1
|
Fabrication of Silicon Nanowire Sensors for Highly Sensitive pH and DNA Hybridization Detection. NANOMATERIALS 2022; 12:nano12152652. [PMID: 35957087 PMCID: PMC9370444 DOI: 10.3390/nano12152652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
A highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing. The device consists of a single nanowire with 60 nm width, exhibiting an ideal pH responsivity (18.26 × 106 Ω/pH), with a good linear relation between the electrical response and a pH level range of 4–10. The optimized SiNW device is employed to detect specific single-stranded deoxyribonucleic acid (ssDNA) molecules. To use the sensing area, the sensor surface was chemically modified using (3-aminopropyl) triethoxysilane and glutaraldehyde, yielding covalently linked nanowire ssDNA adducts. Detection of hybridized DNA works by detecting the changes in the electrical current of the ssDNA-functionalized SiNW sensor, interacting with the targeted ssDNA in a label-free way. The developed biosensor shows selectivity for the complementary target ssDNA with linear detection ranging from 1.0 × 10−12 M to 1.0 × 10−7 M and an attained detection limit of 4.131 × 10−13 M. This indicates that the use of SiNW devices is a promising approach for the applications of ion detection and biomolecules sensing and could serve as a novel biosensor for future biomedical diagnosis.
Collapse
|
2
|
Chen HY, Cheng KC, Hsu RJ, Hsieh CW, Wang HT, Ting Y. Enzymatic degradation of ginkgolic acid by laccase immobilized on novel electrospun nanofiber mat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2705-2712. [PMID: 32003007 DOI: 10.1002/jsfa.10301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ginkgo biloba leaf extract contains many active ingredients that are beneficial for health. However, ginkgolic acid, one of the major components found in G. biloba extract, may cause serious allergic and toxic side effects. The purpose of this study is to immobilize the laccase system on the electrospun nylon fiber mat (NFM) to hydrolyze the ginkgolic acid in G. biloba leaf extract efficiently. RESULTS Novel electrospinning technology successfully produced high-quality nanoscopic fiber mats made of a mixture of multi-walled carbon nanotube and nylon 6,6. Laccase that was immobilized onto the NFM exhibited much higher efficiency in the catalyzation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) than nylon 6,6 pellets. After being immobilized onto the NFM, the pH and temperature stability of laccase were significantly improved. The NFM-immobilized laccase could maintain more than 50% of its original activity even after 40 days of storage or 10 operational cycles. The kinetic parameters, including rate constant (K), the time (τ50) in which 50% of ginkgolic acid hydrolysis was reached, the time (τcomplete) required to achieve complete ginkgolic acid hydrolysis, Km and Vmax were determined, and were 0.07 ± 0.01 min-1 , 8.97 ± 0.55 min, 45.45 ± 2.79 min, 0.51 ± 0.09 mM and 0.49 ± 0.03 mM min-1 mg-1 , respectively. CONCLUSION The result successfully demonstrated the strong potential of using novel electrospun nanofiber mats as enzyme immobilization platforms, which could significantly enhance enzyme activity and stability. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hung-Yueh Chen
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
- College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| | - Yuwen Ting
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Wang H, Yang J, Chen K, Wang T, Lu T, Cheng K. Hydrolyzation of mogrosides: Immobilized β-glucosidase for mogrosides deglycosylation from Lo Han Kuo. Food Sci Nutr 2019; 7:834-843. [PMID: 30847162 PMCID: PMC6392867 DOI: 10.1002/fsn3.932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
An immobilized enzyme system for bioconversion of Lo Han Kuo (LHK) mogrosides was established. β-Glucosidase which was covalently immobilized onto the glass spheres exhibited a significant bioconversion efficiency from pNPG to pnitrophenol over other carriers. Optimum operational pH and temperature were determined to be pH 4 and 30°C. Results of storage stability test demonstrated that the glass sphere enzyme immobilization system was capable of sustaining more than 80% residual activity until 50 days, and operation reusability was confirmed for at least 10 cycles. The Michaelis constant (K m) of the system was determined to be 0.33 mM. The kinetic parameters, rate constant (K) at which Mogrosides conversion was determined, the τ 50 in which 50% of mogroside V deglycosylation/mogroside IIIE production was reached, and the τ complete of complete mogroside V deglycosylation/mogroside IIIE production, were 0.044/0.017 min-1, 15.6/41.1 min, and 60/120 min, respectively. Formation of the intermediates contributed to the kinetic differences between mogroside V deglycosylation and mogroside IIIE formation.
