1
|
Kreidl M, Rainer M, Bonn GK, Oberacher H. Electrochemical Simulation of the Oxidative Capsaicin Metabolism. Chem Res Toxicol 2021; 34:2522-2533. [PMID: 34879203 DOI: 10.1021/acs.chemrestox.1c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Capsaicin, primarily known as the pungent ingredient in hot peppers, is rapidly metabolized in the human body by enzymatic processes altering the pharmacological as well as toxicological properties. Herein, the oxidative transformation of capsaicin was investigated in vitro with electrochemistry as well as human liver microsomal incubations. The reaction mixtures were analyzed with liquid chromatography-mass spectrometry. Structure elucidation involved accurate mass measurements and multistage tandem mass spectrometry experiments. In total, 126 transformation products were detected. Electrochemistry provided evidence for 101 transformation products and the microsomal incubations for 46 species. 21 compounds were observed with both approaches. Identified oxidative pathways likely occurring during the phase I metabolism included dehydrogenation, O-demethylation, and hydroxylation reactions as well as combinations thereof. Furthermore, trapping of reactive intermediates either with glutathione or with electrochemically activated ribonucleosides provided evidence for the possible production of phase II metabolites and covalent adducts with a genetic material. Evidence for the occurrence of some capsaicin metabolites in humans was obtained by urine screening.
Collapse
Affiliation(s)
- Marco Kreidl
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Matthias Rainer
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Günther K Bonn
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.,ADSI-Austrian Drug Screening Institute GmbH, University of Innsbruck, Innrain 66a, 6020 Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Reipa V, Atha DH, Coskun SH, Sims CM, Nelson BC. Controlled potential electro-oxidation of genomic DNA. PLoS One 2018; 13:e0190907. [PMID: 29324786 PMCID: PMC5764341 DOI: 10.1371/journal.pone.0190907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022] Open
Abstract
Exposure of mammalian cells to oxidative stress can result in DNA damage that adversely affects many cell processes. Lack of dependable DNA damage reference materials and standardized measurement methods, despite many case-control studies hampers the wider recognition of the link between oxidatively degraded DNA and disease risk. We used bulk electrolysis in an electrochemical system and gas chromatographic mass spectrometric analysis (GC/MS/MS) to control and measure, respectively, the effect of electrochemically produced reactive oxygen species on calf thymus DNA (ct-DNA). DNA was electro-oxidized for 1 h at four fixed oxidizing potentials (E = 0.5 V, 1.0 V, 1.5 V and 2 V (vs Ag/AgCl)) using a high surface area boron-doped diamond (BDD) working electrode (WE) and the resulting DNA damage in the form of oxidatively-modified DNA lesions was measured using GC/MS/MS. We have shown that there are two distinct base lesion formation modes in the explored electrode potential range, corresponding to 0.5 V < E < 1.5 V and E > 1.5 V. Amounts of all four purine lesions were close to a negative control levels up to E = 1.5 V with evidence suggesting higher levels at the lowest potential of this range (E = 0.5 V). A rapid increase in all base lesion yields was measured when ct-DNA was exposed at E = 2 V, the potential at which hydroxyl radicals were efficiently produced by the BDD electrode. The present results demonstrate that controlled potential preparative electrooxidation of double-stranded DNA can be used to purposely increase the levels of oxidatively modified DNA lesions in discrete samples. It is envisioned that these DNA samples may potentially serve as analytical control or quality assurance reference materials for the determination of oxidatively induced DNA damage.
Collapse
Affiliation(s)
- Vytas Reipa
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Donald H. Atha
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Sanem H. Coskun
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Christopher M. Sims
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| | - Bryant C. Nelson
- Materials Measurement Laboratory, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
| |
Collapse
|
3
|
Liu W, Shiue YL, Lin YR, Lin HYH, Liang SS. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry. CURR ANAL CHEM 2015; 11:300-306. [PMID: 27594817 PMCID: PMC5003074 DOI: 10.2174/1573411011666150515233817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 11/24/2022]
Abstract
In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions.
