1
|
Agurokpon D, Louis H, Benjamin I, Godfrey OC, Ghotekar S, Adeyinka AS. Impact of Polythiophene ((C 4H 4S) n; n = 3, 5, 7, 9) Units on the Adsorption, Reactivity, and Photodegradation Mechanism of Tetracycline by Ti-Doped Graphene/Boron Nitride (Ti@GP_BN) Nanocomposite Materials: Insights from Computational Study. ACS OMEGA 2023; 8:42340-42355. [PMID: 38024685 PMCID: PMC10652268 DOI: 10.1021/acsomega.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.
Collapse
Affiliation(s)
- Daniel
C. Agurokpon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, Calabar 540221, Nigeria
- Centre for
Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital
and Research Institute, Chettinad Academy
of Research and Education, Kelambakkam 603103, Tamil Nadu India
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Obinna C. Godfrey
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Biochemistry, University of Calabar, Calabar 540221, Nigeria
| | - Suresh Ghotekar
- Department
of Chemistry, Smt. Devkiba Mohansinhji, Chauhan College of Commerce
and Science, University of Mumbai, Silvassa 396, India
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Auckland Park 2006, South-Africa
| |
Collapse
|
2
|
Louis H, Etiese D, Unimuke TO, Owen AE, Rajee AO, Gber TE, Chima CM, Eno EA, Nfor EN. Computational design and molecular modeling of the interaction of nicotinic acid hydrazide nickel-based complexes with H 2S gas. RSC Adv 2022; 12:30365-30380. [PMID: 36337983 PMCID: PMC9590404 DOI: 10.1039/d2ra05456f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 01/14/2023] Open
Abstract
The application of nickel complexes of nicotinic acid hydrazide ligand as a potential gas-sensor and adsorbent material for H2S gas was examined using appropriate density functional theory (DFT) calculations with the ωB97XD/Gen/6-311++G(d,p)/LanL2DZ method. The FT-IR spectrum of the synthesized ligand exhibited a medium band at 3178 cm-1 attributed to ν(NH) stretching vibrations and strong bands at 1657 and 1600 cm-1 corresponding to the presence of ν(C[double bond, length as m-dash]O) and ν(C[double bond, length as m-dash]N) vibration modes. In the spectrum of the nickel(ii) complex, the ν(C[double bond, length as m-dash]O) and ν(C[double bond, length as m-dash]N) vibration bands experience negative shifts to 1605 cm-1 and 1580 cm-1, respectively, compared to the ligand. This indicates the coordination of the carbonyl oxygen and the azomethine nitrogen atoms to the Ni2+ ion. Thus, the sensing mechanism of the complexes indicated a short recovery time and that the work function value increases for all complexes, necessitating an excellent H2S gas sensor material. Thus, a profound assertion was given that the complex sensor surfaces exhibited very dense stability with regards to their relevant binding energies corresponding to various existing studies.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of CalabarCalabarNigeria
| | - Daniel Etiese
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of CalabarCalabarNigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of CalabarCalabarNigeria
| | - Aniekan E. Owen
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Chemistry, Akwa-Ibom State UniversityUyoNigeria
| | | | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of CalabarCalabarNigeria
| | - Chioma M. Chima
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of CalabarCalabarNigeria
| | - Ededet A. Eno
- Computational and Bio-Simulation Research Group, University of CalabarCalabarNigeria,Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of CalabarCalabarNigeria
| | | |
Collapse
|
3
|
Louis H, Egemonye TC, Unimuke TO, Inah BE, Edet HO, Eno EA, Adalikwu SA, Adeyinka AS. Detection of Carbon, Sulfur, and Nitrogen Dioxide Pollutants with a 2D Ca 12O 12 Nanostructured Material. ACS OMEGA 2022; 7:34929-34943. [PMID: 36211081 PMCID: PMC9535646 DOI: 10.1021/acsomega.2c03512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/27/2022] [Indexed: 05/24/2023]
Abstract
In recent times, nanomaterials have been applied for the detection and sensing of toxic gases in the environment owing to their large surface-to-volume ratio and efficiency. CO2 is a toxic gas that is associated with causing global warming, while SO2 and NO2 are also characterized as nonbenign gases in the sense that when inhaled, they increase the rate of respiratory infections. Therefore, there is an explicit reason to develop efficient nanosensors for monitoring and sensing of these gases in the environment. Herein, we performed quantum chemical simulation on a Ca12O12 nanocage as an efficient nanosensor for sensing and monitoring of these gases (CO2, SO2, NO2) by employing high-level density functional theory modeling at the B3LYP-GD3(BJ)/6-311+G(d,p) level of theory. The results obtained from our studies revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage with adsorption energies of -2.01 and -5.85 eV, respectively, is chemisorption in nature, while that of NO2 possessing an adsorption energy of -0.69 eV is related to physisorption. Moreover, frontier molecular orbital (FMO), global reactivity descriptors, and noncovalent interaction (NCI) analysis revealed that the adsorption of CO2 and SO2 on the Ca12O12 nanocage is stable adsorption, while that of NO2 is unstable adsorption. Thus, we can infer that the Ca12O12 nanocage is more efficient as a nanosensor in sensing CO2 and SO2 gases than in sensing NO2 gas.
