1
|
Dhellemmes L, Leclercq L, Frick H, Höchsmann A, Schaschke N, Neusüß C, Cottet H. Investigating cationic and zwitterionic successive multiple ionic-polymer layer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2024; 1720:464802. [PMID: 38507871 DOI: 10.1016/j.chroma.2024.464802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Successive multiple ionic-polymer layers (SMILs) have long since proved their worth in capillary electrophoresis as they ensure stable electroosmotic flow (EOF) and relatively high separation efficiency. Recently, we demonstrated that plotting the plate height (H) against the solute migration velocity (u) enabled a reliable quantitative evaluation of the coating performances in terms of separation efficiency. In this work, various physicochemical and chemical parameters of the SMIL coating were studied and optimized in order to decrease the slope of the ascending part of the H vs u curve, which is known to be controlled by the homogeneity in charge of the coating surface and by the possible residual solute adsorption onto the coating surface. SMILs based on poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium styrene sulfonate) (PSS) were formed and the effect of each polyelectrolyte molar mass and of the number of polyelectrolyte layers (up to 21 layers) was studied. The use of polyethylene imine as an anchoring first layer was considered. More polyelectrolyte couples based on PDADMAC, polybrene, PSS, poly(vinyl sulfate), and poly(acrylic acid) were tested. Finally, zwitterionic polymers based on the poly(α-l-lysine) scaffold were synthesized and used as the last layer of SMILs, illustrating their ability to finetune the EOF, while maintaining good separation efficiency.
Collapse
Affiliation(s)
- Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Henry Frick
- Faculty of Chemistry, Aalen University, Aalen, Germany
| | | | | | | | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
2
|
Dhellemmes L, Leclercq L, Höchsmann A, Neusüß C, Biron JP, Roca S, Cottet H. Critical parameters for highly efficient and reproducible polyelectrolyte multilayer coatings for protein separation by capillary electrophoresis. J Chromatogr A 2023; 1695:463912. [PMID: 36972664 DOI: 10.1016/j.chroma.2023.463912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Since the introduction of polyelectrolyte multilayers to protein separation in capillary electrophoresis (CE), some progress has been made to improve separation efficiency by varying different parameters, such as buffer ionic strength and pH, polyelectrolyte nature and number of deposited layers. However, CE is often overlooked as it lacks robustness compared to other separation techniques. In this work, critical parameters for the construction of efficient and reproducible Successive multiple ionic-polymer layers (SMIL) coatings were investigated, focusing on experimental conditions, such as vial preparation and sample conservation which were shown to have a significant impact on separation performances. In addition to repeatability, intra- and inter-capillary precision were assessed, demonstrating the improved capability of poly(diallyldimethylammonium chloride) / poly(sodium styrene sulfonate) (PDADMAC / PSS) coated capillaries to separate model proteins in a 2 M acetic acid background electrolyte when all the correct precautions are put in place (with run to run%RSD(tm) < 1.8%, day to day%RSD(tm) < 3.2% and cap to cap%RSD(tm) < 4.6%). The approach recently introduced to calculate retention factors was used to quantify residual protein adsorption onto the capillary wall and to assess capillary coating performances. 5-layer PDADAMAC / PSS coatings led to average retention factors for the five model proteins of ∼4×10-2. These values suggest a relatively low residual protein adsorption leading to reasonably flat plate height vs linear velocity curves, obtained by performing electrophoretic separations at different electrical voltages (-10 to -25 kV).
