1
|
Carta S, Correddu F, Battacone G, Pulina G, Nudda A. Comparison of Milk Odd- and Branched-Chain Fatty Acids among Human, Dairy Species and Artificial Substitutes. Foods 2022; 11:foods11244118. [PMID: 36553860 PMCID: PMC9778152 DOI: 10.3390/foods11244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of the study was to compare odd and branched-chain fatty acids (OBCFA) of milk from sheep, goat, cow, buffalo, donkey, human, and formula milk. Ruminant, monogastric, and human milks have different concentrations of these fatty acids (FA). To highlight the differences on OBCFA, a total of 282 individual milk samples were analyzed by gas chromatography. The OBCFA were found higher in ruminant than non-ruminant milks (p < 0.05). Among ruminants, sheep milk had the highest OBCFA (4.5 g/100 g of total FAME), whereases the lowest values were found in formula milk (0.18 g/100 g of total FAME). Regarding individual linear odd-chain FA (linear-OCFA), C11:0 was found higher in donkey milk than others, while sheep and buffalo milks had the greatest concentration of C15:0. Among BCFA, the iso-BCFA were higher than anteiso-BCFA in all considered milks. The isoC17:0 showed the highest concentration in all milks except for donkey and buffalo, which showed higher concentration of isoC16:0 than others. In conclusion, ruminant milks are different in terms of these FA compared to human milk and its substitutes. However, the greatest differences were found with formula milk, suggesting that this product needs the implementation of these FA to be more similar to human milk composition.
Collapse
|
2
|
Abstract
The inverse association between the groups of odd-chain (OCFA) and branched-chain (BCFA) and the development of diseases in humans have generated interest in the scientific community. In experiment 1, the extent of the passage of odd- and branched-chain fatty acids (OBCFA) from milk fat to fresh cheese fat was studied in sheep and goats. Milk collected in two milk processing plants in west Sardinia (Italy) was sampled every 2 weeks during spring (March, April and May). In addition, a survey was carried out to evaluate the seasonal variation of the OBCFA concentrations in sheep and goats’ cheeses during all lactation period from January to June. Furthermore, to assess the main differences among the sheep and goat cheese, principal component analysis (PCA) was applied to cheese fatty acids (FA) profile. Concentrations of OBCFA in fresh cheese fat of both species were strongly related to the FA content in the unprocessed raw milk. The average contents of OBCFA were 4.12 and 4.13 mg/100 mg of FA in sheep milk and cheese, respectively, and 3.12 and 3.17 mg/100 mg of FA in goat milk and cheese, respectively. The OBCFA concentration did no differed between milk and cheese in any species. The content of OBCFA was significantly higher in sheep than goats’ dairy products. The OBCFA composition of the cheese was markedly affected by the period of sampling in both species: odd and branched FA concentrations increased from March to June. The seasonal changes of OBCFA in dairy products were likely connected to variations in the quality of the diet. The PCA confirmed the higher nutritional quality of sheep cheese for beneficial FA, including OBCFA compared to the goat one, and the importance of the period of sampling in the definition of the fatty acids profile.
Collapse
|
3
|
Jagodic M, Potočnik D, Snoj Tratnik J, Mazej D, Pavlin M, Trdin A, Eftimov T, Kononenko L, Ogrinc N, Horvat M. Selected elements and fatty acid composition in human milk as indicators of seafood dietary habits. ENVIRONMENTAL RESEARCH 2020; 180:108820. [PMID: 31639654 DOI: 10.1016/j.envres.2019.108820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 05/18/2023]
Abstract
The maternal diet and living environment can affect levels of chemical elements and fatty acid (FA) composition and their stable isotopes (δ13CFA) in human milk. Information obtained from questionnaires is frequently imprecise, thus limiting proper associations between external and internal exposures as well as health effects. In this study, we focused on seafood as a source of potentially toxic and essential elements and nutritional FAs. Concentrations of selected elements in human milk (As, Cd, Cu, Mn, Pb, Se and Zn) were determined using inductively coupled plasma mass spectrometry (ICP-MS) and Hg using cold vapour atomic-absorption spectrometry (CV-AAS). The identification and quantification of FAs in maternal milk were performed by an in-situ trans-esterification method (FAMEs), and the characterization of FAMEs was performed by gas chromatography with a flame ionisation detector (GC-FID). δ13CFA was determined by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Seventy-four lactating Slovenian women from the coastal area of Koper (KP), with more frequent consumption of seafood, and the inland area of Pomurje (MS), with less frequent