Collapse
Affiliation(s)
- Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - ThankGod C. Egemonye
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Tomsmith O. Unimuke
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Bassey E. Inah
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Henry O. Edet
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Ededet A. Eno
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Stephen A. Adalikwu
- Computational
and Bio-Simulation Research Group, University
of Calabar, P.M.B 1115, Calabar 540221, Nigeria
| | - Adedapo S. Adeyinka
- Research
Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
4
|
Trivalent and Pentavalent atoms doped Boron nitride nanosheets as Favipiravir drug carriers for the treatment of COVID-19 using computational approaches. COMPUT THEOR CHEM 2022; 1217:113902. [PMID: 36211195 PMCID: PMC9526002 DOI: 10.1016/j.comptc.2022.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 12/29/2022]
Abstract
In our DFT investigations, pristine BNNS as well as trivalent and pentavalent atoms doped BNNS have been taken into consideration for Favipiravir (FPV) drug carriers for the treatment of COVID-19. Among the nanosheets, In doped BNNS (BN(In)NS) interacts with FPV by favorable adsorption energies about −2.44 and −2.38 eV in gas and water media respectively. The charge transfer analysis also predicted that a significant amount of charge about 0.202e and 0.27e are transferred to BN(In)NS in gas and water media respectively. HOMO and LUMO energies are greatly affected by the adsorption of FPV on BN(In)NS and energy gap drastically reduced by about 38.80 % and 64.07 % in gas and water media respectively. Similar results are found from the global indices and work function analysis. Therefore, it is clearly seen that dopant In atom greatly modified the BNNS and enhanced the adsorption behavior along with sensitivity, reactivity, polarity towards the FPV.
Collapse
|
5
|
Louis H, Mathias GE, Ikenyirimba OJ, Unimuke TO, Etiese D, Adeyinka AS. Metal-Doped Al 12N 12X (X = Na, Mg, K) Nanoclusters as Nanosensors for Carboplatin: Insight from First-Principles Computation. J Phys Chem B 2022; 126:5066-5080. [PMID: 35786897 DOI: 10.1021/acs.jpcb.2c03671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This theoretical study focuses on the adsorption, reactivity, topological analysis, and sensing behavior of metal-doped (K, Na, and Mg) aluminum nitride (Al12N12) nanoclusters using the first-principle density functional theory (DFT). All quantum chemical reactivity, natural bond orbital (NBO), free energies (ΔG, ΔH), and sensor parameters were investigated using the ωB97XD functional with the 6-311++G(d,p) basis set. The trapping of carboplatin (cbp) onto the surfaces of doped Al12N12 was studied using four functionals PBE0-D3, M062X-D3, ωB97XD, and B3LYP-D3 at the 6-311++G(d,p) basis set. Overall, the substantial change in the energy gap of the surfaces after the adsorption process affects the work function, field emission, and the electrical conductivity of the doped clusters, hence making the studied surfaces a better sensor material for detecting carboplatin. Higher free energies of solvation were obtained in polar solvents compared to nonpolar solvents. Moreover, negative solvation energies and adsorption energies were obtained, which therefore shows that the engineered surfaces are highly efficient in trapping carboplatin. The relatively strong adsorption energies show that the mechanism of adsorption is by chemisorption, and K- and Na-doped metal clusters acted as better sensors for carboplatin. Also, the topological analysis in comparison to previous studies shows that the nanoclusters exhibited very high stability with regard to their relevant binding energies and hydrogen bond interactions.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar P.M.B 1115, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Gideon E Mathias
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar P.M.B 1115, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Onyinye J Ikenyirimba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar P.M.B 1115, Nigeria