Collapse
Affiliation(s)
- Hsueh‐Ting Wang
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
| | - Jin‐tong Yang
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
| | - Kuan‐I Chen
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
| | - Tan‐Ying Wang
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
| | - Ting‐Jang Lu
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
| | - Kuan‐Chen Cheng
- Graduate Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
- Institute of BiotechnologyNational Taiwan UniversityTaipeiTaiwan, ROC
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
4
|
|
5
|
Marques Netto CGC, da Silva DG, Toma SH, Andrade LH, Nakamura M, Araki K, Toma HE. Bovine glutamate dehydrogenase immobilization on magnetic nanoparticles: conformational changes and catalysis. RSC Adv 2016. [DOI: 10.1039/c5ra24637g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glutamate dehydrogenase (GDH) was immobilized on different supports and systematically investigated in order to provide a better understanding of the immobilization effects on the catalysis of multimeric enzymes.
Collapse
Affiliation(s)
| | - Delmárcio G. da Silva
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Sergio H. Toma
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Leandro H. Andrade
- Laboratory of Fine Chemistry and Biocatalysis
- Instituto de Química
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Marcelo Nakamura
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Koiti Araki
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| | - Henrique E. Toma
- Supramolecular NanotechLab
- Instituto de Quimica
- Universidade de São Paulo
- São Paulo-SP
- Brazil
| |
Collapse
|
6
|
|
7
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Quantitative determination of glycine in aqueous solution using glutamate dehydrogenase-immobilized glyoxal agarose beads. Appl Biochem Biotechnol 2014; 172:289-97. [PMID: 24078189 DOI: 10.1007/s12010-013-0543-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
In this study, an enzymatic procedure for the determination of glycine (Gly) was developed by using a column containing immobilized glutamate dehydrogenase (GDH) on glyoxal agarose beads. Ammonia is produced from the enzymatic reactions between Gly and GDH with NAD(+) in phosphate buffer medium. The indophenol blue method was used for ammonia detection based on the spectrophotometric measurements of blue-colored product absorbing at 640 nm. The calibration graph is linear in the range of 0.1-10 mM of Gly concentrations. The effect of pH, temperature, and time interval was studied to find column stability, and also the interference effects of other amino acids was investigated. The interaction between GDH and glyoxal agarose beads was analyzed by Fourier transform infrared (FTIR) spectroscopy. The morphology of the immobilized and non-immobilized agarose beads were characterized by atomic force microscopy (AFM).
Collapse
|
9
|
X-Ray Photoelectron Spectroscopy for Characterization of Bionanocomposite Functional Materials for Energy-Harvesting Technologies. Chemphyschem 2013; 14:2071-80. [DOI: 10.1002/cphc.201300037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/12/2013] [Indexed: 11/07/2022]
|
10
|
Li D, Lu X, Lin H, Ren F, Leng Y. Chitosan/bovine serum albumin co-micropatterns on functionalized titanium surfaces and their effects on osteoblasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:489-502. [PMID: 23132401 DOI: 10.1007/s10856-012-4810-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
Chitosan (CS)/bovine serum albumin (BSA) micropatterns were prepared on functionalized Ti surfaces by micro-transfer molding (μ-TM). μ-TM realized the spatially controlled immobilization of cells and offered a new way of studying the interaction between micropatterns and cells. Two kinds of micropatterns were produced: (1) microgrooves representing a discontinuously grooved co-micropattern, with the rectangular CS region separated by BSA walls; (2) microcylinders representing a continuously interconnected co-micropattern, with the net-like CS region separated by BSA cylinders. A comparison of cell behaviors on the two types of micropatterns indicated that the shape rather than the size had a dominant effect on cell proliferation. The micropattern size in the same range of cell diameters favored cell proliferation. However, cell differentiation was more sensitive to the size rather than to the shape of the micropatterns. In conclusion, cell behavior can be regulated by micropatterns integrating different materials.
