1
|
Pedreañez A, Mosquera-Sulbaran JA, Tene D. Role of the receptor for advanced glycation end products in the severity of SARS-CoV-2 infection in diabetic patients. Diabetol Int 2024; 15:732-744. [PMID: 39469543 PMCID: PMC11512988 DOI: 10.1007/s13340-024-00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a severe disease in older adults and in individuals with associated comorbidities such as diabetes mellitus. Patients with diabetes infected with SARS-CoV-2 are more likely to develop severe pneumonia, hospitalization, and mortality compared with infected non-diabetic patients. During diabetes, hyperglycemia contributes to the maintenance of a low-grade inflammatory state which has been implicated in the microvascular and macrovascular complications associated with this pathology. The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition receptor, expressed on a wide variety of cells, which participates as an important mediator of inflammatory responses in many diseases, including lung diseases. This review highlights the role of RAGE in the pathophysiology of COVID-19 with special emphasis on diabetic patients. These data could explain the severity of the disease, positioning it as a key therapeutic target in the clinical management of this infection.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo 4001-A, Maracaibo, Zulia Venezuela
| | - Jesús A. Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| |
Collapse
|
2
|
Mehta R, Sonavane M, Migaud ME, Gassman NR. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:185-202. [PMID: 33496975 PMCID: PMC7954877 DOI: 10.1002/em.22425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 05/09/2023]
Abstract
Dihydroxyacetone (DHA) is a three-carbon sugar that is the active ingredient in sunless tanning products and a by-product of electronic cigarette (e-cigarette) combustion. Increased use of sunless tanning products and e-cigarettes has elevated exposures to DHA through inhalation and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a product of fructose metabolism. Recent reports have suggested metabolic imbalance and cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA on human health is currently under-investigated. We propose that exogenous exposures to DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress, mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line and animal model exposures to fructose to highlight similarities in the effects produced by exogenous exposures to DHA. Given the long-term health consequences of fructose exposure, this review emphasizes the pressing need to further examine DHA exposures from sunless tanning products and e-cigarettes.
Collapse
Affiliation(s)
- Raj Mehta
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL USA
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| |
Collapse
|
3
|
In silico prediction of the effects of mutations in the human triose phosphate isomerase gene: Towards a predictive framework for TPI deficiency. Eur J Med Genet 2017; 60:289-298. [PMID: 28341520 DOI: 10.1016/j.ejmg.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/27/2017] [Accepted: 03/20/2017] [Indexed: 01/24/2023]
Abstract
Triose phosphate isomerase (TPI) deficiency is a rare, but highly debilitating, inherited metabolic disease. Almost all patients suffer severe neurological effects and the most severely affected are unlikely to live beyond early childhood. Here, we describe an in silico study into well-characterised variants which are associated with the disease alongside an investigation into 79 currently uncharacterised TPI variants which are known to occur in the human population. The majority of the disease-associated mutations affected amino acid residues close to the dimer interface or the active site. However, the location of the altered amino acid residue did not predict the severity of the resulting disease. Prediction of the effect on protein stability using a range of different programs suggested a relationship between the degree of instability caused by the sequence variation and the severity of the resulting disease. Disease-associated variations tended to affect well-conserved residues in the protein's sequence. However, the degree of conservation of the residue was not predictive of disease severity. The majority of the 79 uncharacterised variants are potentially associated with disease since they were predicted to destabilise the protein and often occur in well-conserved residues. We predict that individuals homozygous for the corresponding mutations would be likely to suffer from TPI deficiency.
Collapse
|
4
|
Wahiduzzaman, Dar MA, Amir M, Islam A, Hassan MI, Ahmad F. Purification, preliminary X-ray crystallography and biophysical studies of triose phosphate isomerase-β-globin subunit complex. Int J Biol Macromol 2017; 94:746-753. [DOI: 10.1016/j.ijbiomac.2016.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 02/09/2023]
|
5
|
Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity. Parasitol Res 2014; 114:55-64. [DOI: 10.1007/s00436-014-4159-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
6
|
Szwergold BS. Maillard reactions in hyperthermophilic archaea: implications for better understanding of non-enzymatic glycation in biology. Rejuvenation Res 2014; 16:259-72. [PMID: 23634960 DOI: 10.1089/rej.2012.1401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Maillard reactions are an unavoidable feature of life that appear to be damaging to cell and organisms. Consequently, all living systems must have ways to protect themselves against this process. As of 2012, several such defense mechanisms have been identified. They are all enzymatic and were found in mesophilic organisms. To date, no systematic study of Maillard reactions and the relevant defense mechanisms has been conducted in thermophiles (50°C-80°C) or hyperthermophiles (80°C-120°C). This is surprisingly because Maillard reactions become significantly faster and potent with increasing temperatures. This review examines this neglected issue in two well-defined sets of hyperthermophiles. My analysis suggests that hyperthermophiles cope with glycation stress by several mechanisms: • Absence of glycation-prone head groups (such as ethanoalamine) from hyperthermophilic phospholipids • Protection of reactive carbohydrates and labile metabolic intermediates by substrate channeling. • Conversion of excess reactive sugars such as glucose to non-reactive compounds including trehalose, di-myo-inositol-phosphate and mannosylglycerate. • Detoxification of methylglyoxal and other ketoaldehydes by conversion to inert products through a variety of reductases and dehydrogenases. • Scavenging of the remaining carbonyls by nucleophilic amines, including a variety of novel polyamines. Disruption of the Maillard process at its early stages, rather than repair of damage caused by it at later stages, appears to be the preferred strategy in the organisms examined. The most unique among these mechanisms appears to be a polyamine-based scavenging system. Undertaking research of the Maillard process in hyperthermophiles is important in its own right and is also likely to provide new insights for the control of these reactions in humans, especially in diseases such as diabetes mellitus.
