1
|
Domes R, Frosch T. Molecular Interactions Identified by Two-Dimensional Analysis-Detailed Insight into the Molecular Interactions of the Antimalarial Artesunate with the Target Structure β-Hematin by Means of 2D Raman Correlation Spectroscopy. Anal Chem 2023; 95:12719-12731. [PMID: 37586701 PMCID: PMC10469332 DOI: 10.1021/acs.analchem.3c01415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
A thorough understanding of the interaction of endoperoxide antimalarial agents with their biological target structures is of utmost importance for the tailored design of future efficient antimalarials. Detailed insights into molecular interactions between artesunate and β-hematin were derived with a combination of resonance Raman spectroscopy, two-dimensional correlation analysis, and density functional theory calculations. Resonance Raman spectroscopy with three distinct laser wavelengths enabled the specific excitation of different chromophore parts of β-hematin. The resonance Raman spectra of the artesunate-β-hematin complexes were thoroughly analyzed with the help of high-resolution and highly sensitive two-dimensional correlation spectroscopy. Spectral changes in the peak properties were found with increasing artesunate concentration. Changes in the low-frequency, morphology-sensitive Raman bands indicated a loss in crystallinity of the drug-target complexes. Differences in the high-wavenumber region were assigned to increased distortions of the planarity of the structure of the target molecule due to the appearance of various coexisting alkylation species. Evidence for the appearance of high-valent ferryl-oxo species could be observed with the help of differences in the peak properties of oxidation-state sensitive Raman modes. To support those findings, the relaxed ground-state structures of ten possible covalent mono- and di-meso(Cm)-alkylated hematin-dihydroartemisinyl complexes were calculated using density functional theory. A very good agreement with the experimental peak properties was achieved, and the out-of-plane displacements along the lowest-frequency normal coordinates were investigated by normal coordinate structural decomposition analysis. The strongest changes in all data were observed in vibrations with a high participation of Cm-parts of β-hematin.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz
Institute of Photonic Technology, Albert Einstein Strasse 9, D-07745 Jena, Germany
| | - Torsten Frosch
- Biophotonics and
Biomedical Engineering Group, Technical
University Darmstadt, Merckstraße 25, 64283 Darmstadt, Germany
- Leibniz
Institute of Photonic Technology, Albert Einstein Strasse 9, D-07745 Jena, Germany
| |
Collapse
|
2
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
3
|
Christensen D, Rüther A, Kochan K, Pérez-Guaita D, Wood B. Whole-Organism Analysis by Vibrational Spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:89-108. [PMID: 30978292 DOI: 10.1146/annurev-anchem-061318-115117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vibrational spectroscopy has contributed to the understanding of biological materials for many years. As the technology has advanced, the technique has been brought to bear on the analysis of whole organisms. Here, we discuss advanced and recently developed infrared and Raman spectroscopic instrumentation to whole-organism analysis. We highlight many of the recent contributions made in this relatively new area of spectroscopy, particularly addressing organisms associated with disease with emphasis on diagnosis and treatment. The application of vibrational spectroscopic techniques to entire organisms is still in its infancy, but new developments in imaging and chemometric processing will likely expand in the field in the near future.
Collapse
Affiliation(s)
- Dale Christensen
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Anja Rüther
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | - Kamila Kochan
- School of Chemistry, Monash University, Victoria 3800, Australia;
| | | | - Bayden Wood
- School of Chemistry, Monash University, Victoria 3800, Australia;
| |
Collapse
|
4
|
Wollweber M, Roth B. Raman Sensing and Its Multimodal Combination with Optoacoustics and OCT for Applications in the Life Sciences. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2387. [PMID: 31137716 PMCID: PMC6566696 DOI: 10.3390/s19102387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
Abstract
Currently, many optical modalities are being investigated, applied, and further developed for non-invasive analysis and sensing in the life sciences. To befit the complexity of the study objects and questions in this field, the combination of two or more modalities is attempted. We review our work on multimodal sensing concepts for applications ranging from non-invasive quantification of biomolecules in the living organism to supporting medical diagnosis showing the combined capabilities of Raman spectroscopy, optical coherence tomography, and optoacoustics.
