1
|
Gopika MG, Gopidas S, Jayan GS, Arathy PS, Saraswathyamma B. Unveiling thiol biomarkers: Glutathione and cysteamine. Clin Chim Acta 2024; 563:119915. [PMID: 39134217 DOI: 10.1016/j.cca.2024.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson's disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Surya Gopidas
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Gokul S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - P S Arathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India.
| |
Collapse
|
2
|
Jiao YT, Kang YR, Wen MY, Wu HQ, Zhang XW, Huang WH. Fast Antioxidation Kinetics of Glutathione Intracellularly Monitored by a Dual-Wire Nanosensor. Angew Chem Int Ed Engl 2023; 62:e202313612. [PMID: 37909054 DOI: 10.1002/anie.202313612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.
Collapse
Affiliation(s)
- Yu-Ting Jiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi-Ran Kang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming-Yong Wen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui-Qian Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin-Wei Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Facile fabrication of a superior electrochemical sensor with anti-fouling properties for sensitive and selective determination of glutathione. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Asadpour F, Mazloum-Ardakani M. Electro-assisted self-assembly of mesoporous silica thin films: application to electrochemical sensing of glutathione in the presence of copper. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Wu WT, Chen X, Jiao YT, Fan WT, Liu YL, Huang WH. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022; 61:e202115820. [PMID: 35134265 DOI: 10.1002/anie.202115820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/08/2022]
Abstract
The current strategies for nanoelectrode functionalization usually involve sophisticated modification procedures, uncontrollable and unstable modifier assembly, as well as a limited variety of modifiers. To address this issue, we propose a versatile strategy for large-scale synthesis of biomimetic molecular catalysts (BMCs) modified nanowires (NWs) to construct functionalized electrochemical nanosensors. This design protocol employs an easy, controllable and stable assembly of diverse BMCs-poly(3,4-ethylenedioxythiophene) (PEDOT) composites on conductive NWs. The intrinsic catalytic activity of BMCs combined with outstanding electron transfer ability of conductive polymer enables the nanosensors to sensitively and selectively detect various biomolecules. Further application of sulfonated cobalt phthalocyanine functionalized nanosensors achieves real-time electrochemical monitoring of intracellular glutathione levels and its redox homeostasis in single living cells for the first time.
Collapse
Affiliation(s)
- Wen-Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen-Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Wu W, Chen X, Jiao Y, Fan W, Liu Y, Huang W. Versatile Construction of Biomimetic Nanosensors for Electrochemical Monitoring of Intracellular Glutathione. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Tao Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Xi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yu‐Ting Jiao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wen‐Ting Fan
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Yan‐Ling Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| | - Wei‐Hua Huang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
Meloni GN, Bertotti M. Ring-disc Microelectrodes towards Glutathione Electrochemical Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriel N. Meloni
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Mauro Bertotti
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| |
Collapse
|
8
|
Areias MCC, Shimizu K, Compton RG. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach. Analyst 2016; 141:2904-10. [DOI: 10.1039/c6an00550k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High sensitive detection of glutathione in presence of copper(ii) ions by cyclic voltammetry using a bare glassy carbon electrode is presented.
Collapse
Affiliation(s)
- Madalena C. C. Areias
- Departamento de Química Fundamental
- Centro de Ciências Exatas e da Natureza
- Universidade Federal de Pernambuco
- Brazil - CEP 50.740-560
| | - Kenichi Shimizu
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| |
Collapse
|
9
|
Kanďár R, Vrbová M, Čandová J. AN ASSAY OF TOTAL GLUTATHIONE AND GLUTATHIONE DISULFIDE IN HUMAN WHOLE BLOOD AND PLASMA USING A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH FLUORESCENCE DETECTION. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.706858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Roman Kanďár
- a Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Martina Vrbová
- a Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Jarmila Čandová
- a Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| |
Collapse
|
10
|
Pandey PC, Pandey AK. Cyclohexanone and 3-aminopropyltrimethoxysilane mediated controlled synthesis of mixed nickel-iron hexacyanoferrate nanosol for selective sensing of glutathione and hydrogen peroxide. Analyst 2013; 138:952-9. [DOI: 10.1039/c2an36228g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Brainina KZ, Varzakova DP, Gerasimova EL. A chronoamperometric method for determining total antioxidant activity. JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1134/s1061934812020050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Harfield JC, Batchelor-McAuley C, Compton RG. Electrochemical determination of glutathione: a review. Analyst 2012; 137:2285-96. [DOI: 10.1039/c2an35090d] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Teng Y, Liu R, Li C, Zhang H. Effect of 4-aminoantipyrine on oxidative stress induced by glutathione depletion in single human erythrocytes using a microfluidic device together with fluorescence imaging. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1766-1771. [PMID: 21784575 DOI: 10.1016/j.jhazmat.2011.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/28/2011] [Accepted: 07/03/2011] [Indexed: 05/31/2023]
Abstract
The effects of 4-aminoantipyrine (AAP) on oxidative stress induced by glutathione (GSH) depletion in single human erythrocytes were investigated using microfluidic technique and fluorescence imaging. Most cell-based toxicity evaluations on GSH are performed with bulk experiments based on analysis of cell populations. This work established a single-cell toxicity evaluation method to statistically analyze the GSH amount in single erythrocytes incubated with AAP in different concentrations. The experimental conditions of cell flow rate and cell concentration were optimized. The GSH contents in erythrocytes decreased with increasing dose of AAP. At low concentration, AAP had a little effect on GSH; while at high concentration, AAP led to GSH depletion reaching a maximum of 14.53%. The depletion of GSH leads to a significant shift to a more oxidizing intracellular environment. This study provides basic data for presenting the effect of AAP on GSH in erythrocytes and is helpful for understanding its toxicity during the blood transportation process. In addition, it will also complement studies on the environmental risk assessment of AAP pollution.