- Department of Chemistry Education, Alex Ekwueme Federal University, Ebonyi State, Abakaliki P.M.B 1010, Nigeria
| | - Tomsmith O Unimuke
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar P.M.B 1115, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Daniel Etiese
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar P.M.B 1115, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar P.M.B 1115, Nigeria
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
6
|
Miah MH, Hossain MR, Islam MS, Ferdous T, Ahmed F. A theoretical study of allopurinol drug sensing by carbon and boron nitride nanostructures: DFT, QTAIM, RDG, NBO and PCM insights. RSC Adv 2021; 11:38457-38472. [PMID: 35493251 PMCID: PMC9044057 DOI: 10.1039/d1ra06948a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
The application of low-dimensional nanomaterials in clinical practice as efficient sensors has been increasing day by day due to progress in the field of nanoscience. In this research work, we have conducted a theoretical investigation to nominate a potential electrochemical sensor for the allopurinol (APN) drug molecule via studying the fundamental interactions of the drug molecule with two nanocages (carbon nanocage/CNC - C24 and boron nitride nanocage/BNNC - B12N12) and two nanosheets (graphene - C54H18 and boron nitride - B27N27H18) by means of the DFT B3LYP/6-31G(d,p) level of theory in both gas and water phases. The adsorption energies of APN-BNNC conjugated structures are in the range of -20.90 kcal mol-1 to -22.33 kcal mol-1, which indicates that weak chemisorption has occurred. This type of interaction happened due to charge transfer from the APN molecule to BNNC, which was validated and characterized based on the quantum theory of atoms in molecules, natural bond analysis, and reduced density gradient analysis. The highest decreases in energy gap (36.22% in gas and 26.79% in water) and maximum dipole moment (10.48 Debye in gas and 13.88 Debye in water) were perceived for the APN-BNNC conjugated structure, which was also verified via frontier molecular orbital (FMO) and MEP analysis. Also, the highest sensitivity (BNNC > BNNS > CNC > GNS) and favorable short recovery time (in the millisecond range) of BNNC can make it an efficient detector for the APN drug molecule.
Collapse
Affiliation(s)
- Md Helal Miah
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Md Rakib Hossain
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Md Saiful Islam
- Department of Physics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj-8100 Bangladesh
| | - Tahmina Ferdous
- Department of Physics, Jahangirnagar University Savar Dhaka-1342 Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University Savar Dhaka-1342 Bangladesh
| |
Collapse
|
7
|
Mohammadi MD, Abdullah HY. DFT Study for Adsorbing of Bromine Monochloride onto BNNT (5,5), BNNT (7,0), BC 2NNT (5,5), and BC 2NNT (7,0). JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between bromine monochloride (BrCl) with pristine boron nitride nanotube (BNNT) armchair (5,5) and zigzag (7,0) as well as armchair (5,5) BC2NNT and zigzag (7,0) BC2NNT in vacuum. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, [Formula: see text]B97XD, and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G (d), which has been used in both optimization calculations and calculations related to wave function analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules (QTAIM) were consistent and in favor of physical adsorption in all systems. Gallium had more adsorption energy than other dopants. The HOMO–LUMO energy gaps were as follows: BNNT (5,5): 10.296, BNNT (7,0): 9.015, BC2NNT (5,5): 7.022, and BC2NNT (7,0): 5.979[Formula: see text]eV at B3LYP-D3/6-311G (d) model chemistry. The strongest interaction is related to the BC2NNT (7,0)/BrCl cluster: [Formula: see text][Formula: see text]eV. The results of QTAIM and NCI analysis identified the intermolecular interactions of the type of strong van der Waals interaction for these nanotubes. The sensitivity of the adsorption increased when a gas molecule interacted with carbon-doped BNNT, and the change in the frontier orbital gap could be used to design nanosensors to detect BrCl gas.