Collapse
Affiliation(s)
- Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung,Taiwan
| | - Yow-Ling Shiue
- Institute of
Biomedical Science, National Sun Yat-Sen University, Kaohsiung,Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, Fooyin University, Kaohsiung,Taiwan
| | - Hugo You-Hsien Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung,Taiwan;; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 6Department of
Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Center for Resources, Research and Development, Kaohsiung Medical University, Kaohsiung,Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung,Taiwan;; Institute of
Biomedical Science, National Sun Yat-Sen University, Kaohsiung,Taiwan
| |
Collapse
|
4
|
Cindric M, Vojs M, Matysik FM. Characterization of the Oxidative Behavior of Cyclic Nucleotides Using Electrochemistry-Mass Spectrometry. ELECTROANAL 2014. [DOI: 10.1002/elan.201400414] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Online monitoring oxidative products and metabolites of nicotine by free radicals generation with Fenton reaction in tandem mass spectrometry. ScientificWorldJournal 2013; 2013:189162. [PMID: 23983622 PMCID: PMC3745948 DOI: 10.1155/2013/189162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/22/2013] [Indexed: 12/21/2022] Open
Abstract
In general, over 70% absorbed nicotine is metabolized to cotinine and trans-3′-hydroxycotinine by cytochrome oxidase P450, and nicotine is also a major addictive and the psychoactive component in cigarettes. As a xenobiotic metabolism, hydrophobic compounds are usually converted into more hydrophilic products through enzyme systems such as cytochrome oxidase P450, sulfotransferases, and UDP-glucuronosyltransferases to deliver drug metabolites out of the cell during the drug metabolic process. In this study, an electrodeless electrochemical oxidation (EEO) reaction via Fenton reaction by producing free radical to react with nicotine to immediately monitor the oxidative products and metabolic derivatives of nicotine by tandem mass spectrometer (MS) is done. Fenton reaction generates free radicals via ferrous ion (Fe2+) and hydrogen peroxide (H2O2) to oxidize DNA and to degrade proteins in cells. In the EEO method, the oxidative products of nicotine including cotinine, cotinine-N-oxide, trans-3′-hydroxycotinine, nornicotine, norcotinine, 4-oxo-4-(3-pyridyl)-butanoic acid, 4-hydroxy-4-(3-pyridyl)-butanoic acid, and nicotine-N′-oxide were detected by tandem mass spectrometer to simulate the changes of nicotine and its derivatives in a time-dependent manner.
Collapse
|
6
|
Shi F, Zhu H, Li L, Ling L, Sun W. Electrochemical Oxidative Detection of Guanosine-5′-triphosphate Based on a New Ionic Liquid Modified Carbon Paste Electrode. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Cui L, Yin H, Ai S, Li L. Electrocatalysis Oxidation of GMP Based on Layered Double Hydroxide Functionalized with Anionic Surfactant and Room Temperature Ionic Liquid Modified Glassy Carbon Electrode. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Cui L, Li L, Ai S, Yin H, Ju P, Liu T. Electrochemical behaviors of GMP based on solid-phase extractionon at Cu-Mg-Al hydrotalcite-like compound (HTLC) modified glass carbon electrode. J Solid State Electrochem 2010. [DOI: 10.1007/s10008-010-1185-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Pitterl F, Chervet JP, Oberacher H. Electrochemical simulation of oxidation processes involving nucleic acids monitored with electrospray ionization-mass spectrometry. Anal Bioanal Chem 2010; 397:1203-15. [PMID: 20393841 DOI: 10.1007/s00216-010-3674-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 03/18/2010] [Accepted: 03/21/2010] [Indexed: 02/03/2023]
Abstract
Oxidation is commonly involved in the alteration of nucleic acids giving rise to diverse effects including mutation, cell death, malignancy, and aging. We demonstrate that electrochemistry represents an efficient and fast method to mimic oxidative modification of nucleic acids occurring in biological systems. Oxidation reactions were performed in a thin-layer cell employing a conductive diamond electrode as the working electrode and were monitored with electrospray ionization-mass spectrometry. Mass voltammograms were acquired for guanosine, adenosine, cytidine, and uridine. The observed oxidation potentials increased in the order guanosine << adenosine < cytidine < uridine. Oxidation products of guanosine were characterized using high-resolution (tandem) mass spectrometry performed with a quadrupole-quadrupole time-of-flight instrument. On the basis of these experiments, it was concluded that the initial electrode reaction involves a one-electron, one-proton step to give a free radical. The primary oxidation product represents the starting point for a number of follow-up reactions, including guanosine dimerization as well as further oxidation to 8-hydroxyguanosine. Similar results were obtained for guanosine monophosphate and the corresponding dinucleotide. Furthermore, the guanosine radical was identified as an important intermediate for the formation of a covalent adduct with acetaminophen. This observation sheds new light on the mechanism of adduct formation as it demonstrates that oxidative activation of both the nucleobase and the adduct-forming agent is necessary to observe a detectable amount of adduct species.
Collapse
Affiliation(s)
- Florian Pitterl
- Institute of Legal Medicine, Innsbruck Medical University, Muellerstrasse 44, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
10
|
Mehrgardi MA, Barfidokht A. Electrocatalytic activity of thianthrene toward one-electron oxidation of guanosine and DNA in a non-aqueous medium. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abdullin TI, Nikitina II, Bondar’ OV. Adsorption and oxidation of purine bases and their derivatives on electrodes modified with carbon nanotubes. RUSS J ELECTROCHEM+ 2009. [DOI: 10.1134/s1023193508120069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. Electrocatalytic activity of oxidation products of guanine and 5′-GMP towards the oxidation of NADH. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2007.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|