Collapse
Affiliation(s)
- Dan Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | | | | | | | | |
Collapse
|
11
|
Pilolli R, Ditaranto N, Cioffi N, Sabbatini L. Non-destructive depth profile reconstruction of bio-engineered surfaces by parallel-angle-resolved X-ray photoelectron spectroscopy. Anal Bioanal Chem 2012; 405:713-24. [DOI: 10.1007/s00216-012-6179-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/14/2012] [Accepted: 06/02/2012] [Indexed: 11/30/2022]
|
12
|
Krawczyk BM, Baltrusaitis J, Yoder CM, Vargo TG, Bowden NB, Kader KN. Radio frequency glow discharge-induced acidification of fluoropolymers. J Biomed Mater Res A 2011; 99:418-25. [PMID: 21887736 DOI: 10.1002/jbm.a.33173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 04/13/2011] [Accepted: 04/29/2011] [Indexed: 11/12/2022]
Abstract
Fluoropolymer surfaces are unique in view of the fact that they are quite inert, have low surface energies, and possess high thermal stabilities. Attempts to modify fluoropolymer surfaces have met with difficulties in that it is difficult to control the modification to maintain bulk characteristics of the polymer. In a previously described method, the replacement of a small fraction of surface fluorine by acid groups through radio frequency glow discharge created a surface with unexpected reactivity allowing for attachment of proteins in their active states. The present study demonstrates that 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) reacts with the acid groups on fluoropolymer surfaces in a novel reaction not previously described. This reaction yields an excellent leaving group in which a primary amine on proteins can substitute to form a covalent bond between a protein and these surfaces. In an earlier study, we demonstrated that collagen IV could be deposited on a modified PTFE surface using EDC as a linker. Once collagen IV is attached to the surface, it assembles to form a functional stratum resembling collagen IV in native basement membrane. In this study, we show data suggesting that the fluorine to carbon ratio determines the acidity of the fluoropolymer surfaces and how well collagen IV attaches to and assembles on four different fluoropolymer surfaces.
Collapse
Affiliation(s)
- Benjamin M Krawczyk
- Cell and Synthetic Interface Engineering Laboratory, Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
13
|
Singh S, Sharma SN, Shivaprasad SM, Lal M, Khan MA. Nanostructured porous silicon as functionalized material for biosensor application. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S181-S187. [PMID: 18597160 DOI: 10.1007/s10856-008-3509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
In this work by means of PL, FTIR and XPS techniques, state-of-the-art porous silicon (PS) films with good mechanical and optical properties have been effectively utilized for the biofunctionalization purpose for its possible application in immunosensors. The functionalization of the PS surface has been achieved by silanization process using aminopropyltriethoxysilane (APTS) as a precursor. The presence of reactive amino groups on the PS surface along with glutaraldehyde as a linker aids in the covalent binding of the antibody (Human IgG) onto the PS surface. Different antigen concentrations can be detected with a good reproducibility with this technique which opens a huge possibility of using this biofunctionalized material for future biosensors.
Collapse
Affiliation(s)
- Shalini Singh
- Electronic Materials Division, National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | | | | | | | | |
Collapse
|
14
|
Boulares-Pender A, Prager-Duschke A, Elsner C, Buchmeiser MR. Surface-functionalization of plasma-treated polystyrene by hyperbranched polymers and use in biological applications. J Appl Polym Sci 2009. [DOI: 10.1002/app.29849] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Libertino S, Aiello V, Scandurra A, Renis M, Sinatra F, Lombardo S. Feasibility studies on si-based biosensors. SENSORS (BASEL, SWITZERLAND) 2009; 9:3469-90. [PMID: 22412322 PMCID: PMC3297125 DOI: 10.3390/s90503469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 11/17/2022]
Abstract
The aim of this paper is to summarize the efforts carried out so far in the fabrication of Si-based biosensors by a team of researchers in Catania, Italy. This work was born as a collaboration between the Catania section of the Microelectronic and Microsystem Institute (IMM) of the CNR, the Surfaces and Interfaces laboratory (SUPERLAB) of the Consorzio Catania Ricerche and two departments at the University of Catania: the Biomedical Science and the Biological Chemistry and Molecular Biology Departments. The first goal of our study was the definition and optimization of an immobilization protocol capable of bonding the biological sensing element on a Si-based surface via covalent chemical bonds. We chose SiO(2) as the anchoring surface due to its biocompatibility and extensive presence in microelectronic devices. The immobilization protocol was tested and optimized, introducing a new step, oxide activation, using techniques compatible with microelectronic processing. The importance of the added step is described by the experimental results. We also tested different biological molecule concentrations in the immobilization solutions and the effects on the immobilized layer. Finally a MOS-like structure was designed and fabricated to test an electrical transduction mechanism. The results obtained so far and the possible evolution of the research field are described in this review paper.