Collapse
|
3
|
Pédehontaa-Hiaa G, Gaudière F, Khelif R, Morin-Grognet S, Labat B, Lutzweiler G, Le Derf F, Atmani H, Morin C, Ladam G. Polyvalent incorporation of anionic β-cyclodextrin polymers into Layer-by-Layer coatings. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Roca S, Dhellemmes L, Leclercq L, Cottet H. Polyelectrolyte Multilayers in Capillary Electrophoresis. Chempluschem 2022; 87:e202200028. [PMID: 35388990 DOI: 10.1002/cplu.202200028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Indexed: 02/21/2024]
Abstract
Capillary electrophoresis (CE) has been proven to be a performant analytical method to analyze both small and macro molecules. Indeed, it is capable of separating compounds of the same nature according to differences in their charge to size ratios, particularly proteins, monoclonal antibodies and peptides. However, one of the major obstacles to reach high separation efficiency remains the adsorption of solutes on the capillary wall. Among the different coating approaches used to control and minimize solute adsorption, polyelectrolyte multilayers can be applied to CE as a versatile approach. These coatings are made up of alternating layers of polycations and polyanions, and may be used in acidic, neutral or basic conditions depending on the solutes to be analyzed. This Review provides an overview of Successive Multiple Ionic-polymer Layer (SMIL) coatings used in CE, looking at how different parameters induce variations on the electro-osmotic flow (EOF), separation efficiency and coating stability, as well as their promising applications in the biopharmaceutical field.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laura Dhellemmes
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
5
|
Liu XR, Pan C, Wang YM. PMOXA/PAA brushes toward on-line preconcentration for BSA in capillary electrophoresis. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1805130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiao-ru Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chao Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan-mei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Zhao W, Jiang X, Ni S, Guo Y, He L, Xiang G, Zhang S. Layer-by-layer self-assembly of polyelectrolyte multilayers on silica spheres as reversed-phase/hydrophilic interaction mixed-mode stationary phases for high performance liquid chromatography. J Chromatogr A 2017; 1499:111-117. [DOI: 10.1016/j.chroma.2017.03.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/09/2017] [Accepted: 03/30/2017] [Indexed: 01/26/2023]
|
7
|
Kitagawa F, Nakagawara S, Nukatsuka I, Hori Y, Sueyoshi K, Otsuka K. Simple and Rapid Immobilization of Coating Polymers on Poly(dimethyl siloxane)-glass Hybrid Microchips by a Vacuum-drying Method. ANAL SCI 2016; 31:1171-5. [PMID: 26561262 DOI: 10.2116/analsci.31.1171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple and rapid vacuum-drying modification method was applied to several neutral and charged polymers to obtain coating layers for controlling electroosmotic flow (EOF) and suppressing sample adsorption on poly(dimethyl siloxane) (PDMS)-glass hybrid microchips. In the vacuum-dried poly(vinylpyrrolidone) coating, the electroosmotic mobility (μeo) was suppressed from +2.1 to +0.88 × 10(-4) cm(2)/V·s, and the relative standard deviation (RSD) of μeo was improved from 10.2 to 2.5% relative to the bare microchannel. Among several neutral polymers, poly(vinylalcohol) (PVA) and poly(dimethylacrylamide) coatings gave more suppressed and repeatable EOF with RSDs of less than 2.3%. The vacuum-drying method was also applicable to polyanions and polycations to provide accelerated and inversed EOF, respectively, with acceptable RSDs of less than 4.9%. In the microchip electrophoresis (MCE) analysis of bovine serum albumin (BSA) in the vacuum-dried and thermally-treated PVA coating channel, an almost symmetric peak of BSA was obtained, while in the native microchannel a significantly skewed peak was observed. The results demonstrated that the vacuum-dried polymer coatings were effective to control the EOF, and reduced the surface adsorption of proteins in MCE.
Collapse
Affiliation(s)
- Fumihiko Kitagawa
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
| | | | | | | | | | | |
Collapse
|
8
|
Pédehontaa-Hiaa G, Guerrouache M, Carbonnier B, Le Derf F, Morin CJ. Layer-by-Layer Assemblies Based on a Cationic β-Cyclodextrin Polymer: Chiral Stationary Phases for Open-Tubular Electrochromatography. Chromatographia 2015. [DOI: 10.1007/s10337-015-2851-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Zeng R, Luo Z, Zhou D, Cao F, Wang Y. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis 2012; 31:3334-41. [PMID: 20803756 DOI: 10.1002/elps.201000228] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The antifouling PEG-immobilized capillary was introduced for the protein separation in CE through mussel adhesive protein inspired polydopamine coating for the first time. The polydopamine, formed by spontaneous oxidative polymerization of dopamine at alkaline in the inner surface of capillary, was exploited to immobilize amine-functionalized PEG onto the capillary surface. During the process, polydopamine-graft-PEG copolymer was formed via Michael addition or Schiff base reactions. The polymer coating was observed using X-ray photoelectron spectroscopy and SEM. And both of them indicated the formation of the polymer coating. A comparative study of EOF showed that the novel coating could provide effective suppression of EOF and minimized adsorption of proteins. As a consequence, fast and efficient separations of three proteins such as lysozyme, cytochrome c, and ribonuclease A were obtained within a broad pH range. Furthermore, the long-term stability of polydopamine-graft-PEG coating in consecutive protein separation runs and the high separation efficiency proved that this novel coating was capable of minimizing protein adsorption during the capillary separation. The successful capillary performance also was demonstrated in the separation of protein mixture and milk powder samples at acidic pH.