Collapse
Affiliation(s)
- Merve Wollweber
- Laser Zentrum Hannover e.V., Industrial and Biomedical Optics Department, Hollerithallee 8, 30419 Hannover, Germany.
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany.
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Str. 17, 30167 Hannover, Germany.
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
| |
Collapse
|
5
|
Fornasaro S, Vicario A, De Leo L, Bonifacio A, Not T, Sergo V. Potential use of MCR-ALS for the identification of coeliac-related biochemical changes in hyperspectral Raman maps from pediatric intestinal biopsies. Integr Biol (Camb) 2019; 10:356-363. [PMID: 29756143 DOI: 10.1039/c8ib00028j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Raman hyperspectral imaging is an emerging practice in biological and biomedical research for label free analysis of tissues and cells. Using this method, both spatial distribution and spectral information of analyzed samples can be obtained. The current study reports the first Raman microspectroscopic characterisation of colon tissues from patients with Coeliac Disease (CD). The aim was to assess if Raman imaging coupled with hyperspectral multivariate image analysis is capable of detecting the alterations in the biochemical composition of intestinal tissues associated with CD. The analytical approach was based on a multi-step methodology: duodenal biopsies from healthy and coeliac patients were measured and processed with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). Based on the distribution maps and the pure spectra of the image constituents obtained from MCR-ALS, interesting biochemical differences between healthy and coeliac patients has been derived. Noticeably, a reduced distribution of complex lipids in the pericryptic space, and a different distribution and abundance of proteins rich in beta-sheet structures was found in CD patients. The output of the MCR-ALS analysis was then used as a starting point for two clustering algorithms (k-means clustering and hierarchical clustering methods). Both methods converged with similar results providing precise segmentation over multiple Raman images of studied tissues.
Collapse
Affiliation(s)
- Stefano Fornasaro
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Pahlow S, Weber K, Popp J, Wood BR, Kochan K, Rüther A, Perez-Guaita D, Heraud P, Stone N, Dudgeon A, Gardner B, Reddy R, Mayerich D, Bhargava R. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. APPLIED SPECTROSCOPY 2018; 72:52-84. [PMID: 30265133 PMCID: PMC6524782 DOI: 10.1177/0003702818791939] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Anja Rüther
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Alex Dudgeon
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Ben Gardner
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Rohith Reddy
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - David Mayerich
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Departments of Mechanical Engineering, Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
7
|
Perez-Guaita D, Marzec KM, Hudson A, Evans C, Chernenko T, Matthäus C, Miljkovic M, Diem M, Heraud P, Richards JS, Andrew D, Anderson DA, Doerig C, Garcia-Bustos J, McNaughton D, Wood BR. Parasites under the Spotlight: Applications of Vibrational Spectroscopy to Malaria Research. Chem Rev 2018; 118:5330-5358. [DOI: 10.1021/acs.chemrev.7b00661] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Katarzyna M. Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzyńskiego 14, Kraków 30-348, Poland
- Center for Medical Genomics (OMICRON), Jagiellonian University, Kopernika 7C, Krakow 31-034, Poland
| | - Andrew Hudson
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Corey Evans
- Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Tatyana Chernenko
- Becton Dickinson and Company, 2350 Qume Drive, San Jose, California 95131, United States
| | - Christian Matthäus
- Leibniz Institute of Photonic Technology, Albert Einstein Straße 9, Jena 07745, Germany
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University, Helmholtz Weg 4, Jena 07743, Germany
| | - Milos Miljkovic
- Department of Mechanical Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Max Diem
- Laboratory for Spectral Diagnosis (LSpD), Department of Chemistry and Chemical Biology, Northeastern University, 316 Hurtig Hall, 360 Huntington Avenue, Boston, Massachusetts 02155, United States
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Medicine, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Dean Andrew
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - David A. Anderson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Christian Doerig
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jose Garcia-Bustos
- Department of Microbiology and the Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Basilico N, Corbett Y, D' Alessandro S, Parapini S, Prato M, Girelli D, Misiano P, Olliaro P, Taramelli D. Malaria pigment stimulates chemokine production by human microvascular endothelium. Acta Trop 2017; 172:125-131. [PMID: 28476599 DOI: 10.1016/j.actatropica.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023]
Abstract
Severe falciparum malaria is characterized by the sequestration of infected erythrocytes and leukocyte recruitment in the microvasculature, resulting in impaired blood flow and metabolic disturbances. Which parasite products cause chemokine production, thus contributing to the strong host inflammatory response and cellular recruitment are not well characterized. Here, we studied haemozoin (Hz), the end-product of haem, a ferriprotoporphyrin-IX crystal bound to host and parasite lipids, DNA, and proteins. We found that natural Hz isolated from Plasmodium falciparum cultures induces CXCL8 and CCL5 production in human dermal microvascular endothelial cells (HMEC-1) in a time-dependent manner. This up-regulation is not caused by haem but rather by Hz-generated lipoperoxidation products (15-HETE) and fibrinogen associated to Hz, and is, at least in part, triggered by the activation of NF-κB, as it was significantly inhibited by artemisinin and other NF-κB pathway inhibitors.