Collapse
Affiliation(s)
| | - Hewa Y. Abdullah
- Physics Education Department, Faculty of Education, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Ema SN, Khaleque MA, Ghosh A, Piya AA, Habiba U, Shamim SUD. Surface adsorption of nitrosourea on pristine and doped (Al, Ga and In) boron nitride nanosheets as anticancer drug carriers: the DFT and COSMO insights. RSC Adv 2021; 11:36866-36883. [PMID: 35494400 PMCID: PMC9043538 DOI: 10.1039/d1ra07555a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
To minimize the side effects of chemotherapeutic drugs and enhance the effectiveness of cancer treatment, it is necessary to find a suitable drug delivery carrier for anticancer drugs. Recently nanomaterials are extensively being studied as drug vehicles and transport drugs in tumor cells. Using DFT calculations, the adsorption behavior with electronic sensitivity and reactivity of pristine and doped (Al, Ga and In)-BNNS towards the nitrosourea (NU) drug has been investigated in gas as well as water media. Our calculations showed that the NU drug is physically adsorbed on the pristine BNNS with −0.49 and −0.26 eV by transferring little amount of charge of about 0.033e and 0.046e in gas and water media in the most stable complex. But after replacing one of the central B atoms with an Al or Ga or In atom, the sensitivity of the doped BNNS remarkably enhances towards the NU drug molecules. The NU drug prefers to be chemically adsorbed on the BN(Al)NS, BN(Ga)NS and BN(In)NS by −1.28, −1.58 and −3.06 eV in the gas phase and −1.34, −1.23 and −3.65 eV in water media in the most stable complexes respectively. The large destabilization of LUMO energies after the adsorption of the NU drug on the BN(Al)NS, BN(Ga)NS and BN(In)NS significantly reduces their Eg from 4.37 to 0.69, 4.37 to 1.04 and 4.33 to 0.66 eV in the S1 complex respectively. The reduction of Eg of doped BNNS by the NU drug greatly enhances the electrical conductivity which can be converted to an electrical signal. Therefore, this doped BNNS can be used as a fascinating electronic sensor for the detection of NU drug molecules. Furthermore the work function of the doped BNNS was largely affected by the NU drug adsorption about 47.3%, 39.3% and 40.4% in the gas phase and 41.3%, 36.6% and 31.6% in water media in the S1 complex of NU/BN(Al)NS, NU/BN(Ga)NS and NU/BN(In)NS respectively. Thus, the doped BNNS may be used as a Ф type sensor for NU drug molecules. Doped (Al, Ga and In)-BNNS can be used as fascinating drug carriers for the NU drug.![]()
Collapse
Affiliation(s)
- Shania Nusrat Ema
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Md Abdul Khaleque
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Ananya Ghosh
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Afiya Akter Piya
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Umme Habiba
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Siraj Ud Daula Shamim
- Department of Physics, Mawlana Bhashani Science and Technology University Tangail Bangladesh
| |
Collapse
|
9
|
Non-covalent interactions of cysteine onto C 60, C 59Si, and C 59Ge: a DFT study. J Mol Model 2021; 27:330. [PMID: 34709483 DOI: 10.1007/s00894-021-04960-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
The study of intermolecular interactions is of great importance. This study attempted to quantitatively examine the interactions between cysteine (C3H7NO2S) and fullerene nanocages, C60, in vacuum. As the frequent introduction of elements as impurities into the structure of nanomaterials can increase the intensity of intermolecular interactions, nanocages doped with silicon and germanium have also been studied as adsorbents, C59Si and C59Ge. Quantum mechanical studies of such systems are possible in the density functional theory (DFT) framework. For this purpose, various functionals, such as B3LYP-D3, ωB97XD, and M062X, have been used. One of the most suitable basis functionals for the systems studied in this research is 6-311G (d), which has been used in both optimization calculations and calculations related to wave function analyses. The main part of this work is the study of various analyses that reveal the nature of the intermolecular interactions between the two components introduced above. The results of conceptual DFT, natural bond orbital, non-covalent interactions, and quantum theory of atoms in molecules were consistent and in favor of physical adsorption in all systems. Germanium had more adsorption energy than other dopants. The HOMO-LUMO energy gaps were as follows: C60: 5.996, C59Si: 5.309, and C59Ge: 5.188 eV at B3LYP-D3/6-311 G (d) model chemistry. The sensitivity of the adsorption increased when an amino acid molecule interacted with doped C60, and this capability could be used to design nanocarrier to carry cysteine amino acid.
Collapse
|
10
|
Ab initio investigation for the adsorption of acrolein onto the surface of C60, C59Si, and C59Ge: NBO, QTAIM, and NCI analyses. Struct Chem 2021. [DOI: 10.1007/s11224-021-01847-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|