Collapse
|
7
|
Víctor SA, Yolanda MF, Araceli ZC, Lucía J, Abraham L. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium. Exp Parasitol 2013; 134:495-503. [DOI: 10.1016/j.exppara.2013.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 04/20/2013] [Accepted: 05/09/2013] [Indexed: 01/17/2023]
|
8
|
Physicochemical analysis of structural changes in DNA modified with glucose. Int J Biol Macromol 2012; 51:604-11. [DOI: 10.1016/j.ijbiomac.2012.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/13/2023]
|
9
|
Seneviratne C, Dombi GW, Liu W, Dain JA. In vitro glycation of human serum albumin by dihydroxyacetone and dihydroxyacetone phosphate. Biochem Biophys Res Commun 2011; 417:817-23. [PMID: 22198436 DOI: 10.1016/j.bbrc.2011.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/09/2011] [Indexed: 02/09/2023]
Abstract
Amino groups in proteins can non-enzymatically react with reducing sugars to generate a structurally diverse group of compounds referred to as advanced glycation end products (AGEs). The in vivo formation of AGEs contributes to some of the complications of diabetes including atherosclerosis, cataract formation, and renal failure. The formation of AGEs is dependent on both sugar and protein concentrations. Increases in temperature, pH, and exposure time of sugars to the proteins also play a significant role in the rate of AGE formation. This study focuses on the use of a combination of analytical techniques to study the in vitro AGE formation of HSA with dihydroxyacetone phosphate (DHAP), a ketose generated during glycolysis, and its dephosphorylated analog, dihydroxy acetone (DHA), commonly used as a browning reagent in skin tanning preparations. The extent of AGE formation was affected by DHAP and DHA concentrations and by the duration of HSA exposure to these glycating agents. Increases in temperature and pH sped the glycation process and enhanced the formation of the AGEs of HSA. MALDI-TOF mass spectroscopic data provided a reliable result to evaluate the extent of the AGE formation.
Collapse
|
10
|
Møller IM, Rogowska-Wrzesinska A, Rao R. Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteomics 2011; 74:2228-42. [DOI: 10.1016/j.jprot.2011.05.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 12/16/2022]
|
11
|
Orosz F, Oláh J, Ovádi J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1168-74. [PMID: 19786097 DOI: 10.1016/j.bbadis.2009.09.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/16/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
Abstract
The triosephosphate isomerase (TPI) functions at a metabolic cross-road ensuring the rapid equilibration of the triosephosphates produced by aldolase in glycolysis, which is interconnected to lipid metabolism, to glycerol-3-phosphate shuttle and to the pentose phosphate pathway. The enzyme is a stable homodimer, which is catalytically active only in its dimeric form. TPI deficiency is an autosomal recessive multisystem genetic disease coupled with hemolytic anemia and neurological disorder frequently leading to death in early childhood. Various genetic mutations of this enzyme have been identified; the mutations result in decrease in the catalytic activity and/or the dissociation of the dimers into inactive monomers. The impairment of TPI activity apparently does not affect the energy metabolism at system level; however, it results in accumulation of dihydroxyacetone phosphate followed by its chemical conversion into the toxic methylglyoxal, leading to the formation of advanced glycation end products. By now, the research on this disease seems to enter a progressive stage by adapting new model systems such as Drosophila, yeast strains and TPI-deficient mouse, which have complemented the results obtained by prediction and experiments with recombinant proteins or erythrocytes, and added novel data concerning the complexity of the intracellular behavior of mutant TPIs. This paper reviews the recent studies on the structural and catalytic changes caused by mutation and/or nitrotyrosination of the isomerase leading to the formation of an aggregation-prone protein, a characteristic of conformational disorders.
Collapse
Affiliation(s)
- Ferenc Orosz
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Karolina u 29, Hungary.
| | | | | |
Collapse
|