1
|
Li PY, Liu Y, Wang SJ, Liu D, Li GY. TDDFT study on a fluorescent probe for distinguishing analogous thiols based on smiles rearrangement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123396. [PMID: 37708760 DOI: 10.1016/j.saa.2023.123396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
The complete excited-state sensing mechanism of a fluorescent probe capable of distinguishing cysteine/homocysteine and glutathione from analogous biological thiols has been investigated. Using a TDDFT method, the nature of the fluorescence differences in the detection of thiols by the probe has been explained at the molecular level. Calculation results imply that the probe undergoes photoinduced electron transfer (PET) from the fluorophore to the nitrobenzooxadiazole (NBD)-based acceptor in the excited state. In the presence of a thiol, the NBD moiety is cleaved and the red fluorescence emission of the fluorophore is enhanced through inhibition of the PET process. The sulfur-substituted NBD-thiol product is predisposed to undergo excited-state torsion, leading to fluorescence quenching. However, for cysteine and homocysteine, their appropriate distances lead to Smiles rearrangements with relatively low activation energies (26.60 kJ/mol and 42.94 kJ/mol, respectively) and the emission of a distinct green fluorescence at ambient temperature. It has been theoretically confirmed that the distance between two reactive sites, such as sulfhydryl and amino moieties, can be used to distinguish different thiols, thus providing rational support for the control of fluorescence activity and the design of probe molecules.
Collapse
Affiliation(s)
- Peng-Yuan Li
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Yi Liu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Si-Jia Wang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China
| | - Dong Liu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| | - Guang-Yue Li
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, PR China.
| |
Collapse
|
2
|
Exploring the underlying oxygen reduction reaction electrocatalytic activities of pyridinic-N and pyrrolic-N doped graphene quantum dots. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Vassetti D, Labat F. Towards a transferable nonelectrostatic model for continuum solvation: The electrostatic and nonelectrostatic energy correction model. J Comput Chem 2022; 43:1372-1387. [PMID: 35678272 DOI: 10.1002/jcc.26944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/24/2022] [Accepted: 05/01/2022] [Indexed: 11/09/2022]
Abstract
In this work, we introduce an electrostatic and non-electrostatic (ENE) correction to the solvation energy based on the Solvent-Accessible Surface Area (SASA) of the solute and the solvent static dielectric constant. The proposed correction was developed for neutral solutes in non-aqueous solvents, considering three different implicit solvation models based on a Self-Consistent Reaction Field treatment of solute-solvent mutual polarization using an Apparent Surface Charge formalism, namely the Integral Equation Formalism of the Polarizable Continuum Model using a continuous surface charge scheme (PCM), the Solvation Model based on solute electron density (SMD), and the generalized Finite-Difference Poisson-Boltzmann (FDPB) model. The proposed correction was parametrized on a diverse training set of 4980 solvation data from the Solv@tum database of experimental solvation energies, and validated on the non-aqueous subset of the MNSOL database comprising 2140 solvation energies. The performances of the proposed ENE models with minimal and extended parameters formulations have been analyzed and the latter variant has been further compared to the widely used Cavity, Dispersion, and Solvent structural effects (CDS) non-electrostatic model originally developed for the SMx family of implicit solvation models. Overall, a very good agreement between the computed solvation energies with the ENE correction and the reference experimental data has been found on both the training and test sets for all continuum solvation models considered. Furthermore, results for the ENE correction are on par with the reference CDS non-electrostatic model for both SMD and FDPB electrostatics, but with the advantage of using a lower number of parameters and thus an improved transferability between different electrostatics treatments.
Collapse
Affiliation(s)
- Dario Vassetti
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, PSL University, Paris, France
| | - Frédéric Labat
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, PSL University, Paris, France
| |
Collapse
|
4
|
Onawole AT, Hussein IA, Saad MA, Ismail N, Alshami A, Nasser MS. Theoretical Studies of a Silica Functionalized Acrylamide for Calcium Scale Inhibition. Polymers (Basel) 2022; 14:polym14122333. [PMID: 35745909 PMCID: PMC9230130 DOI: 10.3390/polym14122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
The calcium carbonate (CaCO3) scale is one of the most common oilfield scales and oil and gas production bane. CaCO3 scale can lead to a sudden halt in production or, worst-case scenario, accidents; therefore, CaCO3 scale formation prevention is essential for the oil and gas industry. Scale inhibitors are chemicals that can mitigate this problem. We used two popular theoretical techniques in this study: Density Functional Theory (DFT) and Ab Initio Molecular Dynamics (AIMD). The objective was to investigate the inhibitory abilities of mixed oligomers, specifically acrylamide functionalized silica (AM-Silica). DFT studies indicate that Ca2+ does not bind readily to acryl acid and acrylamide; however, it has a good binding affinity with PAM and Silica functionalized PAM. The highest binding affinity occurs in the silica region and not the -CONH functional groups. AIMD calculations corroborate the DFT studies, as observed from the MD trajectory that Ca2+ binds to PAM-Silica by forming bonds with silicon; however, Ca2+ initially forms a bond with silicon in the presence of water molecules. This bonding does not last long, and it subsequently bonds with the oxygen atoms present in the water molecule. PAM-Silica is a suitable calcium scale inhibitor because of its high binding affinity with Ca2+. Theoretical studies (DFT and AIMD) have provided atomic insights on how AM-Silica could be used as an efficient scale inhibitor.
