations, the tetrel bond strength in F-C-X3 increased as the electronegativity of X decreased. The σ-node criteria for the studied molecules were also introduced and discussed. The ability of these molecules to simultaneously form more than one tetrel bond was examined via the σn-hole test. In conclusion, the tetrel bond strength was found to be governed by the strengths of (i) the attractive electrostatic interaction of the Lewis base with the σ-hole, (ii) the attractive/repulsive interaction between the Lewis base and the X, Y, and Z atoms, and (iii) the van der Waals interaction between the Lewis base and the X, Y, and Z atoms. Graphical Abstract Characterization of tetrel bond using the Point-of-Charge (PoC) approach.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Mohamed E A Safy
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
| |
Collapse
|