Collapse
Affiliation(s)
| | - Venera Aiello
- Università degli Studi di Catania, Dipartimento di Chimica Biologica, Chimica Medica e Biologia Molecolare, Catania, Italy; E-Mails: ;
- Università degli Studi di Catania, Dipartimento di Scienze Biomediche, Catania, Italy; E-Mail:
| | - Antonino Scandurra
- Laboratorio Superfici e Interfasi (SUPERLAB), Consorzio Catania Ricerche, Catania, Italy; E-Mail:
| | - Marcella Renis
- Università degli Studi di Catania, Dipartimento di Chimica Biologica, Chimica Medica e Biologia Molecolare, Catania, Italy; E-Mails: ;
| | - Fulvia Sinatra
- Università degli Studi di Catania, Dipartimento di Scienze Biomediche, Catania, Italy; E-Mail:
| | | |
Collapse
|
16
|
Cottenye N, Teixeira F, Ponche A, Reiter G, Anselme K, Meier W, Ploux L, Vebert-Nardin C. Oligonucleotide nanostructured surfaces: effect on Escherichia coli curli expression. Macromol Biosci 2009; 8:1161-72. [PMID: 18683166 DOI: 10.1002/mabi.200800081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oligonucleotide model surfaces allowing independent variation of topography and chemical composition were designed to study the adhesion and biofilm growth of E.coli. Surfaces were produced by covalent binding of oligonucleotides and immobilization of nucleotide-based vesicles. Their properties were confirmed through a combination of fluorescence microscopy, XPS, ellipsometry, AFM and wettability studies at each step of the process. These surfaces were then used to study the response of three different strains of E.coli quantified in a static biofilm growth mode. This study led to convincing evidence that oligonucleotide-modified surfaces, independent of the topographical feature used in this study, enhanced curli expression without an increase in the number of adherent bacteria.
Collapse
Affiliation(s)
- Nicolas Cottenye
- Institut de Chimie des Surfaces et Interfaces, CNRS UPR 9069, Mulhouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Libertino S, Giannazzo F, Aiello V, Scandurra A, Sinatra F, Renis M, Fichera M. XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO(2) surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1965-1972. [PMID: 18205419 DOI: 10.1021/la7029664] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A process to immobilize the enzyme glucose oxidase on SiO2 surfaces for the realization of integrated microbiosensors was developed. The sample characterization was performed by monitoring, step by step, oxide activation, silanization, linker molecule (glutaraldehyde) deposition, and enzyme immobilization by means of XPS, AFM, and contact angle measurements. The control of the environment during the procedure, to prevent silane polymerization, and the use of oxide activation to obtain a uniform enzyme layer are issues of crucial importance. The correct protocol application gives a uniform layer of the linker molecule and the maximum sample surface coverage. This result is fundamental for maximizing the enzyme bonding sites on the sample surface and achieving the maximum surface coverage. Thin SiO2 layers thermally grown on a Si substrate were used. The XPS Si 2p signal of the substrate was monitored during immobilization. Such a signal is not completely shielded by the thin oxide layer and it is fully suppressed after the completion of the whole protocol. A power spectral density analysis on the AFM measurements showed the crucial role of both the oxide activation and the intermediate steps (silanization and linker molecule deposition) to obtain uniform immobilized enzyme coverage. Finally, enzymatic activity measurements confirmed the suitability of the optimized protocol.
Collapse
|
18
|
Ivnitski D, Artyushkova K, Rincón RA, Atanassov P, Luckarift HR, Johnson GR. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:357-364. [PMID: 18273853 DOI: 10.1002/smll.200700725] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This work demonstrates a new approach for building bioinorganic interfaces by integrating biologically derived silica with single-walled carbon nanotubes to create a conductive matrix for immobilization of enzymes. Such a strategy not only allows simple integration into biodevices but presents an opportunity to intimately interface an enzyme and manifest direct electron transfer features. Biologically synthesized silica/carbon nanotube/enzyme composites are evaluated electrochemically and characterized by means of X-ray photoelectron spectroscopy. Voltammetry of the composites displayed stable oxidation and reduction peaks at an optimal potential close to that of the FAD/FADH(2) cofactor of immobilized glucose oxidase. The immobilized enzyme is stable for a period of one month and retains catalytic activity for the oxidation of glucose. It is demonstrated that the resulting composite can be successfully integrated into functional bioelectrodes for biosensor and biofuel cell applications.