Collapse
Affiliation(s)
- Abdulmujeeb T. Onawole
- Gas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.O.); (M.A.S.); (M.S.N.)
| | - Ibnelwaleed A. Hussein
- Gas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.O.); (M.A.S.); (M.S.N.)
- Chemical Engineering Department, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (I.A.H.); (A.A.)
| | - Mohammed A. Saad
- Gas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.O.); (M.A.S.); (M.S.N.)
- Chemical Engineering Department, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| | - Nadhem Ismail
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Ali Alshami
- Department of Chemical Engineering, University of North Dakota, Grand Forks, ND 58202, USA;
- Correspondence: (I.A.H.); (A.A.)
| | - Mustafa S. Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.O.); (M.A.S.); (M.S.N.)
- Chemical Engineering Department, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Steinmann SN, Michel C. How to Gain Atomistic Insights on Reactions at the Water/Solid Interface? ACS Catal 2022. [DOI: 10.1021/acscatal.2c00594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stephan N. Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie
UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| | - Carine Michel
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie
UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| |
Collapse
|
6
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
7
|
Vassetti D, Oǧuz IC, Labat F. Generalizing Continuum Solvation in Crystal to Nonaqueous Solvents: Implementation, Parametrization, and Application to Molecules and Surfaces. J Chem Theory Comput 2021; 17:6432-6448. [PMID: 34488338 DOI: 10.1021/acs.jctc.1c00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an extension of a generalized finite-difference Poisson-Boltzmann (FDPB) continuum solvation model based on a self-consistent reaction field treatment to nonaqueous solvents. Implementation and reparametrization of the cavitation, dispersion, and structural (CDS) effects nonelectrostatic model are presented in CRYSTAL, with applications to both finite and infinite periodic systems. For neutral finite systems, computed errors with respect to available experimental data on free energies of solvation of 2523 solutes in 91 solvents, as well as 144 transfer energies from water to 14 organic solvents are on par with the reference SM12 solvation model for which the CDS parameters have been developed. Calculations performed on a TiO2 anatase surface and compared to VASPsol data revealed an overall very good agreement of computed solvation energies, surface energies, as well as band structure changes upon solvation in three different solvents, validating the general applicability of the reparametrized FDPB approach to neutral nonperiodic and periodic solutes in aqueous and nonaqueous solvents. For ionic species, while the reparametrized CDS model led to large errors on free energies of solvation of anions, addition of a corrective term based on Abraham's acidity of the solvent significantly improved the accuracy of the proposed continuum solvation model, leading to errors on aqueous pKa of a test set of 83 solutes divided by a factor of 4 compared to the reference solvation model based on density (SMD). Overall, therefore, these encouraging results demonstrate that the generalized FDPB continuum solvation model can be applied to a broad range of solutes in various solvents, ranging from finite neutral or charged solutes to extended periodic surfaces.
Collapse
Affiliation(s)
- Dario Vassetti
- Chemical Theory and Modelling Group, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, F-75005 Paris, France
| | - Ismail Can Oǧuz
- Chemical Theory and Modelling Group, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, F-75005 Paris, France
| | - Frédéric Labat
- Chemical Theory and Modelling Group, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, F-75005 Paris, France
| |
Collapse
|
8
|
Guo YT, Xiao YH, Zhang JG, Bian SD, Zhou JZ, Wu DY, Tian ZQ. Inspecting the structural characteristics of chiral drug penicillamine under different pH conditions using Raman optical activity spectroscopy and DFT calculations. Phys Chem Chem Phys 2021; 23:22119-22132. [PMID: 34580687 DOI: 10.1039/d1cp02219a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the structural characteristics of chiral drugs in physiological environments is a challenging research topic, which may lead to a better understanding of how the drugs work. Raman optical activity (ROA) spectroscopy in combination with density functional theory (DFT) calculations was exploited to inspect the structural changes in penicillamine under different acid-base states in aqueous solutions. The B3LYP/aug-cc-PVDZ method was employed and the implicit solvation model density (SMD) was considered for describing the solvation effect in H2O. The conformations of penicillamine varied with pH, but penicillamine was liable to stabilize in the form of the PC conformation (the sulfur atom is in a trans orientation with respect to carboxylate) in most cases for both D- and L-isomers. The relationship between the conformations of penicillamine and the ROA peaks, as well as peak assignments, were comprehensively studied and elucidated. In the fingerprint region, two ROA couplets and one ROA triplet with different patterns were recognized. The intensity, sign and frequency of the corresponding peaks also changed with varying pH. Deuteration was carried out to identify the vibrational modes, and the ROA peaks of the deuterated amino group in particular are sensitive to change in the ambient environment. The results are expected not only to serve as a reference for the interpretation of the ROA spectra of penicillamine and other chiral drugs with analogous structures but also to evaluate the structural changes of chiral molecules in physiological environments, which will form the basis of further exploration of the effects of structural characteristics on the pharmacological and toxicological properties of chiral drugs.
Collapse
Affiliation(s)
- Yu-Ting Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Ji-Guang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Si-Da Bian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Jian-Zhang Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|