Collapse
Affiliation(s)
- Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy.
| | - Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Sarah D' Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy; Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Mauro Prato
- Dipartimento di Neuroscienze Università di Torino, Corso Raffaello 30-10125, Torino, Italy
| | - Daniela Girelli
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Paola Misiano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Piero Olliaro
- UNICEF/UNDP/World Bank/WHO Special Programme on Research & Training in Tropical Diseases (TDR) World Health Organization, Geneva, Switzerland; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| |
Collapse
|
9
|
Atkins CG, Buckley K, Blades MW, Turner RFB. Raman Spectroscopy of Blood and Blood Components. APPLIED SPECTROSCOPY 2017; 71:767-793. [PMID: 28398071 DOI: 10.1177/0003702816686593] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blood is a bodily fluid that is vital for a number of life functions in animals. To a first approximation, blood is a mildly alkaline aqueous fluid (plasma) in which a large number of free-floating red cells (erythrocytes), white cells (leucocytes), and platelets are suspended. The primary function of blood is to transport oxygen from the lungs to all the cells of the body and move carbon dioxide in the return direction after it is produced by the cells' metabolism. Blood also carries nutrients to the cells and brings waste products to the liver and kidneys. Measured levels of oxygen, nutrients, waste, and electrolytes in blood are often used for clinical assessment of human health. Raman spectroscopy is a non-destructive analytical technique that uses the inelastic scattering of light to provide information on chemical composition, and hence has a potential role in this clinical assessment process. Raman spectroscopic probing of blood components and of whole blood has been on-going for more than four decades and has proven useful in applications ranging from the understanding of hemoglobin oxygenation, to the discrimination of cancerous cells from healthy lymphocytes, and the forensic investigation of crime scenes. In this paper, we review the literature in the field, collate the published Raman spectroscopy studies of erythrocytes, leucocytes, platelets, plasma, and whole blood, and attempt to draw general conclusions on the state of the field.
Collapse
Affiliation(s)
- Chad G Atkins
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Kevin Buckley
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 3 Nanoscale Biophotonics Laboratory, National University of Ireland, Ireland
| | - Michael W Blades
- 2 Department of Chemistry, The University of British Columbia, Canada
| | - Robin F B Turner
- 1 Michael Smith Laboratories, The University of British Columbia, Canada
- 2 Department of Chemistry, The University of British Columbia, Canada
- 4 Department of Electrical and Computer Engineering, The University of British Columbia, Canada
| |
Collapse
|
10
|
Domes R, Domes C, Albert CR, Bringmann G, Popp J, Frosch T. Vibrational spectroscopic characterization of arylisoquinolines by means of Raman spectroscopy and density functional theory calculations. Phys Chem Chem Phys 2017; 19:29918-29926. [DOI: 10.1039/c7cp05415g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Seven new AIQ antimalarial agents were investigated using FT-NIR and deep-UV resonance Raman spectroscopy.