Collapse
Affiliation(s)
- Rongju Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | | | | | | | | |
Collapse
|
10
|
Chen JL. Molecularly bonded chitosan prepared as chiral stationary phases in open-tubular capillary electrochromatography: Comparison with chitosan nanoparticles bonded to the polyacrylamide phase. Talanta 2011; 85:2330-8. [DOI: 10.1016/j.talanta.2011.07.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
11
|
Nehmé R, Perrin C, Cottet H, Blanchin MD, Fabre H. Stability of capillaries coated with highly charged polyelectrolyte monolayers and multilayers under various analytical conditions—Application to protein analysis. J Chromatogr A 2011; 1218:3537-44. [DOI: 10.1016/j.chroma.2011.03.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
|
12
|
Lu H, Chen G. Recent advances of enantioseparations in capillary electrophoresis and capillary electrochromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:488-508. [PMID: 32938063 DOI: 10.1039/c0ay00489h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A comprehensive survey of recent developments and applications of capillary electromigration techniques for enantioseparations from January 2006 to June 2010 is presented. The techniques include capillary electrophoresis, chip capillary electrophoresis and capillary electrochromatography. The separation principles and the chiral recognition mechanisms are discussed. Additionally, on-line preconcentrations in chiral capillary electrophoresis are also reviewed.
Collapse
Affiliation(s)
- Huang Lu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
- Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China.
- Department of Chemistry and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Haselberg R, Brinks V, Hawe A, de Jong GJ, Somsen GW. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. Anal Bioanal Chem 2011; 400:295-303. [PMID: 21318246 PMCID: PMC3062027 DOI: 10.1007/s00216-011-4738-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/24/2010] [Accepted: 01/27/2011] [Indexed: 10/29/2022]
Abstract
In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.
Collapse
Affiliation(s)
- R Haselberg
- Department of Biomedical Analysis, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Chen JL, Hsieh KH. Nanochitosan crosslinked with polyacrylamide as the chiral stationary phase for open-tubular capillary electrochromatography. Electrophoresis 2011; 32:398-407. [DOI: 10.1002/elps.201000410] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/27/2010] [Accepted: 11/11/2010] [Indexed: 11/07/2022]
|
15
|
Nehmé R, Perrin C, Cottet H, Blanchin M, Fabre H. Influence of polyelectrolyte capillary coating conditions on protein analysis in CE. Electrophoresis 2009; 30:1888-98. [DOI: 10.1002/elps.200800688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Isemura T, Kitagawa F, Otsuka K. Separation of complex mixtures of fluorobenzoic acids by capillary electrophoresis. J Sep Sci 2009; 32:381-7. [DOI: 10.1002/jssc.200800549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Peng S, Shi R, Yang R, Zhou D, Wang Y. Hydroxyethylcellulose-graft-poly (N,N-dimethylacrylamide) copolymer as a multifunctional separation medium for CE. Electrophoresis 2008; 29:4351-4. [DOI: 10.1002/elps.200800149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Chiral separation by capillary electromigration techniques. J Chromatogr A 2008; 1204:140-56. [DOI: 10.1016/j.chroma.2008.07.071] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/27/2008] [Accepted: 07/08/2008] [Indexed: 11/19/2022]
|
19
|
Nehmé R, Perrin C, Cottet H, Blanchin MD, Fabre H. Influence of polyelectrolyte coating conditions on capillary coating stability and separation efficiency in capillary electrophoresis. Electrophoresis 2008; 29:3013-23. [DOI: 10.1002/elps.200700886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Analysis of human histone H4 by capillary electrophoresis in a pullulan-coated capillary, LC-ESI-MS and MALDI-TOF-MS. Anal Bioanal Chem 2008; 390:1881-8. [DOI: 10.1007/s00216-008-1903-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/18/2007] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
|
21
|
|
22
|
|
23
|
Okamoto Y, Kitagawa F, Otsuka K. Online Concentration and Affinity Separation of Biomolecules Using Multifunctional Particles in Capillary Electrophoresis under Magnetic Field. Anal Chem 2007; 79:3041-7. [PMID: 17348631 DOI: 10.1021/ac061693q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To overcome several problems in affinity capillary electrophoresis (ACE), i.e., low detectability, need for sample derivatization, and difficulty in the fixation of affinity ligands (ALs), multifunctional magnetic particles (MFMPs) were prepared by immobilizing both fluorescent molecules and ALs for low-density lipoproteins onto the surface of magnetic polymer microspheres with a polyelectrolyte multilayer coating technique and applied to the ACE analysis. The prepared MFMPs showed a remarkable change in the electrophoretic mobility (mu ep) by the addition of low-density lipoproteins (LDL), whereas for high-density lipoproteins (HDL), mu ep of the MFMPs kept constant, so that it was confirmed that the MFMPs possess an affinity with LDL. On the other hand, the MFMPs can be trapped by the magnetic field even under a higher electric field for electrophoresis. By a successive on-off control of the magnetic field, online preconcentration of the LDL bound MFMPs and the selective separation of LDL from HDL were successfully achieved. In the ACE analysis of LDL employing UV detection, an 82-fold increase in the sensitivity was obtained by the on-capillary sample preconcentration using the MFMPs. When laser induced-fluorescence detection was employed, furthermore, the limit of detection for LDL was improved to the order of subpicomolar.
Collapse
Affiliation(s)
- Yukihiro Okamoto
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|