Collapse
Affiliation(s)
- Yue Teng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, PR China
| | | | | | | |
Collapse
|
14
|
Kanďár R, Žáková P, Marková M, Lotková H, Kučera O, Červinková Z. Determination of glutathione and glutathione disulfide in human whole blood using HPLC with coulometric detection: A comparison with fluorescence detection. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We describe a relatively simple method for the determination of glutathione (GSH) and glutathione disulfide (GSSG) in human whole blood. We have used an HPLC with coulometric electrochemical detection for the simultaneous measurement of GSH and GSSG. Diluted and filtered trichloroacetic acid extracts were injected directly into the HPLC system and were eluted isocratically on a Polaris 5u C18-A, 250 × 4.6 mm analytical column. Glutathione in samples extracted with trichloroacetic acid and diluted with 1.0 mMhydrochloric acid was stable at 4 °C for at least 8 h. The analytical performance of this method is satisfactory: the intra-assay and inter-assay coefficients of variation were below 10%. Quantitative recoveries from spiked whole blood samples were at intervals 91.6–97.6% for GSH and 85.0–104.4% for GSSG. The linear range is 5.0–2000.0 μmol/l, with a detection limit of 2.1 μmol/l (signal-to-noise ratio = 3) for GSH and 2.0–250.0 μmol/l, with a detection limit of 0.9 μmol/l for GSSG.
Collapse
|
15
|
Luz RCS, Maroneze CM, Tanaka AA, Kubota LT, Gushikem Y, Damos FS. The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards L-glutathione, and its determination in human erythrocytes. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0417-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Brainina K, Alyoshina L, Gerasimova E, Kazakov Y, Ivanova A, Beykin Y, Belyaeva S, Usatova T, Khodos M. New Electrochemical Method of Determining Blood and Blood Fractions Antioxidant Activity. ELECTROANAL 2009. [DOI: 10.1002/elan.200804458] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Wang T, An Y, He HB, Qian D, Cai RL. Simultaneous determination of oxidized and reduced glutathione in eel's (Monopterus albus) plasma by transient pseudoisotachophoresis coupled with capillary zone electrophoresis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:368-373. [PMID: 18092751 DOI: 10.1021/jf0721850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Both the reduced form of glutathione (GSH) and the oxidized form of glutathione (GSSG) in eel's ( Monopterus albus) plasma were for the first time determined by transient pseudoisotachophoresis coupled with capillary zone electrophoresis. The method of transient pseudoisotachophoresis coupled with capillary zone electrophoresis has been thoroughly optimized and adequately evaluated for the simultaneous determination of GSH and GSSG in eel's plasma. The detection limits (S/N = 3) of the method developed were 0.2 and 0.05 micromol/L for GSH and GSSG, respectively. The linearity of the calibration curves was valid in the range of 0-10 micromol/L GSH and 0-0.70 micromol/L GSSG. The method was simple, fast, and reproducible. It was found that the respective concentrations of GSH and GSSG were in the range of 9.1-14.5 and 0.31-0.58 micromol/L in the adult eel's plasma, and 10.8-17.9 and 0.49 - 0.68 micromol/L in the juvenile eel's plasma of the three populations determined. Each blood sample was a composite of five eels. For each of the three populations, the concentrations of GSH and GSSG in the adult eel's plasma were lower than those in the juvenile eel's plasma, and the concentrations of GSH and GSSG in the plasma of population 1 (deep yellow finless eels) were higher than those in populations 2 (light yellow finless eels) and 3 (green finless eels) for either the adult or the juvenile eels.
Collapse
Affiliation(s)
- Tianlin Wang
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| | | | | | | | | |
Collapse
|