Collapse
Affiliation(s)
- Robert Domes
- Leibniz Institute of Photonic Technology
- Jena
- Germany
| | | | | | - Gerhard Bringmann
- Julius-Maximilians University
- Institute of Organic Chemistry
- Würzburg
- Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology
- Jena
- Germany
- Friedrich Schiller University
- Institute for Physical Chemistry
| |
Collapse
|
11
|
Silge A, Bocklitz T, Ossig R, Schnekenburger J, Rösch P, Popp J. The interaction of an amino-modified ZrO2 nanomaterial with macrophages-an in situ investigation by Raman microspectroscopy. Anal Bioanal Chem 2016; 408:5935-5943. [PMID: 27329500 DOI: 10.1007/s00216-016-9710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 01/18/2023]
Abstract
Metal oxide nanoparticles (NP) are applied in the fields of biomedicine, pharmaceutics, and in consumer products as textiles, cosmetics, paints, or fuels. In this context, the functionalization of the NP surface is a common method to modify and modulate the product performance. A chemical surface modification of NP such as an amino-functionalization can be used to achieve a positively charged and hydrophobic surface. Surface functionalization is known to affect the interaction of nanomaterials (NM) with cellular macromolecules and the responses of tissues or cells, like the uptake of particles by phagocytic cells. Therefore, it is important to assess the possible risk of those modified NP for human health and environment. By applying Raman microspectroscopy, we verified in situ the interaction of amino-modified ZrO2 NP with cultivated macrophages. The results demonstrated strong adhesion properties of the NP to the cell membrane and internalization into the cells. The intracellular localization of the NP was visualized via Raman depth scans of single cells. After the cells were treated with sodium azide (NaN3) and 2-deoxy-glucose to inhibit the phagocytic activity, NP were still detected inside cells to comparable percentages. The observed tendency of amino-modified ZrO2 NP to interact with the cultivated macrophages may influence membrane integrity and cellular functions of alveolar macrophages in the respiratory system. Graphical abstract Detection of ZrO2 NM at subcellular level.
Collapse
Affiliation(s)
- Anja Silge
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany
| | - Rainer Ossig
- Biomedical Technology Center, Westfälische Wilhelms-Universität Münster, Mendelstr. 17, 48149, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Westfälische Wilhelms-Universität Münster, Mendelstr. 17, 48149, Münster, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Center for Applied Research, Philosophenweg 7, 07743, Jena, Germany.
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07702, Jena, Germany.
| |
Collapse
|
12
|
Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci Rep 2016; 6:20177. [PMID: 26858127 PMCID: PMC4746575 DOI: 10.1038/srep20177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/23/2015] [Indexed: 01/03/2023] Open
Abstract
We report two methods of surface enhanced Raman spectroscopy (SERS) for hemozoin detection in malaria infected human blood. In the first method, silver nanoparticles were synthesized separately and then mixed with lysed blood; while in the second method, silver nanoparticles were synthesized directly inside the parasites of Plasmodium falciparum. It was observed that the first method yields a smaller variation in SERS measurements and stronger correlation between the estimated contribution of hemozoin and the parasitemia level, which is preferred for the quantification of the parasitemia level. In contrast, the second method yields a higher sensitivity to a low parasitemia level thus could be more effective in the early malaria diagnosis to determine whether a given blood sample is positive.