seafood consumption, were included in this study. Along with basic statistical analyses, data mining approaches (classification and clustering) were applied to investigate whether FA composition and δ13CFA could improve the information regarding dietary sources of potentially toxic elements. As and Hg levels in milk were found to be statistically higher in populations from KP than in those from MS, and 71% of individual FAs and 30% of individual δ13CFA values in milk differed statistically between the studied areas. In 19 cases, the levels of FAs in milk were higher in KP than in MS; these FAs include C20:5ω3 and C22:6ω3/C24:1ω9, which are typically contained in fish. In 16 cases, the mean percentage of FAs was higher in MS than in KP; these FAs include the PUFAs C18:2ω6, C18:3ω3, and C20:4ω6 which are important for human and infant growth. The difference in δ13C levels of C10:0, C12:0, C14:0, C16:1, C16:0, C18:1ω9c, C22:6ω3, and δ13C 18:0-16:0 in the study groups was statistically significant. In all seven cases where δ13C of FA significantly differed between KP and MS, δ13C was higher in KP, indicating a higher proportion of a marine-based diet. The data mining approaches confirmed that the percentage of selected FAs (iC17:0, C4:0, C18:2ω6t, aC17:0, CLA, and C22:4ω6) and δ13CFA of C18:1ω9c in human milk could be used to distinguish between high and low frequency of fresh seafood consumption.
Collapse
Affiliation(s)
- Marta Jagodic
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Doris Potočnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Darja Mazej
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Majda Pavlin
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Ajda Trdin
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Tome Eftimov
- Computer Systems Department, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Lijana Kononenko
- Ministry of Health, Chemicals Office of the Republic of Slovenia, Ajdovščina 4, 1000, Ljubljana, Slovenia.
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Krauß S, Vetter W. Stable Carbon and Nitrogen Isotope Ratios of Red Bell Pepper Samples from Germany, The Netherlands, and Spain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4054-4063. [PMID: 30895777 DOI: 10.1021/acs.jafc.9b01631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bell pepper is one of the most cultivated crops in the world. By means of δ13C and δ15N values (‰), red bell peppers from Germany, The Netherlands, and Spain could be distinguished from each other. German fruits cultivated under greenhouse conditions were extremely depleted in 13C with δ13C values for fatty acids of partly less than -50‰. The strong depletion in 13C was in accordance with the use of biomethane-derived CO2 as growth regulator in the greenhouses. Seasonal variations in the δ13C values (‰) of German samples were tentatively assigned to varying CO2 enrichment during the annual production cycle. δ13C values (‰) of Dutch samples also correlated with greenhouse production, whereas Spanish samples most likely originated from open field cultivation. Additionally, the use of color measurement as a tool for presorting the samples was investigated in order to slim the scattering ranges of δ13C and δ15N values (‰) for clearer differentiation.
Collapse
Affiliation(s)
- Stephanie Krauß
- Institute of Food Chemistry (170b) , University of Hohenheim , Garbenstrasse 28 , D-70599 Stuttgart , Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b) , University of Hohenheim , Garbenstrasse 28 , D-70599 Stuttgart , Germany
| |
Collapse
|
5
|
Eibler D, Seyfried C, Kaffarnik S, Vetter W. anteiso-Fatty Acids in Brussels Sprouts (Brassica oleracea var. gemmifera L.): Quantities, Enantioselectivities, and Stable Carbon Isotope Ratios. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8921-8929. [PMID: 26390192 DOI: 10.1021/acs.jafc.5b03877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
anteiso-Fatty acids (aFAs) are a class of branched-chain fatty acids that are characterized by one methyl branch on the antepenultimate carbon of the straight acyl chain. aFAs are mainly produced by bacteria, and sources in vegetables are scarce. This study reports the concentrations of odd-numbered aFAs (a15:0-a21:0) in Brussels sprout buds. Selective enrichment followed by enantioselective gas chromatography with mass spectrometry in the selected ion monitoring mode revealed that both a15:0 and a17:0 were (S)-enantiopure in Brussels sprout samples. δ(13)C values (‰) of a17:0 in Brussels sprouts were comparable with those of palmitic acid, indicating no different source for both fatty acids.
Collapse
Affiliation(s)
- Dorothee Eibler
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Carolin Seyfried
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Stefanie Kaffarnik
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim , Garbenstrasse 28, 70599 Stuttgart, Germany
| |
Collapse
|