Collapse
Affiliation(s)
- Dmitri Ivnitski
- Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
19
|
Vallières K, Petitclerc E, Laroche G. Covalent grafting of fibronectin onto plasma-treated PTFE: influence of the conjugation strategy on fibronectin biological activity. Macromol Biosci 2007; 7:738-45. [PMID: 17457945 DOI: 10.1002/mabi.200600267] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Surface coating of synthetic materials is often considered to improve biomedical devices biocompatibility. In this study, we covalently bound fibronectin (FN) onto ammonia plasma-treated PTFE via two crosslinkers, namely glutaric anhydride (GA) and sulfosuccinimidyl-4-(p-maleimidophenyl)butyrate (sulfo-SMPB). With respect to clean PTFE, cell adhesion increased markedly on both FN grafted surfaces, although it was twice higher on PTFE-GA-FN than on PTFE-SMPB-FN. ELISA experiments performed with a polyclonal antibody revealed that the amount of FN is identical on both surfaces while monoclonal antibody specific to the RGD binding site clearly demonstrated a greater availability when FN is surface grafted through GA. These results provide evidence of a variation in protein conformation correlated with the surface conjugation strategy.
Collapse
Affiliation(s)
- Karine Vallières
- Unité de Biotechnologie et de Bioingénierie, Centre de recherche du CHUQ, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, Canada, G1L 3L5
| | | | | |
Collapse
|
20
|
Jedlicka SS, Rickus JL, Zemlyanov DY. Surface Analysis by X-ray Photoelectron Spectroscopy of Sol−Gel Silica Modified with Covalently Bound Peptides. J Phys Chem B 2007; 111:11850-7. [PMID: 17880200 DOI: 10.1021/jp0744230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical surface characterization of biologically modified sol-gel derived silica is critical but somewhat limited. This work demonstrates the ability of x-ray photoelectron spectroscopy (XPS) to characterize the surface chemistry of peptide modified sol-gel thin films based on the example of four different free peptide-silanes, denoted RGD, NID, KDI ,and YIG. The N 1s and C 1s peaks were found to be good fingerprints of the peptides, whereas O 1s overlapped with the signal of substrate oxygen and, therefore, the O 1s peak was not informative in the case of the thin films. The C 1s peak was fitted and the contribution of the residual hydrocarbons was sorted out. The curve-fitting procedure of the C 1s peak accounted for the different chemical states of carbon atoms in the peptide structure. The curve-fitting procedure was validated by analyzing free peptides in the powder form and was then applied to the characterization of the peptide-modified thin films. The XPS measured ratio between nitrogen and carbon for the peptide thin film was similar to the corresponding value calculated from the peptide structures. Angle resolved XPS confirmed the surface nature of peptides in modified thin films. The coverage and thickness of the peptides on the thin film surface depended on the peptide sequence. The coverage was in the range of 10% of a monolayer, and the layer thickness varied from 10 to 30 A. We believe that the different thicknesses and surface coverage are due to the local structure of the peptides, with the RGD and NID peptides taking a globule conformation and the YIG and KDI peptides adopting a more linear structure.
Collapse
Affiliation(s)
- Sabrina S Jedlicka
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
21
|
Betancor L, Luckarift HR, Seo JH, Brand O, Spain JC. Three-dimensional immobilization of β-galactosidase on a silicon surface. Biotechnol Bioeng 2007; 99:261-7. [PMID: 17626303 DOI: 10.1002/bit.21570] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many alternative strategies to immobilize and stabilize enzymes have been investigated in recent years for applications in biosensors. The entrapment of enzymes within silica-based nanospheres formed through silicification reactions provides high loading capacities for enzyme immobilization, resulting in high volumetric activity and enhanced mechanical stability. Here we report a strategy for chemically associating silica nanospheres containing entrapped enzyme to a silicon support. beta-galactosidase from E. coli was used as a model enzyme due to its versatility as a biosensor for lactose. The immobilization strategy resulted in a three-dimensional network of silica attached directly at the silicon surface, providing a significant increase in surface area and a corresponding 3.5-fold increase in enzyme loading compared to enzyme attached directly at the surface. The maximum activity recovered for a silicon square sample of 0.5 x 0.5 cm was 0.045 IU using the direct attachment of the enzyme through glutaraldehyde and 0.16 IU when using silica nanospheres. The immobilized beta-galactosidase prepared by silica deposition was stable and retained more than 80% of its initial activity after 10 days at 24 degrees C. The ability to generate three-dimensional structures with enhanced loading capacity for biosensing molecules offers the potential to substantially amplify biosensor sensitivity.
Collapse
Affiliation(s)
- Lorena Betancor
- Air Force Research Laboratory, Tyndall AFB, Florida 32403, USA
| | | | | | | | | |
Collapse
|