Collapse
|
13
|
Kozicki M, Czepiel J, Biesiada G, Nowak P, Garlicki A, Wesełucha-Birczyńska A. The ring-stage of Plasmodium falciparum observed in RBCs of hospitalized malaria patients. Analyst 2015; 140:8007-16. [PMID: 26524434 DOI: 10.1039/c5an01598g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman spectra of the blood samples obtained directly from hospitalized malaria patients with Plasmodium falciparum (P. falciparum) in the ring-stage were analyzed. Changes observed in the Raman band intensities of the infected patients compared to healthy volunteers are the result of parasite activity inside red blood cells. The obtained spectra were discussed by analyzing differences in particular spectral regions by evaluating changes in the band intensity ratios as well as using PCA analysis. The alterations of erythrocyte membranes caused by parasite penetration are visible by a reduced I1130/I1075 intensity ratio expressing the lowering of the amount of domains arranged in trans conformation. The I2930/I2850 ratio, which is a measure of modifications in structures of membrane proteins and lipids, in infected red blood cells increases, which is caused by malaria protein export to the erythrocyte membrane and expresses the membrane disarrangement. In the pyrrole ring vibration region, the ν4 band marker of the oxygenated-Hb shows at 1371 cm(-1) whereas the ν4 band at 1353 cm(-1) related to the deoxygenated-Hb is observed for malaria patients and is characterized by a higher intensity in infected erythrocytes. The amide I analysis shows the modifications in the secondary structure composition in the infected RBCs. We found that the P. falciparum infection leads to a decrease in the α-helical content and a concurrent increase in undefined (random-coil) structures. It was observed that the Raman spectra changes are also the result of the hemozoin formation process. In the pyrrole ring stretching vibration region, the increase of 1220 cm(-1) (deoxyHb) as against 1248 cm(-1) (oxyHb) may be considered as a signal of hemozoin formation in the RBCs. Relatively intense band patterns at 1560 cm(-1) and also at 1570 cm(-1) and 1552 cm(-1) may be due to the hemozoin that is formed according to parasite activity. The results of medical diagnostic tests had not presented changes in patient RBC parameters. A significant reduction in WBC count was noticed along with a decrease in neutrophil and platelet count when compared with the control group. Although no change is observed in the overall picture of the erythrocytes, pathological changes are evident in the Raman spectrum.
Collapse
Affiliation(s)
- Mateusz Kozicki
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Hobro AJ, Pavillon N, Fujita K, Ozkan M, Coban C, Smith NI. Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. Analyst 2015; 140:2350-9. [PMID: 25646175 DOI: 10.1039/c4an01850h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hemozoin, the 'malaria pigment', is engulfed by phagocytic cells, such as macrophages, during malaria infection. This biocrystalline substance is difficult to degrade and often accumulates in phagocytes. The macrophage response to hemozoin relates to the severity of the disease and the potential for malaria-related disease complications. In this study we have used Raman spectroscopy as a label-free method to investigate the biochemical changes occurring in macrophages during the first few hours of hemozoin uptake. We found a number of distinct spectral groups, spectrally or spatially related to the presence of the hemozoin inside the cell. Intracellular hemozoin was spectrally identical to extracellular hemozoin, regardless of the location in the cell. A small proportion of hemozoin was found to be associated with lipid-based components, consistent with the uptake of hemozoin into vesicles such as phagosomes and lysosomes. The spatial distribution of the hemozoin was observed to be inhomogeneous, and its presence largely excluded that of proteins and lipids, demonstrating that cells were not able to break down the biocrystals on the time scales studied here. These results show that Raman imaging can be used to answer some of the open questions regarding the role of hemozoin in the immune response. How different combinations of hemozoin and other molecules are treated by macrophages, whether hemozoin can be broken down by the cell, and more importantly, which co-factors or products are involved in the subsequent cell reaction are the expected issues to be elucidated by this technique.
Collapse
Affiliation(s)
- Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 2015; 89:121-34. [PMID: 25809988 DOI: 10.1016/j.addr.2015.03.009] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/24/2015] [Accepted: 03/14/2015] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications.
Collapse
|
16
|
Affiliation(s)
- Paul A. Sigala
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology and the Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63110; ,
| |
Collapse
|
17
|
Niles JC. Malarial parasites accumulate labile zinc pools. ACTA ACUST UNITED AC 2014; 19:660-1. [PMID: 22726676 DOI: 10.1016/j.chembiol.2012.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The malarial parasite, Plasmodium falciparum, is an intracellular pathogen and partially dependent on nutrient uptake for survival. In this issue of Chemistry & Biology, Marvin et al. demonstrate that zinc is essential for parasite growth and that the parasite maintains substantial labile cytosolic and mitochondrial zinc pools.
Collapse
Affiliation(s)
- Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 56-341b, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Hobro AJ, Konishi A, Coban C, Smith NI. Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 2013; 138:3927-33. [PMID: 23529513 DOI: 10.1039/c3an00255a] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study Raman spectroscopy has been used to monitor the changes in erythrocytes and plasma during Plasmodium infection in mice, following malaria disease progression over the course of 7 days. The Raman spectra of both samples are dominated by the spectra of hemoglobin and hemozoin, due to their resonant enhancement. In plasma samples, due to the inherently low heme background, heme-based changes in the Raman spectra could be detected in the very early stages of infection, as little as one day after Plasmodium infection, where parasitemia levels were low, on the order of 0.2%, and typically difficult to detect by existing methods. Further principal component analysis also indicates concurrent erythrocyte membrane changes at around day 4, where parasitemia levels reached 3%. These results show that plasma analysis has significant potential for early, quantitative and automated detection of malaria, and to quantify heme levels in serum which modulate malarial effects on the immune system.
Collapse
Affiliation(s)
- Alison J Hobro
- Biophotonics Laboratory, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
19
|
Khadjavi A, Valente E, Giribaldi G, Prato M. Involvement of p38 MAPK in haemozoin-dependent MMP-9 enhancement in human monocytes. Cell Biochem Funct 2013; 32:5-15. [PMID: 23468369 DOI: 10.1002/cbf.2963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/05/2012] [Accepted: 01/21/2013] [Indexed: 01/01/2023]
Abstract
The lipid moiety of natural haemozoin (nHZ, malarial pigment) was previously shown to enhance expression and release of human monocyte matrix metalloproteinase-9 (MMP-9), and a major role for 15-(S,R)-hydroxy-6,8,11,13-eicosatetraenoic acid (15-HETE), a nHZ lipoperoxidation product, was proposed. Here, the underlying mechanisms were investigated, focusing on the involvement of mitogen-activated protein kinases (MAPKs). Results showed that nHZ promoted either early or late p38 MAPK phosphorylation; however, nHZ did not modify basal phosphorylation/expression ratios of extracellular signal-regulated kinase-1/2 and c-jun N-terminal kinase-1/2. 15-HETE mimicked nHZ effects on p38 MAPK, whereas lipid-free synthetic (s)HZ and delipidized (d)HZ did not. Consistently, both nHZ and 15-HETE also promoted phosphorylation of MAPK-activated protein kinase-2, a known p38 MAPK substrate; such an effect was abolished by SB203580, a synthetic p38 MAPK inhibitor. SB203580 also abrogated nHZ-dependent and 15-HETE-dependent enhancement of MMP-9 mRNA and protein (latent and activated forms) levels in cell lysates and supernatants. Collectively, these data suggest that in human monocytes, nHZ and 15-HETE upregulate MMP-9 expression and secretion through activation of p38 MAPK pathway. The present work provides new evidence on mechanisms underlying MMP-9 deregulation in malaria, which might be helpful to design new specific drugs for adjuvant therapy in complicated malaria.
Collapse
Affiliation(s)
- Amina Khadjavi
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Turin, Italy
| | | | | | | |
Collapse
|
20
|
ZOUEU J, ZAN S. Trophozoite stage infected erythrocyte contents analysis by use of spectral imaging LED microscope. J Microsc 2011; 245:90-9. [DOI: 10.1111/j.1365-2818.2011.03548.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Cho S, Kim S, Kim Y, Park Y. Optical imaging techniques for the study of malaria. Trends Biotechnol 2011; 30:71-9. [PMID: 21930322 DOI: 10.1016/j.tibtech.2011.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023]
Abstract
Malarial infection needs to be imaged to reveal the mechanisms behind malaria pathophysiology and to provide insights to aid in the diagnosis of the disease. Recent advances in optical imaging methods are now being transferred from physics laboratories to the biological field, revolutionizing how we study malaria. To provide insight into how these imaging techniques can improve the study and treatment of malaria, we summarize recent progress on optical imaging techniques, ranging from in vitro visualization of the disease progression of malaria infected red blood cells (iRBCs) to in vivo imaging of malaria parasites in the liver.
Collapse
Affiliation(s)
- Sangyeon Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Prato M, D'Alessandro S, Van den Steen PE, Opdenakker G, Arese P, Taramelli D, Basilico N. Natural haemozoin modulates matrix metalloproteinases and induces morphological changes in human microvascular endothelium. Cell Microbiol 2011; 13:1275-85. [PMID: 21707906 DOI: 10.1111/j.1462-5822.2011.01620.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe malaria, including cerebral malaria (CM), is characterized by the sequestration of parasitized erythrocytes in the microvessels after cytoadherence to endothelial cells. Products of parasite origin, such as haemozoin (HZ), contribute to the pathogenesis of severe malaria by interfering with host inflammatory response. In human monocytes, HZ enhanced the levels of matrix metalloproteinase-9 (MMP-9), a protease involved in neuroinflammation. Here the effects of HZ on the regulation of MMPs by the human microvascular endothelial cell line HMEC-1 were investigated. Cells treated with natural (n)HZ appeared elongated instead of polygonal, and formed microtubule-like vessels on synthetic basement membrane. nHZ enhanced total gelatinolytic activity by inducing proMMP-9 and MMP-9 without affecting basal MMP-2. The level of the endogenous tissue inhibitor of MMP-9 (TIMP-1) was not altered by nHZ, while TIMP-2, the MMP-2 inhibitor, was enhanced. Additionally, nHZ induced MMP-1 and MMP-3, two enzymes sequentially involved in collagenolysis and proMMP-9 proteolytic activation. Lipid-free HZ did not reproduce nHZ effects. Present data suggest that the lipid moiety of HZ alters the MMP/TIMP balances and promotes the proteolytic activation of proMMP-9 in HMEC-1, thereby enhancing total gelatinolytic activity, cell activation and inflammation. These findings might help understanding the mechanisms of blood brain barrier damage during CM.
Collapse
Affiliation(s)
- Mauro Prato
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, Torino, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wood BR, Stoddart PR, McNaughton D. Molecular Imaging of Red Blood Cells by Raman Spectroscopy. Aust J Chem 2011. [DOI: 10.1071/ch11136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Raman spectroscopy allows visualization of 2D and 3D chemical distributions at high spatial resolution in a wide range of samples. It is insensitive to water, which makes it particularly attractive for applications in the biological sciences. At the same time, technical advances have allowed the laser excitation power to be reduced on thermally sensitive samples, without sacrificing acquisition times. This review highlights the analytical and diagnostic potential of Raman imaging techniques by reference to recent studies of red blood cells. In the case of red blood cells infected with low-pigmented forms of the malaria parasite, molecular images reveal sub-micron-inclusions of haemozoin, which suggests that the technique has potential for early-stage diagnosis of the disease.
Collapse
|
24
|
The lipid moiety of haemozoin (Malaria Pigment) and P. falciparum parasitised red blood cells bind synthetic and native endothelin-1. J Biomed Biotechnol 2010; 2010:854927. [PMID: 20204072 PMCID: PMC2829634 DOI: 10.1155/2010/854927] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/08/2009] [Accepted: 12/29/2009] [Indexed: 11/18/2022] Open
Abstract
Endothelin1 (ET-1) is a 21-amino acid peptide produced by the vascular endothelium under hypoxia, that acts locally as regulator of vascular tone and inflammation. The role of ET-1 in Plasmodium falciparum malaria is unknown, although tissue hypoxia is frequent as a result of the cytoadherence of parasitized red blood cell (pRBC) to the microvasculature. Here, we show that both synthetic and endothelial-derived ET-1 are removed by parasitized RBC (D10 and W2 strains, chloroquine sensitive, and resistant, resp.) and native haemozoin (HZ, malaria pigment), but not by normal RBC, delipidized HZ, or synthetic beta-haematin (BH). The effect is dose dependent, selective for ET-1, but not for its precursor, big ET-1, and not due to the proteolysis of ET-1. The results indicate that ET-1 binds to the lipids moiety of HZ and membranes of infected RBCs. These findings may help understanding the consequences of parasite sequestration in severe malaria.
Collapse
|
25
|
Wood BR, Hermelink A, Lasch P, Bambery KR, Webster GT, Khiavi MA, Cooke BM, Deed S, Naumann D, McNaughton D. Resonance Raman microscopy in combination with partial dark-field microscopy lights up a new path in malaria diagnostics. Analyst 2009; 134:1119-25. [DOI: 10.1039/b822603b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|